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Metastable He∗
2 excimer molecules have been utilized as tracer particles of the normal component in superfluid

4He (He II) which can be imaged via laser-induced fluorescence. These excimer molecules form tiny bubbles in
He II and can bind to quantized vortices at sufficiently low temperatures, thereby allowing for direct visualization
of vortex dynamics in an inviscid superfluid. However, the a3�+

u → c3�+
g optical absorption line, which is

responsible for the fluorescence imaging of the He∗
2 molecules, is controlled by fluctuations on the bubble shape,

and its exact line profile is not known at low temperatures. In this paper, we present a bubble model for evaluating
the surface fluctuation eigenmodes of the excimers in He II. The line profile of the a3�+

u → c3�+
g transition is

calculated at different temperatures by considering both the zero-point and thermal fluctuations on the bubble
shape. We show that as the temperature drops from 2 K to 20 mK, the peak absorption strength is enhanced by
a factor of about five, accompanying a blueshift of the peak location by about 2 nm. A double-peak line profile
due to the rotational levels of the molecular core can be resolved. This bubble model also allows us to evaluate
the stiffness of the He∗

2 bubbles and hence their diffusion constant in He II due to scattering off thermal phonons.
Our results will aid the design of future experiments on imaging quantized vortices in He II using He∗

2 tracers.

DOI: 10.1103/PhysRevB.101.064515

I. INTRODUCTION

The dynamics of quantized vortex lines in a coherent
matter-wave system is responsible for a wide range of phe-
nomena, such as the decay of quantum turbulence [1,2] and
the initiation of dissipation in type-II superconductors [3,4].
It is also implicated in the appearance of glitches in neutron
star rotation [5,6] and the formation of cosmic strings in the
early universe [7]. A systematic study of vortex-line dynam-
ics promises broad significance spanning multiple physical
science disciplines. A powerful method to study vortex-line
motion is via direct line visualization in a superfluid, which
can be achieved in both superfluid helium and atomic Bose-
Einstein condensates (BECs) [8]. However, given their small
sample sizes (typically ∼102 μm in diameter), experimental
studies of vortex-line dynamics and quantum turbulence in
BECs are only just emerging [9,10] with some active research
focusing on two-dimensional quantum turbulence [11,12]. In
contrast, superfluid helium at low temperatures provides an
ideal system for laboratory studies of quantum turbulence that
spans many orders of magnitude in length scale.

However, experimental observation of vortex lines in su-
perfluid helium is very challenging due to the angstrom-
sized cores of the vortices [13]. Instead of imaging the thin
vortex lines directly, a number of efforts have been devoted
to decorating quantized vortex lines with tracer particles for
line visualization. For instance, Yarmchuk et al. imaged the
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termination of rectilinear vortex lines on the free surface
of superfluid 4He (He II) by photographing the electrons
pulled along the vortex lines to the free surface [14]. Guo
et al. reported a method to image electron bubbles trapped on
vortices in bulk He II via acoustic cavitation of these bubbles
[15,16]. However, the heating due to the transducer vibration
and the strong acoustic waves can severely disturb the fluid.
More recently, Bewley et al. used micron-sized frozen hydro-
gen particles to decorate vortices and successfully visualized
vortex lines in He II [17]. This team has since filmed real-
time vortex-line reconnections and Kelvin waves on vortices
[18–21]. Nevertheless, the injection of the hydrogen particles
is usually accompanied by a large heat load which limits the
application of this technique to above about 1.6 K where
the vortex dynamics can be strongly affected by the viscous
normal-fluid component in He II. On the other hand, there is
an evolving interest in imaging quantized vortices at lower
temperatures in a pure superfluid. For instance, a key question
in quantum turbulence research is how the energy of a vortex
tangle decays in a pure superfluid with zero viscosity [1].

So far, there have been two efforts in imaging quantized
vortices in superfluid helium with minimal normal-fluid frac-
tion. One method is to image quantum turbulence in superfluid
3He-B via Andreev reflection of quasiparticles [22,23]. This
method is still at an early stage of development. The other
method, adopted by Gomez et al., is to dope a beam of
fast-moving 4He nanodroplets with xenon atoms [24]. These
droplets are evaporatively cooled to 0.38 K and the vortices
in them can be imaged via x-ray diffraction of the trapped
xenon atoms. Nevertheless, this experiment can only generate
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one-time snapshots of the vortices and does not allow dynam-
ical study of the vortex motion.

On the other hand, the feasibility of using He∗
2 excimer

molecules as tracers in He II has been validated through
a series of experiments [25–27]. These molecules can be
created easily as a consequence of ionization or excitation
of ground state helium atoms [28] and can be imaged via a
laser-induced fluorescence (LIF) technique [25,29,30]. These
excimers in the electron-spin triplet ground state a3�+

u have
an exceptional 13-second radiative lifetime [31], and they
form tiny bubbles in liquid helium (about 6 Å in radius
[28]). Due to their small size and hence small binding en-
ergy to the vortex cores [32], above 1 K, He∗

2 molecules
are solely entrained by the viscous normal fluid in He II,
which allows for quantitative study of the normal-fluid ve-
locity field [33–37]. Furthermore, it has been demonstrated
by Zmeev et al. that below about 0.2 K, the He∗

2 tracers can
permanently bind to quantized vortices [38], thereby enabling
vortex-line imaging in the absence of the normal fluid in
He II.

