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The kagome lattice is a two-dimensional (2D) network of 
corner-sharing triangles (Fig. 1a) that originally gained the 
spotlight as a platform for frustration-driven exotic spin-liq-

uid phases1,2. Recent theoretical investigations have focused on the 
emergent electronic excitations engendered by the special geometry 
of the kagome network, whose unique combination of lattice sym-
metry, spin–orbit coupling, and unusual magnetism sets an ideal 
stage for novel topological phases3–8. Viewed as an isolated layer, the 
kagome lattice hosts a flat band and a pair of Dirac bands as depicted 
in the nearest-neighbour tight-binding calculation in Fig. 1b  
(refs. 3,4). Compounded with spin–orbit coupling and a net magne-
tization, the 2D kagome lattice realizes a 2D Chern insulator phase 
with quantized anomalous Hall conductance at 1/3 and 2/3 fillings5. 
When these quantum anomalous Hall layers are stacked along the 
third dimension, the interlayer interaction drives the mass gap to 
be closed and reopened along the stacking axis, transforming the 
system into a three-dimensional (3D) magnetic Weyl semimetal7,9. 
Focusing on a flat band with quenched kinetic energy, interaction-
driven many-body electronic phases ranging from density waves 
to superconductivity have been theoretically investigated10. At the 
same time, the flat band on the kagome lattice also carries a finite 
Chern number, and mimics the phenomenology of Landau levels, 
without an external magnetic field8,11. As a result, the fractional 
quantum Hall state can be realized at a partial filling of these flat 
bands, further enriching the spectrum of topological phases that 
can be harnessed within the kagome lattice.

These promising theoretical proposals have driven and guided 
recent experimental efforts toward the realization and study of 
topological kagome metals based on binary and ternary interme-
tallic compounds12–23. At variance with other widely studied s or p 
orbital-based toplogical systems that are close to the non-interact-
ing limit, the kagome lattice in these intermetallic materials is popu-
lated by the low-energy 3d electrons of transition metals (Fig. 1a), 
and thus provide an ideal platform to study the interplay of elec-
tronic topology and strong correlations. Correspondingly, not only 
topological electronic structures but also rich intrinsic magnetism 
can be found in the 3d kagome metal series. The combination of 
these two aspects gives rise to intrinsic anomalous Hall conductivity 
via various mechanisms12,14,16,20,21.

Despite the great potential and rich phenomenology of this 
family of materials, the experimental realization of the electronic 
structure of an idealized 2D kagome lattice, namely the Dirac fer-
mions and topological flat bands (Fig. 1b), in bulk magnetic kagome 
crystals has remained an outstanding challenge. For instance, in the 
binary intermetallic TmXn kagome series (T = Mn, Fe, Co; X = Sn, 
Ge; m:n = 3:1, 3:2, 1:1) with various stacking sequences of kagome 
and spacer S layers (Fig. 1c–e), the quasi-2D Dirac electronic struc-
ture has been detected only in Fe3Sn2 (ref. 16) but not in Mn3Sn  
(ref. 14). Rather, in Mn3Sn and ternary kagome compound Co3Sn2S2, 
3D magnetic Weyl points have been identified as the potential  
origin for the chiral anomaly in transport14,20, as also confirmed by 
band structure calculations7,20–22. For what concerns the flat bands, 
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a diverging density of states was found in Fe3Sn2 and Co3Sn2S2 using 
scanning tunneling spectroscopy; however, no signatures of these 
nondispersive excitations in momentum space have been reported 
so far, presumably due to the complex interlayer interactions, dis-
rupting flat bands in the 2D kagome limit (Fig. 1d)19,23. Given the 
premises, the investigation of a material with a simpler stacking 
structure is desired to provide a prototypical realization of the elec-
tronic structure of the kagome lattice.

In this study, we report the electronic structure of kagome 
metal FeSn, unique among its TmXn sibling compounds in that it is 
based on isolated and spatially decoupled kagome planes (Fig. 1e,  
see Methods and Supplementary Fig. 1 for details on synthesis and 
characterizations). Compared to the previously studied Mn3Sn 
and Fe3Sn2 structures (Fig. 1c,d), FeSn has one kagome layer in the 
unit cell, and is the compound closest to the 2D limit owing to the 
large separation between the neighbouring kagome layers (Fig. 1e).  
This sets an ideal stage to investigate the electronic structure of 
the 2D kagome network in a bulk crystal. FeSn is magnetically 
ordered, with Fe moments ferromagnetically aligned within each 
kagome plane but antiferromagnetically coupled along the c-axis24. 

