Efficient and sideband-free ¹H-detected ¹⁴N magic-angle spinning NMR

Cite as: J. Chem. Phys. **151**, 154202 (2019); https://doi.org/10.1063/1.5126599 Submitted: 03 September 2019 . Accepted: 01 October 2019 . Published Online: 21 October 2019

Ivan Hung 🔟, Peter Gor'kov, and Zhehong Gan 🔟

ARTICLES YOU MAY BE INTERESTED IN

Electron spin relaxation in radical pairs: Beyond the Redfield approximation The Journal of Chemical Physics **151**, 154117 (2019); https://doi.org/10.1063/1.5125752

¹⁴N overtone nuclear magnetic resonance of rotating solids
 The Journal of Chemical Physics 149, 064201 (2018); https://doi.org/10.1063/1.5044653

Fast electron paramagnetic resonance magic angle spinning simulations using analytical powder averaging techniques The Journal of Chemical Physics **151**, 114107 (2019); https://doi.org/10.1063/1.5113598

J. Chem. Phys. **151**, 154202 (2019); https://doi.org/10.1063/1.5126599 © 2019 Author(s).

Efficient and sideband-free ¹H-detected ¹⁴N magic-angle spinning NMR

Cite as: J. Chem. Phys. 151, 154202 (2019); doi: 10.1063/1.5126599 Submitted: 3 September 2019 • Accepted: 1 October 2019 • Published Online: 21 October 2019

Ivan Hung, 🕩 Peter Gor'kov, and Zhehong Gan^{a)} ២

AFFILIATIONS

National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA

^{a)}Author to whom correspondence should be addressed: gan@magnet.fsu.edu. Fax: +1 850 644 1366.

ABSTRACT

Indirect detection via sensitive spin-1/2 nuclei like protons under magic-angle spinning (MAS) has been developed to overcome the low spectral sensitivity and resolution of ¹⁴N NMR. The ¹⁴N quadrupolar couplings cause inefficient encoding of the ¹⁴N frequency due to large frequency offsets and make the rotor-synchronization of the evolution time necessary. It is shown that ¹⁴N *rf* pulses longer than the rotor period can efficiently encode ¹⁴N frequencies and generate spinning sideband free spectra along the indirect dimension. Average Hamiltonian and Floquet theories in the quadrupolar jolting frame (QJF) are used to treat the spin dynamics of the spin-1 quadrupolar nucleus under long ¹⁴N *rf* pulses and MAS. The results show that the *rf* action can be described by a scaled and phase-shifted effective *rf* field. The large quadrupolar frequency offset becomes absent in the QJF and therefore leads to sideband-free spectra along the indirect dimension. More importantly, when a pair of long ¹⁴N *rf* pulses are used, the distribution of the phase shift of the effective *rf* field does not affect the ¹⁴N encoding for powder samples; thus, high efficiencies can be obtained. The efficient and sideband-free features are demonstrated for three ¹H/¹⁴N indirectly detected experiments using long ¹⁴N pulses under fast MAS.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126599

I. INTRODUCTION

¹⁴N is the abundant isotope (99.6%) of nitrogen, an important element for all branches of chemistry. The large ¹⁴N quadrupole coupling and spin-1 quantum number make acquisition of ¹⁴N solidstate NMR spectra challenging. For static solid samples, ¹⁴N powder spectra are often several megahertz broad; therefore, the acquisition of wide-line spectra usually requires use of multiple-echoes such as the Carr-Purcell Meiboom-Gill (CPMG) sequence.^{1,2} Broadband frequency-sweep pulses and stepping of the irradiation frequency offset are also used to cover the large ¹⁴N breadth.³ For spinning samples, fast and stable sample spinning precisely at the magic-angle can average the large first-order quadrupole interaction. The modulation of the first-order quadrupole coupling, however, results in many spinning sidebands that spread over the same breadth as the static ¹⁴N wide-line pattern.⁴ The wide lines and low ¹⁴N gyromagnetic ratios cause low resolution and sensitivity for direct detection of ¹⁴N.

Indirect detection of ¹⁴N via nearby spin-1/2 nuclei such as ¹H and ¹³C has been developed to overcome the aforementioned sensitivity and resolution problems. Under magic-angle spinning (MAS), these spin-1/2 "spy" nuclei with higher gyromagnetic ratios have much narrower line widths than that of ¹⁴N and thus provide better resolution and sensitivity in the form of two-dimensional (2D) spectra. Methods based on heteronuclear multiple-quantum correlation (HMQC) and cross-polarization (CP) have been reported.⁵⁻ The correlation and polarization transfer can be established via the residual dipolar splitting and J-coupling that remains under MAS or by using the larger dipolar interaction obtained through recoupling pulse sequences.^{10,11} HMQC, in particular, is a simple experiment that uses only a pair of short pulses to encode the ¹⁴N frequency [Fig. 1(a)]. Single-quantum, double-quantum, or even overtone ¹⁴N transitions can be indirectly detected this way.^{12–14} By synchronizing the time evolution between the pair of ¹⁴N encoding pulses accurately with the rotor period, the large first-order quadrupole interaction can be refocused, provided that the magic-angle is set