The fluorescence imaging of the He∗
2 molecules is es-

sentially controlled by the a3�+
u → c3�+

g optical absorption
transition (see discussion in Sec. II A). The peak wavelength
and the strength of this transition can be affected by fluctu-
ations on the He∗

2 bubble shape. As the temperature drops,
the reduced bubble surface fluctuations may lead to a sharper
transition line profile with a slightly shifted peak wavelength.
However, despite extensive measurements of the He∗

2 optical
transitions at relatively high temperatures [39–41], there are
no data of the a3�+

u → c3�+
g absorption line below 1 K.

To guide future vortex-line imaging experiments using He∗
2

tracers, we hereby present a theoretical study of the He∗
2

bubble surface fluctuations. In Sec. II, we discuss the optical
transitions for fluorescence imaging of the He∗

2 molecules,
the bubble model, and the eigenmodes of the bubble surface
fluctuations. In Sec. III, we discuss how the a3�+

u → c3�+
g

absorption line varies as the temperature drops from 2 K to
20 mK. In Sec. IV, we evaluate the diffusion of the He∗

2
molecules in He II using the calculated bubble stiffness and
compare the result with experimental observations. A brief
summary is given in Sec. V.

II. MODELING He∗
2 MOLECULAR BUBBLES IN He II

A. Fluorescence imaging of He∗
2 molecules

In order to image the He∗
2 molecules in the a3�+

u triplet
ground state, McKinsey’s group first developed a cycling-
transition LIF technique [29,30,42]. The concept of this tech-
nique is shown schematically in Fig. 1(a). An infrared pulsed
laser at 910 ± 6 nm (with the maximum efficiency of the
two-step transition at 905 nm) can be used to illuminate the
He∗

2(a3�+
u ) molecules in He II. A molecule that absorbs a

905-nm photon will undergo a transition from the zeroth
vibrational level a(0) of the a3�+

u state to the corresponding
vibrational level c(0) of the c3�+

g state. When the photon flux
is sufficiently high, this molecule can subsequently absorb
another 905-nm photon and transit to the d3�+

u state before
it radiatively decays back to the a(0) level. Calculations of the
branching ratios indicate that only about 10% of the excited
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FIG. 1. (a) Schematic diagram showing the cycling transitions
for imaging the He∗

2 triplet molecules. The levels labeled 0, 1, 2
are the vibrational levels for each corresponding electronic state.
(b) Schematic diagram showing the a(0) → c(0) and c(0) → d (0)
absorption transition lines.

molecules in the d3�+
u state decay to the c3�+

g state [42],
while the remaining 90% decay to the b3�g state, emitting
detectable red photons at 640 nm. Molecules in both the
c3�+

g and b3�g states then decay back to the a3�+
u state,

and the process can be repeated. Since the emitted photons
are well separated in wavelength from the excitation pho-
tons, scattered 905-nm pump laser light can be blocked by
appropriate filters. However, in the cycling transitions the
molecules may fall into the long-lived a(1) and a(2) vibra-
tional levels of the a3�+

u state, where they are off-resonant
to the 905-nm pump laser and are lost for subsequent cycles
[30,42]. To recover the lost molecules, two continuous lasers
at 1073 nm and 1099 nm are normally used to repump the
molecules in the a(1) and a(2) vibrational levels to the c(0)
and c(1) states, respectively. The molecules in these states
rapidly decay back to the triplet ground a(0) state and can be
reused.

At first sight, this cycling transition scheme could be
improved by replacing the single 905-nm pump laser by
two pulsed lasers at the peak resonance wavelengths of the
a(0) → c(0) and the c(0) → d (0) transitions, respectively.
Indeed, Rellergert has done systematic measurements of the
optical absorption transitions of the He∗

2(a3�+
u ) molecules in

He II [42]. It turns out that, as shown in the schematic in
Fig. 1(b), the a(0) → c(0) absorption line is centered at about
910 nm and has a narrow line profile with a full width at half
maximum (FWHM) of about 20 nm in He II around 2 K. On
the other hand, the c(0) → d (0) transition, centered around
875 nm in He II, has a much broader profile with a FWHM
on the order of 100 nm. In the cycling transition of the He∗

2
molecules, this c(0) → d (0) absorption line could be even
broader due to the shape relaxation of the molecular bubbles
toward the equilibrium c(0) shape following the a(0) →
c(0) transition. Therefore, the absorption cross section of
the c(0) → d (0) transition does not decrease much as the
excitation wavelength changes from the peak wavelength at
875 nm to 905 nm. Practically, the gain of the two-color
excitation scheme is marginal due to the timing jitter and
imperfect spatial overlap of the two laser pulses. As Rellergert
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concluded, a single pump laser at 905 nm is the optimal choice
since a single beam is always perfectly overlapped with itself
in both space and time.

Through the above discussions, it is clear that the LIF
imaging of the He∗

2(a3�+
u ) molecules is dominantly con-

trolled by the a(0) → c(0) absorption transition. A subse-
quent question is how this transition line profile varies as the
He II is cooled to far below 1 K. Obviously, the width and the
peak wavelength of this absorption line can be affected by He∗

2
bubble shape fluctuations. To study this effect, we will adopt
a He∗

2 bubble model.