This magnetic state allows for a simple hopping model, free from 
the complications of a non-collinear magnetic texture as instead is 
found in Mn3Sn-type kagome antiferromagnets12. As detailed below, 
our comprehensive study of the electronic structure of FeSn—com-
bining angle-resolved photoemission spectroscopy (ARPES), mag-
neto-quantum oscillations, and density functional theory (DFT) 
calculations—reveals the rich phenomenology of the kagome lattice 
in its full variety, featuring the coexistence of bulk and surface Dirac 
fermions, as well as the long sought-after flat bands.

Termination-dependent ARPES experiments
In Fig. 2, we summarize our photoemission experiments on FeSn. 
We first note that FeSn can expose two possible surface termina-
tions upon cleaving, namely the kagome and Sn terminations 
marked as A and S in Fig. 1e. We determined that the surface 
termination can be uniquely identified in  situ using X-ray pho-
toelectron spectroscopy (XPS) on Sn 4d core levels as shown in  
Fig. 2a,b (see also Methods and Supplementary Figs. 2 (detailed 
analysis of XPS spectra), 3 (DFT analysis of surface level shifts) and 
4 (atomic force microscopy characterization of the surface termina-
tions)), and measured valence band structure on both terminations. 
Interestingly, our ARPES data uncover a strong dependence of the 
valence band structure on surface termination. In Fig. 2d,f, we first 
present the Fermi surface (Fig. 2d) and energy-momentum disper-
sion (Fig. 2f) from the kagome termination. The most prominent 
feature on the Fermi surface is a circular electron pocket (dashed 
circle in Fig. 2d) centred at the corner of the hexagonal Brillouin 
zone (K point), which arises out of the Dirac bands expected from 
the kagome tight-binding model (Fig. 1b) and previously observed 
in Fe3Sn2 (ref. 16). The energy–momentum dispersion across the K 
point (Fig. 2f) confirms the presence of a clear Dirac cone structure 
(DC1) with linear crossing at ED1 = –0.43 ± 0.02 eV. To closely visu-
alize the momentum-space structure of the Dirac bands, we show 
a series of constant energy maps in Fig. 2g–j, measured at +0.4 eV, 
+0.2 eV, 0 eV and –0.2 eV with respect to ED1. Far above ED1, the 
large electron pocket centred at the K point (Fig. 2g) can be seen, 
which shrinks to a single Dirac point (Fig. 2i) and reopens (Fig. 2j) 
linearly as the energy crosses ED1. The velocity of Dirac fermions in 
FeSn is (1.7 ± 0.2)×105 m s–1, an order of magnitude lower than that 
of graphene and in close range of that of Fe3Sn2 (ref. 16) and Fe-based 
superconductors25–27, possibly reflecting the more localized nature 
of Fe-3d electrons. Overall, our ARPES data directly establish the 
Dirac fermiology in kagome antiferromagnet FeSn, which could be 
harnessed for topological antiferromagnetic spintronics.