FIG. 1. Pulse sequences for 2D ¹H/¹⁴N correlation: (a) D-HMQC with SR4²₁ dipolar recoupling¹¹ applied to ¹H, (b) TRAPDOR-HMQC using long ¹⁴N pulses for both dipolar recoupling and ¹⁴N frequency encoding in the quadrupolar jolting frame, and (c) double cross-polarization (DCP) from ¹H to ¹⁴N and then back to ¹H.

accurately. The rotor-synchronization restricts the indirect spectral window to the spinning frequency, which is equivalent to folding all ¹⁴N spinning sidebands into a single peak along the ¹⁴N dimension. It should be noted that significant t_1 -noise can arise due to fluctuations in spinning frequency, and spinning sidebands appear if a large spectral window is used in the indirect dimension. In addition, the encoding pulses become inefficient for large ¹⁴N quadrupolar couplings. For a rectangular pulse, the excitation profile can be described by a sinc function with frequency nulls that are inversely proportional to the pulse length. Its bandwidth is usually not enough to cover the several megahertz breadth of the complete ¹⁴N pattern. In searching for more efficient pulse schemes, it has been found that longer radio-frequency (rf) pulses approaching the rotor period can increase the efficiency dramatically.¹⁵ This behavior and the term sideband-selective long pulses (SLP)¹⁶ used to describe it are counterintuitive since longer pulses usually have narrower bandwidths. Jarvis et al.¹⁷ have exploited long pulses further by extending the ¹⁴N pulses far beyond the inverse of the dipolar coupling [Fig. 1(b)], reminiscent of the TRAnsfer of Population in DOuble Resonance (TRAPDOR) experiment.¹⁸⁻²⁰ Interestingly, in this case, the long ¹⁴N pulses are used for encoding and dipolar recoupling at the same time without additional dipolar recoupling on the "spy" nuclei. Recently, Carnevale et al.9 have also obtained efficient ¹⁴N correlation via double cross-polarization (DCP) by adding a ¹H spin-lock rf field simultaneously with the long ¹⁴N pulses [Fig. 1(c)]. Throughout this work, long pulses are defined as being at least a rotor period in duration.

The three aforementioned methods using long ¹⁴N pulses have been demonstrated experimentally and by numerical simulations.

However, their mechanisms are not completely clear and some questions still remain. For a spin-1/2, long pulses can effectively spin-lock the magnetization as necessary for CP. However, for ¹⁴N, a long pulse can barely do any spin-locking under MAS as the quadrupole coupling is at least an order of magnitude larger than the rf field. To our knowledge, efficient one-step ${}^{1}H \rightarrow {}^{14}N$ CP transfer has not yet been achieved under MAS; then, why is ${}^{1}H \rightarrow {}^{14}N \rightarrow {}^{1}H$ two-step CP transfer efficient? For the case of "long-pulse" HMQC [Fig. 1(b)], the intriguing ¹⁴N rf offset and field strength dependences, both observed experimentally and with numerical simulations have not yet been explained.¹⁶ The spin dynamics of the three-level ¹⁴N spin system under rf pulses is more complex than for a spin-1/2, especially in the presence of the very large MAS-modulated quadrupole coupling. In the past, a level-crossing picture between the modulating quadrupole coupling frequency and the rf frequency has been used to describe what happens during the long pulses under MAS. Because of the large frequency offsets, most of the rf action occurs only during the brief level crossings. The effect of these level crossings can be a small perturbation, efficient excitation, or inversion depending on the regime of the so-called adiabaticity parameter $\omega_1^2/\Delta\omega' \ll 1$, ~1, or $\gg 1$, respectively.²¹ Here, ω_1 represents the rf field strength and $\Delta \omega'$ is the sweep rate of the crossing. In this work, we present a theory to derive the rf spin dynamics in the so-called jolting frame²² to describe the long-pulse ¹⁴N experiments and their phenomena quantitatively. The robust theoretical tool presented and physical insights obtained can help understand and further improve correlation experiments, as well as aid the development of new efficient methods to acquire ¹⁴N NMR spectra directly or indirectly.

The jolting frame used to treat long ¹⁴N pulses under MAS is briefly described here. First introduced by Caravatti et al.,²² the jolting frame is an extension of the well-known rotating frame widely used in NMR spectroscopy. The rotating frame transformation unwinds the time dependence of the radio frequency and reduces the large Zeeman interaction to a small frequency offset term. The action of the rf pulse can then be described simply by a rotation about a static effective rf field. This simple picture of rf pulses forms the basis for almost all NMR experiments.²³ The jolting frame extends this idea further to large modulated spin interactions that remain in the NMR rotating frame. Transformation into a "quadrupolar jolting frame" (QJF) eliminates the large offsets due to MAS modulation of the quadrupole coupling frequency but introduces modulations to the rf Hamiltonian. The large quadrupolar coupling frequency offsets and spinning sidebands become absent when pulses longer than a rotor period are used. The observation of sideband-free ¹⁴N spectra has not been reported before and is experimentally demonstrated here. Under the conditions of fast MAS, average Hamiltonian theory (AHT) can be applied to determine the scaled effective rf Hamiltonian in the QJF. The modulated Hamiltonian in the jolting frame can also be treated more generally using Floquet theory.²⁴ In particular, the Floquet treatment is used below to derive the recoupling of the heteronuclear dipolar interaction under long ¹⁴N pulses, which is a critical element for indirect ¹⁴N detection through heteronuclear correlation or polarization transfer. Notably, Pell et al. have used the jolting frame to treat large anisotropic paramagnetic shifts under MAS,²⁵ as well as the ¹⁴N quadrupolar interaction to obtain indirectly detected double-quantum spectra.²⁶