B. Bubble model

The strong repulsion between the Rydberg electron of a
He∗

2 excimer molecule and the closed-shell 4He atoms can
lead to the formation of a small bubble surrounding the
He∗

2 molecule. The detailed structures of such He∗
2 bubble

states in liquid helium have been examined by Eloranta
et al. [43,44] and Bonifaci et al. [45] using sophisticated
density functional calculations. However, this density func-
tional framework is not convenient for studying the bubble
surface fluctuation modes and their effects on the optical
transitions at finite temperatures. On the other hand, a classic
bubble model has been successfully applied to explain the
motion and the absorption lines of electron bubbles [46–48],
excited helium atoms [49], and other atomic bubbles in liquid
helium [50]. Eloranta et al. [44] and Kafanov et al. [41]
also applied the bubble model to study the optical transi-
tions of He∗

2 molecules, although Kafanov et al. used an
approximated interaction potential between the He∗

2(a3�+
u )

molecule and the ground state He atoms. Nevertheless,
there was no study of the surface fluctuation modes of the
He∗

2 molecules. In what follows, we will adopt the bub-
ble model while incorporating some key information about
the He∗

2-He interactions derived in the density functional
work [43–45].

In the bubble model, the liquid helium is treated as
a continuous medium whose number density around the
He∗

2(a3�+
u ) molecule can be described by Jortner’s trial func-

tion [51,52]:

ρ(�r) =
{

0, r � R0,

ρ0{1 − [1 + α(r − R0)]e−α(r−R0 )}, r > R0,
(1)

where ρ0 is the number density far from the molecule bubble,
and α and R0 are tuning parameters that can be adjusted to
minimize the bubble energy. For a sharp interface, αR0 � 1.
One can introduce an effective bubble radius Rb at the
barycenter of the interface where the helium density varies
from zero to its bulk value [49,50]:

∫ Rb

0
ρ(�r)r2dr =

∫ ∞

Rb

[ρ0 − ρ(�r)]r2dr. (2)

Combining Eq. (1) and Eq. (2), one can derive that

Rb = R0

(
1 + 6

αR0
+ 18

α2R2
0

+ 24

α3R3
0

)1/3

. (3)

The total energy of the He∗
2 bubble is then given by [44]

E = Ee + PV + σS + h̄2

8MHe

∫
(∇ρ)2

ρ
d3r, (4)

where Ee is the energy due to the He∗
2 molecule inside the

bubble, P is the pressure in the liquid, σ is the helium surface
tension coefficient, and V and S are the volume and the sur-
face area of the bubble, respectively. For a spherical bubble,
V = 4πR3

b/3 and S = 4πR2
b. The last term in Eq. (4) accounts

for the interfacial quantum kinetic energy [41,44,49], where h̄
is Planck’s constant and MHe is the mass of a 4He atom. This
term is negligible for relatively large bubbles such as electron
bubbles (i.e., about 2 nm in radius) but is appreciable for small
bubbles such as the He∗

2 excimer bubbles.
The molecule energy Ee can be evaluated as the bare

molecule energy in vacuum E (vac)
e plus the additional energy

Eint due to the interaction between the molecule and the
surrounding helium when Eint � E (vac)

e [41,44]:

Ee = E (vac)
e + Eint = E (vac)

e +
∫

Uint (�r)ρ(�r)d3r, (5)

where Uint (�r) is the He∗
2-He interaction potential. This Uint (�r)

for various He∗
2 Rydberg states have been calculated by Elo-

ranta and Apkarian using the density functional method [43].
The equilibrium shapes and energies of these Rydberg states
in liquid helium have also been derived and reported [44]. In
order to incorporate these useful density functional results in
our later analysis of the bubble surface modes, we extract
the potential Ua(�r) between the He∗

2(a3�+
u ) molecule and a

4He atom by performing a least-squares fit to the discrete
data listed in Ref. [43] using simple polynomial functions
of the form Ua(�r) = ∑n=12

n=1 Cnr−n, where the Cn’s are fitting
parameters. Ua(�r) is treated as isotropic considering the nearly
spherical symmetry of the Rydberg electron wave function in
the molecule He∗

2(a3�+
u ). The result is shown in Fig. 2(a). We

have also performed similar fits to the anisotropic interaction
potential Uc(�r) between a He∗

2(c3�+
g ) molecule and a 4He

atom since this information is needed in the evaluation of
the a → c absorption line profile. Note that Uc(�r) can be
expressed as [44]

Uc(�r) = UL(r) cos2(θ ) + UT (r) sin2(θ ), (6)

where θ is the angle from the collinear direction of the
molecular core. The fits to UL(r) and UT (r) are also shown in
Fig. 2. As a convention in spectroscopy, energy is expressed
in term of cm−1. A conversion to real energy can be made by
multiplying the value in cm−1 by h̄c (i.e., Planck’s constant
times the speed of light).