The electronic structure measured on the Sn termination is even 
richer than that on the kagome termination, as shown in Fig. 2c,e. The 
Fermi surface (Fig. 2c) exhibits a triangular electron pocket centred 
at the K point in addition to the circular pocket from DC1. The band 
dispersion shown in Fig. 2e reveals that the new pocket arises from 
a second Dirac cone (DC2) with crossing at ED2 = –0.31 ± 0.02 eV. 
The binding energy and dispersion of DC1 is unaltered on this 
termination. Further, DC1 and DC2 exhibit very different trigonal 
warping patterns away from the Dirac point (black dashed circle 
and triangle in Fig. 2c), despite their similar Dirac velocities. This 
aspect hints at the different origin of the two Dirac bands, and rules 
out other scenarios, such as layer-splitting, quantum-well states28 or 
bosonic shake-off replicas29. Instead, the inequivalence of the elec-
tronic spectra from the two terminations provides a direct insight 
on the nature of DC1 and DC2: the former is a bulk Dirac band that 
manifests itself independently of the surface termination, while the 
latter represents a surface Dirac state that is observed only on the 
Sn termination. Photon energy-dependent ARPES measurements 
further reveal that the dispersions of DC1 and DC2 are unaltered 
along the out-of-plane direction (Supplementary Fig. 5), reflecting 
the 2D nature of Dirac fermions in FeSn. The 2D kagome-derived 
electronic structure of FeSn is consistent with that expected from 
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Fig. 1 | Crystal structure of binary kagome metals. a, Top view of the 
kagome plane in binary kagome metals TmXn. The kagome network consists 
of 3d transition metal atoms (T: Fe, Mn, Co) with space-filling atoms (X: Sn, 
Ge) at the centre of the hexagon. The in-plane unit cell is marked with the 
parallelogram. b, Tight-binding band structure of kagome lattice exhibiting 
two Dirac bands at the K point and a flat band across the whole Brillouin 
zone. c–e, Stacking sequences of the binary kagome metal series TmXn with 
m:n = 3:1 (c), 3:2 (d) and 1:1 (e). Structural unit cells are marked with a solid 
line. The kagome layers labelled with A–C have different in-plane lattice 
offsets. Spacing layers consisting of X atoms in a hexagonal arrangement 
are labelled with S. The structural two-dimensionality increases with 
increasing ratio of X to T. In the TX (1:1) structure (e), the kagome layers 
are perfectly aligned with one another and are interleaved with S layers, 
while in the T3X structure (c), neighbouring kagome layers are directly 
stacked without spacing layers. In the T3X2 structure (d), both types of 
stacking coexist.
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its lattice structure with spatially decoupled kagome layers (Fig. 1e). 
This characteristic is unique to FeSn and represents the opposite 
limit to the case of all-kagome compound Mn3Sn (Fig. 1c), where 
an overall 3D electronic structure without any signature of 2D Dirac 
cones has been observed14.

dHvA and SdH quantum oscillation experiments
The surface versus bulk origin of the two Dirac bands can be fur-
ther pinned down using a bulk sensitive probe of the electronic 
structure: here we focus on the de Haas–van Alphen (dHvA) effect, 
which as a thermodynamic quantity exclusively measures the quan-
tized Landau level formation of bulk Fermi surfaces. Using torque 
magnetometry at high magnetic fields and low temperatures (see 
Methods), we resolve dHvA oscillations (see Supplementary Fig. 6)  
with frequencies summarized in Fig. 3a as circles. Multiple frequen-
cies are observed that vary systematically as a function of field ori-
entation with respect to the kagome plane normal (θ, see inset of 
Fig. 3a). Magnetoresistance Shubnikov–de Haas (SdH) oscillations 
are also observed (see Supplementary Fig. 7) whose frequencies are 

a subset of the dHvA frequencies, marked as triangles in Fig. 3a. We 
index these branches as α1,2,3, β1,2, γ1,2 and δ based on their qualitative 
evolution with θ. Most importantly, the frequencies of the β, γ and δ 
bands remain finite during a complete θ rotation, while the α band 
frequency diverges as (cosθ)–1 as the magnetic field is tilted toward 
the kagome plane. The former behaviour is a characteristic of 3D 
closed Fermi pockets, while the latter is indicative of quasi-2D Fermi 
sheets (for an ideal 2D Fermi surface, a f(θ) = f0 (cosθ)–1 dependence 
is expected where f0 is proportional to the area of the Fermi sur-
face, AF). The values of f0 (AF) extracted from the fit (dashed lines 
in Fig. 3a) are 1,310 T (0.125 Å−2), 3,642 T (0.348 Å−2) and 6,755 T 
(0.656 Å−2) for α1, α2 and α3, respectively. To further characterize 
these Fermi surfaces, we show in Fig. 3b the damping of the quan-
tum oscillation amplitudes with elevated temperature fitted with a 
Lifshitz–Kosevich formula (see Methods). The obtained effective 
masses m* of the α1, α2 and α3 bands are (5.4 ± 0.4)me, (3.1 ± 0.2)me 
and (4.3 ± 0.3)me, respectively.