Following the theory, three indirectly detected experiments employing long ¹⁴N pulses will be presented: (1) ¹H/¹⁴N HMQC with dipolar recoupling applied to ¹H, also commonly dubbed D-HMQC; (2) ¹H/¹⁴N HMQC using a pair of long ¹⁴N pulses that serve for both dipolar recoupling and ¹⁴N frequency encoding, which we call TRAPDOR-HMQC or simply T-HMQC, given its similarity with the TRAPDOR experiment;^{18–20} and (3) ¹H/¹⁴N correlation using ¹H \rightarrow ¹⁴N \rightarrow ¹H forward-and-back polarization transfer, namely, double cross-polarization (DCP). The mechanism of each experiment will be described using the theory in the quadrupolar jolting frame, and their frequency offset and *rf* field dependences will be investigated.

In this work, ultrafast 95 kHz MAS is used with ¹H detection to acquire ¹⁴N spectra indirectly. Detection through protons gives high sensitivity due to its high gyromagnetic ratio and natural abundance. Fast MAS helps by narrowing the ¹H resonances and prolonging ¹H T_2 relaxation. The HMQC sequence often uses a long proton spinecho and therefore benefits greatly from longer T_2 constants in addition to narrower line widths. As for ¹⁴N encoding, it will be shown that the faster spinning leads to stronger effective ¹⁴N *rf* fields. It should be noted that the mechanism and principles behind the three presented experiments should also be applicable when using other spin-1/2 "spy" nuclei such as ¹³C.

II. THEORY

Let us consider the following Hamiltonian in the rotating frame for an indirectly detected ¹⁴N experiment under MAS of a two-spin system with ¹⁴N (S) and ¹H (I):

$$H = H_Q + H_D + H_{CS} + H_{rf},$$

$$H_Q = q(t)(S_z^2 - 2/3), \quad H_D = d(t)I_zS_z, \quad H_{CS} = \Delta\omega S_z, \quad H_{rf} = \omega_1 S_x,$$
(1)

where H_Q , H_D , H_{CS} , and H_{rf} are the Hamiltonians for the quadrupolar coupling, dipolar coupling, chemical shift, and rf irradiation, respectively. Here, q(t) and d(t) are the first-order quadrupole coupling and the dipolar coupling frequencies modulated by MAS, respectively. The second-order quadrupole shift is included in the chemical shift offset term $\Delta \omega$ of H_{CS} , and $\omega_1 = \gamma B_1/2\pi$ is the angular frequency of the rf field applied along the *x*-axis. The MASmodulated components of the chemical shift anisotropy (CSA) and second-order quadrupolar shift are much smaller than that of the first-order quadrupole coupling and are thus not considered here.

The quadrupolar coupling is usually the largest interaction among all the terms in the Hamiltonian, $H_Q > H_{rf}$, H_{CS} , H_D . By going to its interaction representation described by the rotation operator $R = \exp(-i\int_0^t H_Q(t')dt')$, the *rf* Hamiltonian becomes

$$h_{rf} = RH_{rf}R^{-1} = \frac{\omega_1}{\sqrt{2}} \begin{pmatrix} 0 & e^{i\varphi_Q(t)} & 0\\ e^{-i\varphi_Q(t)} & 0 & e^{-i\varphi_Q(t)}\\ 0 & e^{i\varphi_Q(t)} & 0 \end{pmatrix}.$$
 (2)

The lower case *h* is used to distinguish the Hamiltonians in the QJF from the regular rotating frame. Here, $\varphi_Q(t)$ is the phase

accumulation from the MAS-modulated first-order quadrupolar coupling frequency,

$$\varphi_Q(t) = \int_0^t \omega_Q(t') dt'.$$
(3)

This periodic phase modulation can be expanded into a Fourier series,

$$e^{i\varphi_Q(t)} = \sum_k s_k e^{ik\omega_r t},\tag{4}$$

$$h_{rf} = \sum_{k} \frac{\omega_{1}}{\sqrt{2}} \begin{pmatrix} 0 & s_{k} & 0\\ s_{-k}^{*} & 0 & s_{-k}^{*}\\ 0 & s_{k} & 0 \end{pmatrix} e^{ik\omega_{r}t},$$
(5)

where the amplitude of the modulated coefficients s_k satisfies the normalization condition

$$\sum_{k} |s_k|^2 = 1. \tag{6}$$

The phase $\varphi_Q(t)$ and its Fourier expansion coefficients s_k are related to the ¹⁴N NMR free-induction-decay signal and the spinning sidebands in ¹⁴N MAS spectra for the +1 \leftrightarrow 0 transition. Equation (5) shows that the *rf* Hamiltonian in the QJF becomes modulated. The dipolar coupling and frequency offset Hamiltonians, H_D and H_{CS} , both commute with the rotation operator, *R*, and thus remain unchanged. Most importantly, the large quadrupolar coupling is absent in the QJF.