Knowing the interaction potential Ua(�r), one can then vary
the tuning parameters α and R0 to minimize the total energy
E and determine the equilibrium size of the He∗

2(a3�+
u )

bubble in liquid helium. For instance, at zero pressure, if
we set ρ0 = 0.02184 atoms/Å3 and σ = 0.18 cm−1/Å2 as
used in Ref. [44], we get the equilibrium shape parameters
αeq = 1.8 Å−1 and R0,eq = 5.4 Å, which corresponds to an
equilibrium bubble radius Rb,eq = 6.6 Å.
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FIG. 2. Interaction potential between a He∗
2 excimer molecule

and a ground state helium atom for the molecule (a) in the a3�+
u

state; (b) in the c3�+
g state along the collinear direction of the

molecular core; and (c) in the c3�+
g state along the “T” direction

as defined in Ref. [43]. Red dots are the data listed in Table II of
Ref. [43]. Solid curves are our fits.

C. Surface fluctuation eigenmodes

To study shape fluctuations of the He∗
2(a3�+

u ) bubble, we
describe the deformed bubble shape as

R0(θ, φ) = R0,eq

⎡
⎣1 +

∑
l,m

εlmYlm(θ, φ)

⎤
⎦, (7)

where the Ylm(θ, φ)’s are spherical harmonics and the εlm’s
are complex numbers that denote the amplitudes of the de-
formation modes. εlm satisfies |εlm| � 1 and εl,−m = −ε∗

lm
so that R0(θ, φ) is always a real number. In general, an
angle-dependent shape parameter α(θ, φ) is also expected in
Jortner’s density profile. However, significant variations of the
interfacial thickness (and hence α) can take place only when
the shape deformation occurs at length scales comparable
to α−1

eq . For a deformation mode Ylm(θ, φ), the length scale of
the deformation is 2πR0,eq/l . We will see in later discussions
that the stiffness of a deformation mode increases as l2.
Therefore, the mean amplitudes of the modes with large l
(and hence small deformation scales) are negligible in the
examined temperature range. As a result, it is reasonable to
neglect the angle variation of α and just take its equilibrium
value αeq in the subsequent analysis.

For the deformed bubble described by Eq. (7), the effective
radius Rb(θ, φ) now depends on the solid angle. Keeping the
terms in Eq. (3) to the second order in εlm, we can write
Rb(θ, φ) as

Rb(θ, φ) = Rb,eq

+ R3
0,eq

R2
b,eq

[
1 + 4

αeqR0,eq
+ 6

α2
eqR2

0,eq

]⎛
⎝∑

l,m

εlmYlm

⎞
⎠

+ R6
0,eq

R5
b,eq

[
2

α2
eqR2

0,eq

+ 12

α3
eqR3

0,eq

+ 12

α4
eqR4

0,eq

]⎛
⎝∑

l,m

εlmYlm

⎞
⎠

2

.

(8)

Due to the shape deformation, the total energy of the
bubble would increase and to the lowest order in εlm can be
expressed as

�E = E − Eeq =
∑
l,m

1

2
klm|εlm|2, (9)

where klm denotes the mode stiffness. Note that Eq. (9) should
not contain any first-order terms in εlm since we consider
bubble deformation around its equilibrium minimum-energy
shape. To determine klm, we now evaluate the energy terms in
Eq. (4).

To the second order in εlm, the surface and volume energy
terms are given by [53]

σ

∫
dS

= σ

∫
d� Rb

√
R2

b + (∂Rb/∂θ )2 + (∂Rb/∂φ)2/ sin2 θ

= 4πR2
b,eqσ + 2

√
4πσ

R3
0,eq

Rb,eq

[
1 + 4

αR0,eq
+ 6

α2R2
0,eq

]
ε00

+ σ
R6

0,eq

R4
b,eq

∑
l,m

[
l2 + l + 2

2

(
1 + 4

αeqR0,eq
+ 6

α2
eqR2

0,eq

)2

+
(

4

α2
eqR2

0,eq

+ 24

α3
eqR3

0,eq

+ 24

α4
eqR4

0,eq

)]
|εlm|2, (10)

P
∫

dV = P
∫

d�
1

3
R3

b(θ, φ) = 4π

3
R3

b,eqP +
√

4πPR3
0,eq

×
(

1 + 4

αeqR0,eq
+ 6

α2
eqR2

0,eq

)
ε00

+ PR3
0,eq

∑
l,m

(
1 + 2

αeqR0,eq

)
|εlm|2. (11)

The interfacial quantum kinetic energy term can be integrated
to give

EI = EI,eq + h̄2ρ0R0,eq

8MHe
(7.28 + 10.31αeqR0,eq )ε00

+ 1.45h̄2ρ0R0,eq

8MHe
αeqR0,eq

∑
l,m

l2 + l + 1

2
|εlm|2. (12)
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TABLE I. Coefficients in the perturbation expansion for the
molecular energy term Ee.