To validate the correspondence between the observations from 
ARPES and quantum oscillations, we compare the experimental 
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parameters of DC1, DC2, α1, α2 and α3 in Table 1. In magneto-quan-
tum oscillations, vF can be obtained from m* by assuming a Dirac 
dispersion17, that is vF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EF=m*

p

I
. An excellent agreement in both 

AF and vF is obtained between DC1 and α2, suggesting that they rep-
resent the same band. This equivalence confirms the bulk origin 
of DC1, whose Landau orbit under high magnetic field appears as 
α2 in quantum oscillation experiments. In contrast, both AF and vF 
of DC2 markedly deviate from those of α1 and α3, by a factor of 

almost two. Instead, a close comparison with the calculated dHvA 
spectrum (Supplementary Fig. 8) suggests that α1 and α3 originate 
from different quasi-2D Fermi surfaces centred at Γ. The absence 
of a bulk band corresponding to DC2 thus demonstrates its surface 
origin as inferred from the termination-dependent ARPES spectra 
above. In sum, by combining complementary photoemission and 
quantum oscillations experiments, we confirmed the quasi-2D 
Dirac fermiology of FeSn, and also revealed the unusual coexistence 
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Table 1 | Comparison of ARPES and quantum oscillation experiments and DFT calculations on FeSn

ARPES

AF (Å–2) vF (105 m s–1) ED (eV)

Dirac cone 1 (DC1, bulk) 0.38 ± 0.03 1.70 ± 0.20 0.43 ± 0.02

Dirac cone 2 (DC2, surface) 0.26 ± 0.02 1.87 ± 0.20 0.31 ± 0.02

Quantum oscillation

f0 (T) m* (me) AF (Å–2) vF ¼
ffiffiffiffiffi
ED1
m*

q
cosθð Þ�1

I

 
(105 m s–1)

vF ¼
ffiffiffiffiffi
ED2
m*

q
cosθð Þ�1

I

 
(105 m s–1)

α1 1,310 ± 2 5.4 ± 0.4 0.1251 ± 0.0002 1.17 ± 0.07 1.04 ± 0.05

α2 (corresponds to DC1) 3,641.5 ± 0.1 3.1 ± 0.2 0.34761 ± 0.00001 1.54 ± 0.09 1.34 ± 0.09

α3 6,755.3 ± 0.8 4.3 ± 0.3 0.65586 ± 0.00008 1.31 ± 0.08 1.13 ± 0.08

DFT

AF (Å–2) vF (105 m s–1) ED (eV)

DC1 (bulk) 0.19 2.70 0.41

DC1 (slab) 0.20 2.55 0.42

DC2 (slab) 0.10 2.83 0.28

vF from ARPES and DFT is calculated from the slope of Dirac bands at the Fermi energy averaged on multiple momentum-space directions to account for the trigonal warping. vF from quantum oscillation is 

derived from the effective m* and ED as vF ¼
ffiffiffiffi
ED
m*

q
cosθð Þ�1

I

 assuming Dirac dispersion.
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of surface and bulk Dirac fermions in the single compound. We 
note that the direct comparison between ARPES and dHvA quan-
tum oscillations is partially enabled by the antiferromagnetic spin 
structure of FeSn, which is largely unchanged in the applied fields 
in our dHvA experiments (see Supplementary Sections 1 and 5). 
For comparison, in the case of the closely related soft-ferromag-
netic kagome metal Fe3Sn2, the magnetization and band structure 
change as a function of applied field direction, so that the quantum 
oscillation of the Dirac bands deviates from the simple 2D form, 
f(θ) = f0 (cosθ)–1 (ref. 18).