The modulation coefficients s_k of the *rf* Hamiltonian are of central importance. Let us first look more closely at their phase and magnitude before proceeding. Figure 2 shows simulations of ¹⁴N MAS sidebands s_k for the +1 \leftrightarrow 0 transition of an individual crystallite. The phase of the s_k sidebands varies widely, even for the same crystallite at different starting rotor positions y. After a powder average over the rotor angle, the spinning sidebands all become absorptive. The sideband amplitudes become $|s_k|^2$, which are much smaller than s_k as a result of phase cancellation from powder averaging.²⁷ The magnitude of the s_k terms can be estimated as follows. The spinning sideband intensities s_k are negligible for $k\omega_r$ outside the ¹⁴N powder pattern, so the number of sidebands with significant intensities can be estimated to be ω_q/ω_r , where ω_q is defined as $\pi C_0/2$ for ¹⁴N and C_0 is the quadrupole coupling constant in units of Hertz. Hence, from the normalization condition in Eq. (6), we obtain

$$|s_k| \sim \sqrt{\omega_r / \omega_q},\tag{7}$$

where usually $|s_k| \ll 1$ since $\omega_q \gg \omega_r$. It is noteworthy that the scaling parameter s_k and its phase φ_k pertain to each individual crystallite, which is different from and should not be confused with the "carousel" γ -averaged sideband intensity $|s_k|^2$, as shown in Fig. 2.

Under fast spinning, the time evolution of the periodic rfHamiltonian can be approximated using average Hamiltonian theory by keeping only the constant term,

$$\overline{h_{rf}} = \frac{\omega_1}{\sqrt{2}} \begin{pmatrix} 0 & s_0 & 0 \\ s_0^* & 0 & s_0^* \\ 0 & s_0 & 0 \end{pmatrix} = |s_0| \omega_1 \exp(-i\varphi_0 S_z^2) S_x \exp(i\varphi_0 S_z^2).$$
(8)

FIG. 2. Simulation of ¹⁴N spinning sidebands at 95 kHz MAS for the +1 \leftrightarrow 0 transition of a single crystallite with an orientation (α , β) = (0°, 45°) to the rotor frame at various rotor phases (γ). Simulations were performed with SIMPSON²⁸ using quadrupole coupling C_Q = 1.3 MHz and asymmetry parameter η_Q = 0.3.

The result shows an effective Hamiltonian with the *rf* amplitude scaled by $|s_0|$ and a phase shift φ_0 , i.e., $\exp(-i\varphi_0 S_z^2)S_x \exp(i\varphi_0 S_z^2)$. In powder samples, the phase φ_0 varies widely among crystallites due to the different quadrupolar coupling tensor orientations, and powder averaging leads to phase cancellation if a long pulse is applied, for example, in a direct excitation ¹⁴N experiment. However, when a pair of pulses are used, as in the case of the 2D experiments mentioned above, the cancellation does not occur because the relative phase between the two pulses is not affected by the phase φ_0 . This is the essence of why indirectly detected experiments are efficient when a pair of long ¹⁴N pulses are used. The second reason for the high efficiencies is that the frequency offset from large quadrupolar couplings is absent in the QJF. Hence, the long pulses exhibit the typical nutation behavior at a scaled *rf* amplitude $|s_0|\omega_1$.

The time evolution of a periodically modulated Hamiltonian can also be treated more generally using Floquet theory. The

ARTICLE

Floquet theorem states that the evolution operator can be expressed with a time-independent Hamiltonian Q and a periodic operator P(t),

$$U = P(t)e^{-iQt}P(0)^{-1},$$

$$P(t) = \sum_{k} P_{k}e^{ik\omega_{r}t}.$$
(9)

The operators Q and P_k can be obtained as the eigenvalues and the eigenvectors of the time-independent Floquet Hamiltonian H_F ,

$$H_F = \sum_{m,n} |m\rangle H_{m-n} + n\omega_r \delta_{nm} \langle n|.$$
⁽¹⁰⁾

Here, H_k is the Fourier expansion of the modulating Hamiltonian

$$H(t) = \sum_{k} H_k e^{ik\omega_r t}.$$
 (11)

Floquet theory transfers a time-dependent problem into a timeindependent one by an expansion into the Floquet space $|k\rangle\langle l|$. Perturbation theory often can be used to diagonalize the matrix of the Floquet Hamiltonian H_F .