T k(a)
0 k(a)

00 k(a)
20 k(c)

0 k(c)
2

(K) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

2.0 −51.8 90.7 90.7 −346.3 −1005.9
0.5 −58.0 98.6 98.6 −370.1 −1074.4

As for the energy E (a)
e of the He∗

2(a3�+
u ) molecule in liquid

helium, there is no analytic formula for evaluating its change
when the bubble shape deforms. Nevertheless, considering the
spherical symmetry of the interaction potential Ua(�r), we can
write this energy term as

E (a)
e = E (a)

e,eq + k(a)
0 ε00 +

∑
l,m

1

2
k(a)

lm |εlm|2. (13)

The coefficients k(a)
0 and k(a)

lm can be determined numeri-
cally. For example, one may set the shape of the molecule
bubble to be R0(θ, φ) = R0,eq[1 + ε00Y00(θ, φ)]. The integral∫

Ua(�r)ρ(�r)d3r can be calculated numerically as a function
of ε00, and the result can then be fitted with the function
E (a)

e,eq + k(a)
0 ε00 + 1

2 k(a)
00 |ε00|2 to determine the coefficients k(a)

0

and k(a)
00 . We also perform similar fits to determine the first-

order expansion coefficients for the c3�+
g state since these

coefficients are needed in later absorption line calculations:

E (c)
e = E (c)

e,eq + k(c)
0 ε00 + k(c)

2 ε20. (14)

Note that due to the symmetry of the potential Uc(�r), there
are two first-order terms in Eq. (14). Typical values of these
coefficients are listed in Table I.

Collecting the results shown in Eqs. (10)–(13), the stiffness
klm of each surface fluctuation mode can be determined:

klm = k(a)
lm + 2σ

R6
0,eq

R4
b,eq

[
l2 + l + 2

2

(
1 + 4

αeqR0,eq
+ 6

α2
eqR2

0,eq

)2

+
(

4

α2
eqR2

0,eq

+ 24

α3
eqR3

0,eq

+ 24

α4
eqR4

eq

)]

+ 2PR3
0,eq

(
1 + 2

αeqR0,eq

)

+ 1.45h̄2ρ0R0,eq

4MHe
αeqR0,eq

l2 + l + 1

2
. (15)

It is clear that for large l , the stiffness coefficient klm varies
as l2. Again, the summation of all the first-order terms in
ε00 in Eqs. (10)–(13) must vanish, and this can be used as a
consistency check of the derivation.

When the He∗
2(a3�+

u ) bubble surface fluctuates, the liquid
helium surrounding the bubble also moves. Following the
method of Gross and Tung-Li [54], the kinetic energy KE
associated with the liquid motion can be derived as

KE =
∑
l,m

1

2
Mlm|ε̇l,m|2, (16)
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FIG. 3. Calculated frequencies of the l = 0 and l = 2 surface
modes of the He∗
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u ) bubble as a function of helium pressure
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where the effective mass of each mode Mlm is given by

Mlm = MHeρ0R6
0,eq

(l + 1)Rb,eq

(
1 + 4

αeqR0,eq
+ 6

α2
eqR2

0,eq

)2

. (17)

In this derivation, the liquid helium is treated as an incom-
pressible ideal fluid [55].

Combining Eqs. (9) and (16), one can construct a La-
grangian for the surface fluctuations:

L =
∑
l,m

1

2
Mlm|ε̇l,m|2 −

∑
l,m

1

2
klm|εlm|2. (18)

This Lagrangian represents a collection of harmonic oscilla-
tors in the parameter space {εlm}, which are the eigenmodes
of the bubble surface fluctuations. The frequency of each
surface mode is given by ωl = √

klm/Mlm. Note that these
mode frequencies depend on l but are independent of m. In
Fig. 3, we show the calculated frequencies for the lowest two
modes l = 0 and l = 2 as a function of pressure. The l = 1
mode has zero frequency since it leads to a uniform translation
of the entire bubble [48].

When calculating the mode frequencies, we adopt the
pressure-dependent helium density as proposed by Maris and
Edwards [56]. In principle, a pressure-dependant surface ten-
sion should also be adopted. However, there is no reliable
surface tension data at elevated pressures. On the other hand,
it was found that the pressure dependance of the electron
bubble absorption lines can be very well reproduced using
pressure-independent surface tension values measured at sat-
urated vapor pressures [57]. Therefore, we use the experimen-
tally measured surface tension at saturated vapor pressure in
our calculations [58]. At a given temperature T , the mean
amplitude of a surface mode R0,eq〈ε2

lm〉1/2 can be evaluated
via an ensemble average of both the zero-point and thermal
fluctuations:〈

ε2
lm

〉 = 2

klm

[
1

2
h̄ωl + h̄ωl

e(h̄ωl /kBT ) − 1

]
, (19)

where kB is the Boltzmann constant. At 2 K under saturated
vapor pressure, we calculate that the mean amplitudes for the
l = 0 and l = 2 modes are 0.46 Å and 0.41 Å, respectively,
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which justifies the fluctuation treatment of the bubble surface
deformation. In the T = 0 K limit, the mean amplitudes drop
to 0.05 Å and 0.06 Å due to zero-point fluctuations.

III. OPTICAL TRANSITION OF He∗
2 MOLECULES

In the perturbation framework, the cross section I (ω) of
the optical transition between two quantum states |i〉 and | f 〉
is given by Fermi’s golden rule [59]:

I (ω) ∝ |〈 f |ẑ|i〉|2δ(E f − Ei − h̄ω). (20)

This transition line is a delta function that peaks at the energy
difference E f − Ei between the two states. Nonetheless, in-
teractions between the quantum system and the environment
can lead to the broadening of the line profile. A commonly
adopted approach to account for this effect is the adiabatic
line-broadening theory [60], which has been applied to study
the spectrum lines of barium atoms [50], excited helium
atoms [49], as well as He∗

2(a3�+
u ) molecules [41,44] in liquid

helium. However, this approach is applicable in the static limit
but does not appropriately account for the line broadening due
to the zero-point and thermal fluctuations of the bubble shape.
In what follows, we will adopt a different approach based
on the surface eigenmodes of the He∗

2(a3�+
u ) bubbles. This

method considers the effect of bubble shape fluctuations and
has been shown to account well for the observed broadening
of the absorption lines for electron bubbles in liquid helium
[48,61].