Band structure calculation and matrix element analysis
To understand the origin of surface and bulk Dirac fermions, we 
extended the tight-binding calculations of the ideal 2D kagome 
lattice (Fig. 1b) to incorporate the d-orbital degrees of freedom. 
Further, we performed DFT calculations of FeSn in both bulk and 
slab geometries. In the monolayer kagome tight-binding model with 
a d-orbital basis, five separate Dirac points emerge at the K point 
from the five 3d orbitals (Supplementary Fig. 9). Complementary 
bulk DFT calculations (Supplementary Fig. 10) reveal that the Dirac 
points with different orbital characters respond very differently to 
the interlayer coupling: the Dirac points with in-plane orbital char-
acter (dxy and dx2–y2) retain their 2D nature and are unaffected when 
embedded in the bulk Brillouin zone, while those with out-of-plane 
orbital character (dxz, dyz, and d3z2–r2) acquire a pronounced kz disper-
sion and lose their characteristic 2D kagome features in the bulk 
model. Accordingly, near the Fermi level our bulk DFT predicts 
a single 2D Dirac band with dxy + dx2–y2 characters at E ≈ –0.4 eV  
(Fig. 4a and Supplementary Fig. 10), which closely agrees with the 
experimentally observed bulk Dirac cone (DC1). The robustness 
of the 2D Dirac dispersion in the bulk kagome lattice is in stark 
contrast to the case of graphene, where the Dirac cone with out-of-
plane pz orbital character is strongly susceptible to interlayer inter-
actions and loses its characteristic linear dispersion or 2D nature in 
multilayer or bulk form30,31. These findings suggest that the careful 
engineering of localized 3d-orbital character is a key to realize the 
desired kagome electronic bands in bulk magnetic kagome crystals.

The surface Dirac band (DC2) is also reproduced in DFT cal-
culations based on a slab geometry. Figure 3c,d displays the band 
structure of FeSn slabs composed of eight kagome layers termi-
nated with a kagome layer on one side and Sn layer on the other 
side (schematically shown in the insets of Fig. 3c,d). In this model, 
the six inner kagome layers mimic the bulk local environment 
(marked as ‘bulk’, orange circles), while the outer kagome layers are 
subject to the surface-shift of exchange and electrostatic potential 
(see Supplementary Fig. 3) of each termination (marked as ‘surf ’, 
red and blue circles). For simplicity, in Fig. 3c,d we only weight the 
second outermost kagome layers as a bulk state, since all six inner 
kagome layers are essentially degenerate in terms of Dirac bands 
(see Supplementary Fig. 11). First, one finds a termination-inde-
pendent Dirac cone (orange) arising from the bulk kagome layers at 
E ≈ –0.4 eV, which corresponds to DC1 in bulk DFT and ARPES. At 
the same time, an additional Dirac band (blue) localized within the 
surface kagome layer emerges at E ≈ –0.3 eV in the Sn-terminated 
slab, which closely reproduces the DC2 band observed by ARPES 
(see Fig. 2e). The orbital analysis presented in Supplementary Fig. 11  
reveals that the surface Dirac state (DC2) possesses an identical 
orbital character (dxy + dx2–y2) to the bulk Dirac state (DC1), indicat-
ing that DC2 is a surface resonant state emerging from DC1 under 
the surface potential. The surface state is strongly localized on the 
topmost kagome layer, wherein the spins are ferromagnetically 
aligned under the intrinsic ‘A-type’ antiferromagnetism of FeSn. 
Therefore, the surface state (DC2) of FeSn realizes a rare example 
of fully spin-polarized 2D Dirac fermions (Fig. 3c), which far sur-
passes, for example, the partial (~25%) spin-polarization in the gra-
phene/ferromagnet heterostructures32, and is highly desirable for 

realizing fast-switching/low-power spintronic devices, spin-super-
conductors33 and a high-temperature quantum anomalous Hall 
effect. Lastly, despite the success of DFT in reproducing the energy 
and termination dependence of the bulk and surface Dirac cones, 
the theoretical Dirac fermion velocity needs to be slightly renor-
malized by a factor of 0.6 to match the experimental value (see the 
Table 1 for comparison), suggesting possible electronic correlation 
effects in FeSn.