The Floquet theorem in Eq. (9) can also be expressed in a slightly different form related to the average Hamiltonian \tilde{H} and periodic operator p(t),

$$U = p(t)e^{-i\tilde{H}t},$$

$$\overline{H} = P(0)QP(0)^{-1},$$

$$p(t) = P(t)P(0)^{-1} = \sum_{k} p_{k}e^{ik\omega_{r}t}.$$

(12)

When the Hamiltonian component H_k is small compared to the spinning frequency, we have only one significant term in the diagonalization process, i.e., $p_0 \sim \mathbb{I}$ and $p_{k\pm 0} \ll 1$. We can then take the following approximation for the periodic operator p(t) and its inverse:

$$p(t) = \mathbb{I} + \sum_{k=\pm 1,\ldots\pm\infty} p_k e^{ik\omega_r t},$$

$$p(t)^{-1} = \mathbb{I} - \sum_{k=\pm 1,\ldots\pm\infty} p_k e^{ik\omega_r t}.$$
(13)

We apply the Floquet theorem to the general case with the ¹⁴N frequency placed near the *n*th spinning sideband position, the frequency offset $n\omega_r S_z$ in H_{CS} merely shifts the indices by *n* in the Floquet space for the modulating *rf* Hamiltonian H_k in Eq. (11). Consequently, it changes the spinning sideband indices from s_0 to s_n in Eq. (8) for the effective *rf* Hamiltonian

$$\overline{h_{rf}} = \frac{\omega_1}{\sqrt{2}} \begin{pmatrix} 0 & s_n & 0\\ s_{-n}^* & 0 & s_{-n}^*\\ 0 & s_n & 0 \end{pmatrix}.$$
 (14)

The shift by $n\omega_r S_z$ reduces the frequency offset to the nearest sideband position to $\Delta \omega - n\omega_r$, resulting in the following rotation operator for the jolting frame and the average Hamiltonian:

$$R = \exp\left(-i \int_0^t H_Q(t') dt' S_z^2 - in\omega_r t S_z\right), \tag{15}$$

$$\overline{h_{rf}} = \left| \frac{s_n + s_{-n}}{2} \right| \omega_1 \exp\left(-i\varphi_{\Sigma}S_z^2\right) S_x \exp\left(i\varphi_{\Sigma}S_z^2\right) \\ + \left| \frac{s_n - s_{-n}}{2} \right| \omega_1 \exp\left(-i\varphi_{\Delta}S_z^2\right) [S_z S_x + S_x S_z]$$
(16)
$$\times \exp\left(i\varphi_{\Delta}S_z^2\right) + (\Delta\omega - n\omega_r) S_z.$$

Here, s_n and s_{-n} are the complex intensities of the spinning sidebands near the ¹⁴N *rf* frequency for the +1 \leftrightarrow 0 and 0 \leftrightarrow -1 transitions that are mirror images of each other, and φ_{Σ} and φ_{Δ} are the phases for the sum and difference of the two sidebands s_n and s_{-n} , respectively. This general solution encompasses the onresonance case in Eq. (8) with n = 0, noting that two-spin operator term $S_z S_x + S_x S_z$ becomes absent for the case of on-resonance ¹⁴N pulses.

The Floquet formalism allows us to look further into the dipolar recoupling during a long ¹⁴N pulse. The heteronuclear dipolar coupling is usually averaged by fast MAS, as the modulating dipolar coupling frequency averages to zero, i.e., $\langle d(t) \rangle = 0$. The ¹⁴N rf irradiation introduces additional modulation to the ¹⁴N S_z spin operator, which interferes with the MAS averaging of the dipolar coupling Hamiltonian causing recoupling. Described by the population transfer during the level-crossings of ¹⁴N pulses, such a mechanism has been used in the TRAPDOR experiment for distance measurements with quadrupolar nuclei. Here, we derive the dipolar recoupling using the Floquet formalism in Eq. (12),

$$H_D = d(t)I_z p(t) \exp\left(-i\overline{h_{rf}}t\right) S_z \exp\left(i\overline{h_{rf}}t\right) p(t)^{-1}.$$
 (17)

Considering that the *rf* Hamiltonian $\overline{h_{rf}}$ is usually much larger than the dipolar coupling term, it is sufficient to keep only the commuting component in the dipolar coupling Hamiltonian as the noncommuting terms are effectively truncated by the *rf* Hamiltonian,

$$\exp\left(-i\overline{h_{rf}}t\right)S_z\exp\left(i\overline{h_{rf}}t\right) \to \frac{Tr\left(S_z\overline{h_{rf}}\right)}{Tr\left(\overline{h_{rf}}^2\right)}\overline{h_{rf}}.$$
 (18)

From the p(t) operator in Eq. (13), we obtain the following form of average dipolar Hamiltonian under the ¹⁴N pulses:

$$\overline{H_D} = \sum_{k=\pm 1,2} \frac{Tr\left(S_z \overline{h_{rf}}\right)}{Tr\left(\overline{h_{rf}}\right)} d_k I_z \Big[\overline{h_{rf}}, p_{n-k}\Big].$$
(19)

The dipolar Hamiltonian contains the product between the modulating dipolar coupling frequency d_k and the periodic Floquet operator p_{n-k} .

III. EXPERIMENTAL

All ¹H/¹⁴N experiments were carried out at $v_0(^{1}\text{H}) = 800.1$ MHz and $v_0(^{14}\text{N}) = 57.8$ MHz using an 800 MHz Bruker Avance III HD spectrometer and a 0.75 mm MAS probe developed at the NHMFL using a spinning assembly and rotors provided by JEOL. The 0.75 mm rotor holds approximately 290 nl of L-histidine·HCl·H₂O and can spin up to a frequency of 100 kHz. A spinning frequency of 95 kHz was used for measurements. The spinning speed was regulated to within ±5 Hz, and the recycle delay was 2 s. The magic-angle setting was calibrated by narrowing the ¹⁴N line width along the indirection dimension of a 2D 1 H/ 14 N *J*-HMQC spectrum of the sample with small second-order quadrupolar broadening. Other experimental parameters are included in the figure captions.