According to the Frank-Condon principle [62,63], when a
photon is absorbed the size and shape of the He∗

2(a3�+
u ) bub-

ble should not change until after the state of the electron wave
function has changed. Therefore, for a deformed molecular
bubble initially in the a3�+

u state, the transition energy to the
c3�+

g state is

�Ee = (
E (vac)

e,c − E (vac)
e,a

) +
{∫

[Uc(�r) − Ua(�r)]ρ(�r)d3r

}

= �E (vac)
e + �Eshift, (21)

where �E (vac)
e is the a(0) → c(0) transition energy of a

He∗
2 molecule in vacuum (with the corresponding excitation

wavelength of 9183 Å) [39], and �Eshift is the shift in the
transition energy due to the interaction between the molecule
and the helium [which varies with the shape of the initial
He∗

2(a3�+
u ) bubble]. When the bubble shape fluctuates, an

ensemble average of all possible initial shapes then leads to
the broadening of the absorption line.

To describe the probability of a given bubble shape, we
note that the probability density Pl (εlm) of a surface mode with
a displacement εlm is given by

Pl (εlm) =
∑∞

n=0 ψ2
n (εlm) exp[−(n + 1/2)h̄ωl/kBT ]∑∞

n=0 exp[−(n + 1/2)h̄ωl/kBT ]
, (22)

where the ψn’s are the eigenfunctions of the harmonic oscilla-
tor for εlm. Equation (22) can be simplified to [48,64]

Pl (εlm) =
√

klm/2πkBT (l )
eff exp

(−klmεlm
2/2kBT (l )

eff

)
, (23)

where the mode effective temperature T (l )
eff is defined as T (l )

eff =
θl/ tanh(θl/T ), and θl = h̄ωl/2kB. Therefore, through an

ensemble average of all possible shape configurations
Rb(θ, φ), one can obtain the absorption line profile as

I (ω) = I0

∏
l,m

∫
dεlmPl (εlm)δ(�Ee[Rb(θ, φ)] − h̄ω), (24)

where I0 is the total absorption cross section and its value has
been estimated in Ref. [40].

To the lowest order in εlm, only the l = 0 and l = 2 surface
modes can contribute to the shift of the a(0) → c(0) transition
energy. The l = 0 mode leads to an energy shift of the a3�+

u

state by k(a)
0 ε00 and an energy shift of the c3�+

g state by k(c)
0 ε00.

The l = 2 mode only leads to an energy shift of the c3�+
g state

energy by k(c)
2 ε20. As a result, the absorption line profile can

be simplified to

I (ω) = I0

∫
dε00P0(ε00)

∫
dε20P2(ε20)

× δ
(
�Ee,eq + (

k(c)
0 − k(a)

0

)
ε00 + k(c)

2 ε20 − h̄ω
)
, (25)

where �Ee,eq denotes the transition energy of the He∗
2(a3�+

u )
bubble at a given temperature and pressure without any shape
deformation. Using Eq. (23) for P0(ε00) and P2(ε20), we can
integrate the above equation:

I (ω) = I0 exp

⎛
⎝− (�Ee,eq − h̄ω)2

(k(c)
0 −k(a)

0 )2

k00
2kBT (0)

eff + (k(c)
2 )2

k20
2kBT (2)

eff

⎞
⎠. (26)

Therefore, the absorption line to the lowest order in εlm is
a Gaussian, and its broadening essentially comes from the
l = 0 and l = 2 surface modes. We would like to point out
that in Ref. [50], the authors only considered the l = 0 mode
when calculating the absorption line profile for barium atomic
bubbles in liquid helium and therefore obtained results that
disagreed with observations.

In the above analysis, the motion of the molecular ion
core +He∗

2 inside the bubble is not considered. There are two
major effects of this motion on the a(0) → c(0) absorption
transition. The first is the oscillations of the ion core around its
equilibrium position, which can contribute to the broadening
of the absorption line. However, the authors of Ref. [44]
showed that this additional broadening is only about 10 cm−1,
which is far smaller than the broadening due to the bubble
shape fluctuations. Another effect of the ion core motion
is that in the He∗

2(a3�+
u ) state, due to the nearly spherical

equilibrium shape of the bubble, the ion core can rotate in
the bubble like a free rotor. The associated rotational energy
Erot is approximately given by Erot = BJ (J + 1), where B =
7.6 cm−1 is the rotational constant [65,66] and the integer J
denotes the angular quantum number of the rotational level.
The He∗