The simple structure of FeSn also enables a detailed analysis of 
the photoemission intensity pattern of the kagome-derived Dirac 
cone, which conveys the phase information of the initial state wave-
function. Such analysis has been previously used to uncover heli-
cal spin textures and chirality of Dirac fermions in 3D topological 
insulators and graphene34–36, but has never been applied to a kagome 
lattice. As shown in Fig. 2k,l, the photoemission intensity is strongly 
modulated around the Dirac cone, a direct consequence of phase 
interference between wave functions from different kagome sublat-
tices. The intensity modulation follows a cosϕ function (where ϕ 
is an azimuthal rotation angle around the Dirac cone), with both 
maximum and minimum along the Γ-K direction but at opposite 
momenta above (Fig. 2k) and below (Fig. 2l) the Dirac point, identi-
cal to the case of graphene35,36. As shown in Fig. 2n,o, our simulation 
based on sublattice interference of kagome initial state wavefunc-
tions with Berry phase π (Fig. 2m) closely reproduces this inten-
sity pattern, demonstrating the chirality of kagome-derived Dirac  
fermions in FeSn (see Supplementary information for details).

Signature of kagome-derived flat bands
Having fully characterized the kagome-derived Dirac states, we also 
searched for the flat bands in FeSn, the other defining feature of 
an ideal kagome lattice. Despite surging theoretical interest on the 
physics of flat bands8,37,38, their direct signatures have been elusive: 
for example, flat bands reported in other kagome systems including 
Fe3Sn2 and Co3Sn2S2 were confined to subregions of the Brillouin 
zone possibly due to the complex interlayer interactions in these 
systems19,23. Based on our orbital analysis above, we could infer 
that FeSn might be an ideal system where flat bands constructed 
from in-plane d orbitals are invulnerable to interlayer interactions 
and retain their nondispersive character in momentum-space. 
Accordingly, our bulk DFT calculation reveals quasi-2D nearly flat 
bands (with the bandwidth about 1/5 of that of the Dirac bands) 
with dxy and dx2–y2 characters at about 0.5 eV above Fermi level (see 
Supplementary Figs. 10 and 4a). In combination with the observed 
Dirac cone structure, the complete prototypical kagome band struc-
ture of Fig. 1b could be thus realized or mimicked in FeSn using 
electronic bands derived from in-plane 3d orbitals.

The aforementioned quasi-2D nearly flat band cannot be directly 
observed by ARPES as it lies above the Fermi level. Instead, we can 
search for a signature of flat bands from other d-orbital degrees of 
freedom, which can arise at various energies (see Supplementary 
Fig. 9 for d-orbital-based kagome tight-binding model). Figure 4b,c 
displays the experimental band structures of FeSn along Γ-K-M 
high symmetry directions measured with linear horizontal (LH) 
and linear vertical (LV) polarizations, respectively for Fig. 4b and 
Fig. 4c. The signature of flat bands is absent under LH polariza-
tion, while LV polarization reveals a strikingly nondispersive exci-
tation near the Fermi level (Eflat = –0.23 ± 0.05 eV). Accordingly, as 
shown in the constant energy map at Eflat in Fig. 4d, the spectral 
weight of this band is uniformly distributed across almost the full 
2D Brillouin zone except around the K points due to the intensity 
leakage from the Dirac bands. This observation represents the first 
momentum-space evidence of the flat band in the kagome system. 
The experimental bandwidth of the flat band is less than 1/10 of that 
of the Dirac bands and comparable to what has been observed in 
f-electron systems39. Unlike the latter cases, however, the kagome-
derived flat band arises from a destructive phase interference of 
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hopping in a frustrated geometry (inset of Fig. 4c), and is thus intrin-
sically topological with finite spin–orbit coupling11. In real space, 
this phase interference effectively localizes the wavefunction into 
a single hexagon as depicted in the inset of Fig. 4c. Such localiza-
tion to the subregion of real space is similar to the case of the engi-
neered flat band in the magic-angle twisted bilayer graphene, with 
an electron localized to the AA-stacked region of the Moiré super-
lattice40. Comparing the length scale of localization d, the kagome 
lattice (in the ideal case) evidently promotes a stronger localiza-
tion (d ≈ 5 Å) than the Moiré superlattice (d ≈ 50 Å), which directly 
implies a stronger effective Coulomb energy scale by U = e2/4πεd. 
The identification of the flat band opens up important opportuni-
ties for engineering new correlated electron phases in the kagome 
lattice via local electrostatic gates (tuning the flat bands to the Fermi 
level) and by controlling the strength of magnetic exchange split-
ting. Altogether, our discovery and extensive analysis of the Dirac 
cone and flat bands in the ideal kagome metal FeSn unlock new 
perspectives and avenues for the realization of correlated topologi-
cal phases and spintronic devices based on kagome lattices.
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Methods
Sample growth and characterizations. Single crystals of FeSn were grown using 
a chemical vapour transport technique with I2 as a transport agent. Fe powder 
(Alfa Aesar, 99.998%) and Sn powder (Sigma Aldrich, 99.99%) were loaded in a 
quartz tube with ~3 mg cm–3 I2. The evacuated quartz tube was put in a temperature 
gradient of from 520 °C (source) to 680 °C (sink) in a horizontal three-zone 
furnace. Thin plate-like, hexagonal single crystals were obtained, with a typical 
growth duration lasting from three weeks to one month. The phase of the grown 
crystals was confirmed with powder X-ray diffraction. Basic transport properties 
were measured with a standard five-probe configuration in a commercial cryostat.