IV. RESULTS AND DISCUSSIONS

A. Dipolar-HMQC

The HMQC experiment with dipolar recoupling applied on the ¹H channel is shown in Fig. 1(a). The pair of ¹⁴N pulses first rotate the S_z term of the two-spin order generated by the dipolar recoupling into the *xy* plane and then rotate the transverse polarization after the t_1 evolution period back to *z*-axis. The ¹⁴N frequency encoded in the two-spin coherence is converted back to I_x for proton detection after the second half of the spin-echo. Short and strong ¹⁴N pulses are usually used in order to cover the large frequency offsets due to the quadrupolar coupling. The efficiency is often low as the ¹⁴N quadrupolar coupling is an order of magnitude larger than the typically achievable *rf* field strength. Here, rotor-period long pulses are used for the ¹⁴N frequency encoding.

Figure 3(a) shows the D-HMQC experimental efficiency as a function of the ¹⁴N irradiation frequency. The efficiency is measured as the intensity ratio between the first t_1 -increment of the 2D experiment and a 90°-pulse excitation spectrum. The frequency profile for L-histidine·HCl·H₂O is nearly flat at around 15% with peaks approximately at the ¹⁴N spinning sideband positions. Three factors contribute to this overall efficiency: the proton T_2 relaxation under dipolar recoupling, the ¹⁴N encoding efficiency, and the interconversion between single- and double-quantum two-spin order, i.e., the powder average of $(\sin^2[\pi D_{\text{eff}}(\theta,\varphi)\tau])$, where D_{eff} is the effective dipolar coupling and τ is the mixing time. Assuming that $\langle \sin^2[\pi D_{\text{eff}}(\theta, \varphi)\tau] \rangle \sim 1/2$ in the long mixing time regime and the relaxation factor is about 63% measured for a total mixing time of 252 μ s, the ¹⁴N encoding efficiency is estimated to be about 48%, which is remarkably high for a ¹⁴N quadrupolar pattern spanning ~2 MHz. The long pulses and the scaled effective rf field can achieve large flip-angles as long as the large quadrupolar coupling frequency is absent in the QJF. Most importantly, the phase spread by φ_0 [Eq. (8)] does not affect the relative phase between the two pulses and therefore causes no cancellation between the encoding pulses. This is the main reason why high encoding efficiency can be achieved with long ¹⁴N pulses.

It is noteworthy that for a pair of rotor-period long encoding pulses, the effective t_1 evolution is equal to one rotor period for the first t_1 -increment. The time evolution with frequency offset causes cosine and sine modulation of the hypercomplex 2D data as shown by the dashed and dotted lines in Fig. 3(a). It appears that the cosine signal may have been improperly used in the past to measure the frequency profile of the encoding efficiency.¹⁶ The magnitude of the two should be used, and it shows a broad and flat offset profile.

The 2D 1 H/ 14 N D-HMQC spectrum shown in Fig. 4 has an indirect spectral window larger than the spinning frequency, and shows no 14 N sidebands. This is striking at first sight since the single-quantum 14 N coherence is subjected to the large first-order quadrupolar coupling. This result becomes clear in the QJF in which

FIG. 3. Dependence of ^{14}N encoding efficiency for the $^{1}H_{N\delta1}$ site in Lhistidine HCl·H₂O as a function of ¹⁴N *rf* irradiation frequency (ω_{irr}) for the (a) D-HMQC, (b) T-HMQC, and (c) DCP experiments. The efficiency is measured by the ratio of the proton peak intensity between the first t_1 increment of the 2D experiments and a $\pi/2$ one-pulse spectrum. The irradiation frequency is given in units of the MAS frequency ($\omega_r/2\pi = 95$ kHz), and zero denotes the center band position. In (a), the duration of each D-HMQC SR421 dipolar recoupling block was ~126 μ s (12 rotor periods), and the ¹⁴N pulse lengths used were 10.5 μ s (one rotor period). The offset dependence of the cosine and sine (or real and imaginary) of the hypercomplex signals is shown as red dashed and blue dotted lines, respectively. The solid black line shows the magnitude of the two as the measure for the experiment efficiency. For T-HMQC in (b), the ¹⁴N pulse lengths used were each 1 ms. The efficiency is shown for ¹⁴N rf fields of 30 and 60 kHz as red dashed and solid black lines, respectively. For the (c) DCP experiment, the duration of each ¹H \leftrightarrow ¹⁴N contact time was 4 ms with ¹H and ¹⁴N *rf* field strength described in the main text

the large quadrupolar coupling is absent. This outcome can also be viewed using the level crossing picture. During the long ¹⁴N pulses, the *rf* action occurs mainly during the brief level crossings between the modulating quadrupolar coupling frequency and the ¹⁴N *rf* pulse. The level crossings occur periodically with the rotor period. When the evolution time is increased by a fraction of a rotor period, the timing of the level crossings between the two pulses remains unchanged for most spins. Only the spins with level-crossings occurring at the beginning of the first pulse have level crossings shifted during the second pulse but by a complete rotor period. Thus, the time evolution between the two pulses is not modulated by

the first-order quadrupolar coupling and does not create spinning sidebands.