2 molecule in different rotational levels of the a3�+
u

state can be excited to the corresponding rotational levels
of the c3�+

g state according to the selection rule �J = +1
(R branch) and �J = −1 (P branch). Due to the internal
symmetry, J must be an odd number for the a3�+

u state but
an even number for the c3�+

g state. At the temperatures of
interest, the fraction of the a3�+

u molecules occupying the
J = 1 level is far larger than that in the other levels [39]. As
a result, practically we only need to consider the a(0) → c(0)
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FIG. 4. a(0) → c(0) absorption line at 2 K under zero applied
pressure normalized by I0. The blue dashed curve and the red dotted
curve are the absorption lines due to the P branch transition J:1 → 0
and R branch transition J:1 → 2. The black solid curve is the overall
absorption line with the total area normalized to unity.

transition with J:1 → 0 and J:1 → 2. The additional energy
shift associated with the change in the rotational levels is −2B
for J:1 → 0 and 4B for J:1 → 2. The overall a(0) → c(0)
absorption line profile is then the summation of the two
transition lines with their statistical weight (i.e., 1:3) [44]. As
an example, we show the calculated a(0) → c(0) absorption
line normalized by I0 at 2 K under zero pressure in Fig. 4.

In order to validate our calculation, in Fig. 5 we show
the obtained peak location and the FWHM of the overall
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FIG. 5. (a) The peak location and (b) the FWHM of the overall
a(0) → c(0) absorption line as a function of pressure at 2 K. The
red curves represent the calculated results. The crosses and circles
are experimental data of Eltsov et al. [40], taken in the temperature
range of 1.76 to 2.05 K.
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FIG. 6. Calculated overall a(0) → c(0) absorption lines at vari-
ous temperatures normalized by I0. The total area below each curve
is normalized to unity

a(0) → c(0) absorption line as a function of the applied pres-
sure at 2 K, together with the experimental data of Eltsov et al.
taken in the He II liquid phase [40]. The calculated peak loca-
tion shows an excellent agreement with the experimental data.
The obtained FWHMs of the lines appear to be consistently
larger than the measured ones. Nevertheless, considering the
quality of the experimental absorption lines and the relatively
large linewidth as seen in Fig. 4, we regard the agreement as
reasonable.

In Fig. 6, we show the calculated line profiles at various
temperatures under saturated vapor pressures. It is interesting
to see that as the temperature decreases, the width of the
absorption line also decreases. This can be understood as
due to the reduced thermal fluctuations of the He∗

2(a3�+
u )

bubble shape at low temperatures. Nonetheless, even at zero
temperature, the a(0) → c(0) absorption line should still have
a finite width due to the zero-point fluctuations of the l = 0
and l = 2 modes. At the lowest temperature shown in Fig. 6,
due to the much reduced linewidth, the two peaks due to the
rotational levels can be clearly resolved. From 2 K to 20 mK,
the maximum strength of the absorption line is enhanced by
a factor of about five. Besides, there is a blueshift of the peak
transition energy by about 22 cm−1. If we take 910 nm as the
peak a(0) → c(0) excitation wavelength at 2 K, this energy
shift suggests that the peak excitation wavelength at 20 mK
will be about 908 nm.

IV. DIFFUSION OF He∗
2 MOLECULES IN

LOW-TEMPERATURE He II

Neutral He∗
2 molecules move diffusively in He II due to

collisions with thermal quasiparticles (phonons and rotons).
Below about 0.6 K, this diffusion is essentially controlled by
He∗

2-phonon scattering. At sufficiently low temperatures when
their mean-free path through the thermal phonons becomes
comparable to or greater than the size of the helium container,
the motion of the He∗

2 molecules can become ballistic [67].
Knowing the diffusion coefficient D of the He∗

2 molecules in
low-temperature He II is important for the design of future
vortex-line imaging experiments. A rough estimate of D was
provided by McKinsey et al. [29], but their suggested value
at 0.2 K appears to be three orders of magnitude greater
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than the one extracted from Zmeev et al.’s measurement [67].
Following Baym et al. [68], hereby we provide a more realistic
evaluation of D by considering the momentum-transfer in
He∗

2-phonon scattering.
The diffusion coefficient D is related to the mobility μ of

a particle through the Einstein-Smoluchowski relation D =
μkBT , where μ = vd/F is defined as the ratio of the particle’s
terminal velocity vd to an applied force F . According to Baym
et al. [68], when phonon scattering dominates the energy
dissipation, the particle mobility in He II is given by

μ−1 = − h̄

6π2

∫ ∞

0
dkk4 ∂n(k, T )

∂k
σT (k), (27)

where n(k, T ) = [exp(h̄vck/kBT ) − 1]−1 is the equilibrium
phonon distribution function, vc is the sound velocity in He
II, and σT (k) denotes the momentum-transfer cross section
for incident phonons at a wave number k. Here σT (k) can be
evaluated as

σT (k) =
∫

d�(1 − cos θ )σ (k, θ ), (28)

where the differential cross section σ (k, θ ) for phonon scat-
tering through an angle θ is given by [68]

σ (k, θ ) = k−2

∣∣∣∣∣
∞∑

l=0

(2l + 1)Pl (cos θ ) fl (k)

∣∣∣∣∣
2

. (29)

Here fl (k) denotes the amplitude of the lth outgoing spherical
wave for an incident planar wave at k. For a He∗

2(a3�+
u )

bubble, fl (k) is given by [55]

fl (k) = i
j′l (kRb,eq ) + γl kRb,eq jl (kRb,eq )

h′
l (kRb,eq ) + γl kRb,eqhl (kRb,eq )