Angle-resolved photoemission spectroscopy experiments. ARPES experiments 
were performed at two different synchrotron beamlines: the main data were 
acquired at Beamline 7 (MAESTRO) of the Advanced Light Source, and preliminary 
experiments were conducted at Beamline 21-ID-1 (ESM-ARPES) of the National 
Synchrotron Light Source II. The two ARPES endstations are respectively equipped 
with R4000 and DA30 hemispherical electron analysers (Scienta Omicron). FeSn 
samples were cleaved inside an ultrahigh vacuum chamber with a base pressure 
better than 4 × 10−11 torr. The ARPES data were acquired within 6 h after cleaving 
to minimize the effect of surface degradation. All datasets were collected at 20 K, 
except the one in Supplementary Fig. 5a, which was collected at 80 K. The lateral size 
of the beam was smaller than 20 × 10 μm2. Fermi surfaces and energy–momentum 
dispersions presented in Fig. 2, Supplementary Fig. 12 and Supplementary Fig. 14 
were acquired with 92 eV and 140 eV photons, which maximize the visibility of Dirac 
bands. We mainly used LH polarized photons unless otherwise specified. The energy 
and momentum resolutions were better than 20 meV and 0.01 Å−1 respectively. 
Photon energy dependences in Supplementary Fig. 5 were scanned from 80 eV to 
150 eV, which covers the complete Brillouin zone of FeSn in the kz direction.

X-ray photoelectron spectroscopy. XPS experiments were conducted at Beamline 
7 (MAESTRO) of the Advanced Light Source using an R4000 hemispherical 
electron analyser (Scienta Omicron). XPS spectra were measured on the same 
in situ cleaved samples on which the ARPES experiments were conducted. Before 
acquiring XPS spectra, we optimized beam position to a large single domain by 
monitoring the clarity of ARPES spectra. The XPS experimental geometry was 
such that the analyser was placed normal to the sample surface, while the beam 
came from 55° with respect to the sample normal. We acquired XPS spectra from 
seven different FeSn samples: four of them represent Sn termination, while the 
other three represent kagome termination (see Supplementary Fig. 2 for the full 
dataset). For comparison, we also acquired XPS spectra of Fe3Sn2 under the same 
conditions (see Supplementary Fig. 2 for detailed comparison).

Magneto-quantum oscillations. The magneto-quantum oscillation experiments 
were performed at the National High Magnetic Field Laboratory. Temperature and 
angular dependences of the oscillations were examined to reveal the effective mass 
and dimensionalities of the Fermi surfaces of interest.

The dHvA effects in the magnetic torque were measured using piezoresistive 
cantilevers (Seiko PRC-400 at the DC field facility and Seiko PRC-150 at the pulsed 
field facility) under 3He or 4He atmosphere. No signature of a magnetic phase 
transition was observed up to 65 T, and the transverse magnetization perpendicular 
to the applied field was estimated to be less than 0.0025 μB per Fe, implying 
a minimal change in the magnetic structure at high fields where oscillations 
were observed. We performed additional in-house torque measurements in 
a superconducting magnet using both capacitive (Cu:Be foil, 10–25 μm) and 
piezoresistive (SCL Sensortech PRSA-L300) cantilevers.