Figure 4 also shows a stack of ¹⁴N slices from 2D experiments acquired by varying the ¹⁴N irradiation frequency ω_{irr} . When ¹⁴N rf is placed in the middle between two neighboring sidebands, two peaks at the neighboring sideband positions of the irradiation frequency appear with similar intensity. This behavior is different from typical ¹⁴N spinning sideband manifolds that spread over the whole span of the powder pattern; only sidebands neighboring the ¹⁴N irradiation frequency have significant intensity. These sidebands originate from the modulating *rf* Hamiltonian in the QJF or, more specifically, from the periodic evolution operator p(t) in the Floquet theory solution. Hence, we call them "Floquet sidebands" in the QJF. When the 14 N frequency is placed near the *n*th sideband, only the p_n Fourier component of p(t) is dominant, resulting in a single ¹⁴N peak at the *n*th sideband position. When ¹⁴N is placed between two sidebands, both p_k components for the two sideband indices are significant with approximately equal magnitude, giving rise to two peaks. In practice, the ¹⁴N offset is usually placed near the center band or sideband positions such that the 14 N peaks appear in the middle of the f_1 window. The 2D spectrum in Fig. 4 was acquired under such a condition and is indeed sideband-free.

The magnitude of the effective field in the QJF $\omega_1^{\text{eff}} \sim |s_n|\omega_1$ can be estimated using Eq. (7) and expressed in terms of the spinning frequency and the so-called adiabaticity parameter α that was introduced to categorize level-crossings induced by MAS,²¹

$$\omega_1^{\rm eff} \sim \sqrt{\alpha} \omega_r, \alpha = \frac{\omega_1^2}{\omega_q \omega_r}.$$
 (20)

For fast spinning and large quadrupolar interactions, the adiabaticity parameter is usually in the small perturbation regime, $\alpha \ll 1$. Figure 5 shows how the efficiency changes with the ¹⁴N *rf* field strength for the D-HMQC experiment. For one-rotor period long pulses, the efficiency peaks when the flip-angle reaches ~90° with the ¹⁴N *rf* field,

$$\omega_1 = \frac{1}{4} \sqrt{\omega_q \omega_r}.$$
 (21)

Thus, an adiabaticity parameter of $\alpha \sim 1/16$ is expected. The curve in Fig. 5 for D-HMQC agrees well with the observed maximum of $\omega_1/2\pi \sim 40$ kHz; noting that ω_q is defined as $\pi C_Q/2$ for ¹⁴N with $C_Q = 1.3$ MHz for the N_{$\delta 1$} site.

B. TRAPDOR-HMQC

The TRAPDOR-HMQC (or T-HMQC) experiment in Fig. 1(b) introduces two modifications to the D-HMQC experiment. First, the dipolar recoupling sequence is switched from the ¹H to the ¹⁴N channel, bearing strong similarities to the TRAPDOR experiment.^{18–20} Second, the long ¹⁴N pulses also serve the purpose of ¹⁴N frequency encoding. In order to better understand this experiment, let us first consider the hypothetical case of a heteronuclear *J*-coupled spin pair in liquids. The long *rf* pulses spin-lock the ¹⁴N polarization allowing the two-spin order $I_y S_{z'}$ to develop under *J*-coupling. Here, z' is the direction of the tilted effective *rf* field

FIG. 4. 2D ¹H/¹⁴N D-HMQC spectrum of L-histidine-HCI-H₂O with 250 kHz spectral window in *F*₁ (left). The stack plot on the right shows the *F*₁ slices at the ¹H_{N81} site acquired with ¹⁴N irradiation frequencies denoted by arrows set at 0.0, 0.1, 0.25, 0.5, 0.75, and 1.0 times the MAS frequency ($\omega_r/2\pi = 95$ kHz) with respect to the ¹⁴N81 center band position. The result shows no spinning sideband in the *f*₁ dimension.

due to frequency offset. The build-up of two-spin order is proportional to the J-coupling, which is scaled by the offset of the ¹⁴N rf field. During the t_1 evolution when the ¹⁴N pulse is turned off, the projection of $S_{z'}$ along the transverse plane starts to evolve according to the ¹⁴N peak frequency. The evolved component after t_1 is then spin-locked again for conversion back to I_x for ¹H signal detection during the second half of the pulse sequence. The angle of the effective rf field with respect to the z-axis θ affects this experiment in two important ways. First, the encoding efficiency depends on $\sin^2\theta$, so an on-resonance rf field with $\theta = \pi/2$ gives the highest efficiency for ¹⁴N frequency encoding. Second, the J-coupling is scaled by $\cos\theta$, so excitation and conversion of two-spin order in the short mixing time regime are proportional to $\cos^2\theta$. Therefore, on-resonance irradiation acts as decoupling and prevents creation of two-spin order and a null should be observed. The overall signal intensity is proportional to $\sin^2\theta \cdot \cos^2\theta$ and tapers off away from reson ance, with an optimal effective rf field that should be at 45° to the z-axis.