, (30)

where jl and hl are the spherical Bessel and Hankel functions,
and the prime denotes the derivative. The coefficient γl is
related to the surface mode stiffness kl of the He∗

2(a3�+
u )

bubble as

γl = MHeρ0v
2
c R6

0,eq

kl R3
b,eq

(
1 + 4

αeqR0,eq
+ 6

α2
eqR2

0,eq

)2

. (31)

Using Eq. (15), we find that γ0 = 0.38 and γ2 = 0.3, nearly
independent of temperature at T < 0.5 K under saturated
vapor pressure. These values are about an order of magnitude
smaller than those for electron bubbles in He II. This is due
to the smaller size of the He∗

2(a3�+
u ) bubble and its larger

surface mode elastic constant kl . For the l = 1 contribution
in Eq. (29), one can take f1(k) = i j1(kRb,eq )/h1(kRb,eq ) since
γ1 diverges due to the vanishing mode stiffness [68], k1 = 0.

In Fig. 7, we show the profile of σT (k) together with the
thermal factor −k4∂n(k, T )/∂k. The σT (k) is calculated based
on the contributions from the l = 0, 1, 2 wave scattering.
Adding more modes only changes the right tail part of the
profile. Contrary to electron bubbles, the profile of σT (k)
for He∗

2(a3�+
u ) bubbles does not exhibit any sharp peaks

due to resonant phonon scattering. Furthermore, the dominant
contribution to the left tail of σT (k) comes from the l = 1 scat-
tering. Evidently, the thermal factor peaks at kRb,eq < 1 and
shifts toward the origin as T decreases. Therefore, when we
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FIG. 7. The momentum-transfer cross section σT (k) calculated
using the l = 0, 1, 2 modes. The dotted and dashed curves repre-
sent the thermal factor −k4∂n/∂k, which are scaled vertically for
visibility.

compute the mobility μ using Eq. (27), the major contribution
at low temperatures comes from the l = 1 wave scattering.

In Fig. 8, we show the calculated He∗
2 diffusion coefficient

D based on the obtained mobility result. The experimental
data around 0.2 K, extracted from the He∗

2 diffusion time
measurement by Zmeev et al. [67], are also included. It is
clear that our calculated result agrees quite well with the
measurement, which proves the reliability of our calculations.
For the purpose of comparison, we have also included in Fig. 8
the calculated D coefficient assuming the He∗

2 bubble as a
rigid sphere, i.e., γl = 0 for all modes with l �= 1. At T less
than about 0.3 K, the solid-sphere model appears to agree well
with our earlier calculation based on the l = 0, 1, 2 scattering
modes, which suggests that in this temperature regime the He∗

2
bubble can be reasonably treated as a rigid sphere due to its
large shape deformation stiffness. In the low-T limit, the value
of D for the rigid-sphere model is always greater by a factor
of about 1.6. Indeed, in the low-T limit where the thermal
factor peaks at kRb � 1, an analytic expression for μ can be

0.1 0.3 0.40.2 0.5
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110

010

-110

210

310

410

2
 (c

m
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)
D

Our calculation
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Zmeev et al.

7T −∝

FIG. 8. Calculated diffusion coefficient D of He∗
2(a3�+

u )
molecules in He II. The triangles represent the data extracted from
Zmeev et al.’s experiment [67]. The red solid line is the diffusion
curve calculated using the rigid-sphere model as discussed in the text.
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derived [68]:

μ = 1(
2/9 + γ 2

0

)
ρnvc4πR2

b,eq

(
h̄vc

2πRb,eqkBT

)4

, (32)

where ρn = 2π2kB
4T 4/45h̄3v5

c is the mass density of the
normal fluid in He II due to the phonon contribution [69].
Hence, the resulting diffusion coefficient is

D = 45h̄7v8
c(

2/9 + γ 2
0

)
128π7R6

b,eq

(kBT )−7. (33)

Therefore, if the contribution of γ0 is neglected, the value of
D would increase by a factor of 1.6.

V. SUMMARY

We have derived the surface fluctuation eigenmodes for the
He∗

2(a3�+
u ) excimer molecules in He II, using a bubble model

that incorporates the He∗
2-He interaction potentials obtained

in density functional analysis. These eigenmodes are then uti-
lized in the evaluation of the line profile of the a3�+

u → c3�+
g

absorption transition that controls the fluorescence imaging of
the He∗

2 molecules. We find that as the temperature drops from
2 K to 20 mK, the peak absorption strength is enhanced by a
factor of about five and the optimum excitation wavelength
is blueshifted by about 2 nm. We have also calculated the

diffusion coefficient of the He∗
2 molecules in He II at temper-

atures below 0.5 K by considering the momentum transfer in
He∗

2-phonon scattering. The good agreement between our re-
sult and the experimental data obtained at about 0.2 K proves
the reliability of our calculation. Our analysis suggests that
due to the large shape deformation stiffness, the He∗

2(a3�+
u )

bubbles can be reasonably treated as rigid spheres below about
0.3 K when they scatter off thermal phonons. These results
will provide useful guidance in the design of future vortex-line
imaging experiments in He II using He∗

2(a3�+
u ) molecules as

tracers.
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