The SdH oscillations were observed in magnetoresistance on a thin piece of 
crystal (~6 μm thick) structured with focused ion beam, and the measurements 
were performed in DC fields up to 35 T with 3He atmosphere. The focused ion 
beam fabrication was performed with a FEI Helios Nanolab 600 dual beam 
microscope with a Ga ion beam flux of 21 nA at a magnification of 350.

The oscillatory patterns of both dHvA and SdH oscillations were analysed 
with fast Fourier transform as a function of inverse fields. Each set of oscillatory 
amplitude was modulated by both the thermal and Dingle (residual impurity 
scattering) damping factors Ri

TR
i
D

I
. Here i labels the i-th band, the thermal damping 

factor is given by Ri
T ¼ 2π2kBTm*

i
ℏeB sinh�1ð2π

2kBTm*
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constant and the Boltzmann constant, respectively. Fitting the temperature/
field dependence of the oscillation (fast Fourier transform) amplitudes yields the 
effective mass m* and Dingle temperature TD. Here B is taken as the average field of 
the fast Fourier transform window from B�1 ¼ 1
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Bulk and surface electronic structure calculation from the first principles. 
DFT calculations were performed with the full-potential local-orbital (FPLO) 
code41, version 18.00. The exchange and correlation energy was considered in the 
generalized gradient approximation using the parameterization of Perdew, Burke, 
and Ernzerhof (PBE-96)42. Self-consistent calculations were carried out using the 
four-component fully relativistic mode of FPLO. The following basis states were 
treated as valence states: Fe: 3s, 3p, 4s, 5s, 3d, 4d and 4p, and Sn: 4s, 4p, 4d, 5s, 6s, 

5d, 5p and 6p. We used a linear tetrahedron method with 12 × 12 × 12 subdivisions 
in the full Brillouin zone for the bulk and 8 × 8 × 1 subdivisions for the slabs. The 
convergence level of the self-consistent spin density was better than 10–6 for the 
bulk and better than 10−4 for the slab calculations. We used the experimental 
structural data. Using the PYFPLO module of the FPLO package41,43, we built a 
tight-binding Hamiltonian by projecting the Bloch states onto atomic-orbital-like 
Wannier functions associated with Fe 3d and 4s states, and Sn 5s and 5p states 
(Supplementary Fig. 15). We used this Hamiltonian to compute the Fermi surface, 
the dHvA spectrum and the kz-integrated spectrum shown in Fig. 4. For the Wannier 
construction we used a mesh of 8 × 8 × 8 subdivisions in the full Brillouin zone.

To simulate the [001] surface state, slabs of various thickness, ranging from 
four atomic layers (one antiferromagnetic unit cell with two kagome layers and 
two Sn layers) to 16 atomic layers (four antiferromagnetic unit cells with eight 
kagome layers and eight Sn layers) were considered. In all cases, we fixed a vacuum 
of 1.7924 nm, which is four times the lattice parameter c, and kept the atomic 
distances and bond angles as in the bulk. The slabs were terminated with a kagome 
layer on one side and a Sn layer on the other side. Thus, they were stoichiometric 
and their electronic structure could be projected to either termination. We also 
have considered symmetric slabs (both sides terminated with either Sn or kagome 
layers) with nonstoichiometric compositions, which yield consistent results  
(see Supplementary Fig. 16).

We also performed total energy calculations to estimate the cleavage energy 
using a k mesh with 24 × 24 × 1 subdivisions. We found convergence of the 
cleavage energy with layer thickness for a slab with eight atomic layers. The 
calculated generalized gradient approximation cleavage energy amounted to 
2.0 J m–2, significantly larger than that of graphite (0.4 J m–2) and smaller than that 
of the isotropic 3D metallic compound FeAl (6 J m–2). We conclude that, from a 
chemical point of view, FeSn is not a 2D system but may be called an anisotropic 
3D system. This conclusion is supported by similar band dispersions within the 
x–y plane (Γ-M-K-Γ) and perpendicular to that plane (Γ-A, L-M, K-H) as shown 
in Supplementary Fig. 10.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.

Code availability
The codes used for the DFT and tight-binding calculations in this study are 
available from the corresponding authors upon reasonable request.
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