The T-HMQC pulse sequence works the same way as the hypothetical experiment described above. The long ¹⁴N pulses provide (1) dipolar recoupling and (2) ¹⁴N frequency encoding via spinlocking with a scaled effective rf field in the QJF. On-resonance ¹⁴N

FIG. 5. Dependence of the ¹H/¹⁴N efficiency for the ¹H_{N\delta1} site in Lhistidine-HCI-H₂O as a function of ¹⁴N *rf* field strength (ω_1) for the D-HMQC and T-HMQC experiments. The efficiency was measured the same way as in Fig. 3, and the total mixing times for the D-HMQC and T-HMQC experiments were 253 μ s and 2 ms, respectively.

irradiation should be avoided as the effective rf Hamiltonian in the transverse plane can truncate the dipolar Hamiltonian completely as in the hypothetical case of J-coupling. Indeed, the efficiency profile in Fig. 3(b) shows a significant on-resonance null flanked by higher intensity that decreases away from resonance but starts increasing again as the ¹⁴N irradiation frequency nears the first ¹⁴N sideband positions. A small dip is seen at exactly the sideband positions but not as deep as the on-resonance null. This is likely due to the fact that the effective rf Hamiltonian in Eq. (14) has an additional twospin operator term. The inclusion of this term avoids complete truncation of the dipolar recoupling when the ¹⁴N irradiation frequency is placed exactly at the spinning sidebands. Therefore, one of the ¹⁴N sideband positions is recommended for use in T-HMQC, with the shift reference of the f_1 axis adjusted accordingly. The comparison between two different ¹⁴N rf fields [Fig. 3(b)] shows increased efficiency at higher ¹⁴N rf fields, mostly due to better dipolar recoupling. Higher rf fields also affect how the angle of the effective rf field depends on frequency offset and leads to less tapering toward off-resonant regions, but the on-resonance null remains the same.

The T-HMQC experiment is highly efficient and sideband-free due to the same reasons as noted above for D-HMQC (spectra not shown). There are a few practical differences between the two experiments worth mentioning. First, when heteronuclear dipolar recoupling is applied to the observed nucleus as for D-HMQC, it automatically recouples ¹H chemical shift anisotropy (CSA). The D-HMQC experiment relies on the spin-echo to refocus the CSA, which is sensitive to the timing between the excitation and conversion periods. Small fluctuations of the spinning speed can affect the refocusing and cause t_1 -noise. In the case of T-HMQC, the recoupling is applied to the indirect ¹⁴N channel, which makes the experiment less susceptible to spinning speed fluctuations and t_1 -noise. A comparison of their 2D spectra in Fig. 6 illustrates the difference in t_1 noise. Second, for D-HMQC, the finite ¹⁴N pulse length needs to be taken into account in the first t_1 -increment and compensated with a large first-order phase correction along the indirect dimension. The T-HMQC does not have this restriction since no t_1 -evolution occurs during the long ¹⁴N pulses. Furthermore, the efficiency curves in both Figs. 3 and 5 show a higher efficiency for T-HMQC. These differences make T-HMQC preferred over the D-HMQC experiment.

FIG. 6. Comparison of 2D ¹H/¹⁴N spectra of L-histidine-HCI-H₂O acquired using the (a) D-HMQC, (b) T-HMQC, and (c) DCP pulse sequences in Fig. 1. The 2D experiments were acquired with a spectral width of 50 kHz and an acquisition time of 10 ms in f_2 and 47.5 kHz and 5 ms in f_1 ; each spectrum took a total experimental time of 2.2 h. The base contours are set at 3% of the maximum intensity in each of the 2D spectra.

Figure 5 compares the efficiency vs. rf field strength curves between the D-HMQC and T-HMQC experiments. Both increase with the rf field initially. The D-HMQC efficiency peaks and starts to fall after the flip-angle by the effective rf field passes 90°. The T-HMQC efficiency increases due to better dipolar recoupling with an increased rf field, as implied by Eq. (17). This trend can also be viewed in the picture of periodic level-crossings under MAS and the transfer of population that contributes to recoupling. The population transfer starts from small perturbations when the ${}^{14}N$ $r\bar{f}$ field is weak and achieves more efficient inversion as the adiabatic regime is reached. Once the rf field is high enough to reach the adiabatic regime, population transfer is maximized and the T-HMQC efficiency plateaus (Fig. 5). The efficiency/sensitivity of T-HMQC is significantly higher at all rf fields compared to D-HMQC. A major contributor to the difference comes from the ¹H signal attenuation during the spin-echo portion of the two experiments. When applying recoupling sequences to ¹H nuclei, the T_2' relaxation usually becomes much shorter than that observed with a conventional spin-echo.

C. ¹H/¹⁴N double cross-polarization

The HMQC type experiments utilize the z-Hamiltonian, i.e., the I_zS_z term in the J and dipolar couplings to generate two-spin order. Heteronuclear correlation can also be established through the *xy*-Hamiltonian that contains the flip and flop terms via direct polarization transfer. In solution NMR, this can be done by completely suppressing chemical shift differences, for example, with isotropic mixing in the TOCSY experiment.^{29,30} In the solidstate, cross-polarization is typically used, by applying spin-lock *rf* fields simultaneously to both nuclei. The so-called zero-quantum $I_+S_- + I_-S_+$ or double-quantum $I_+S_+ + I_-S_-$ dipolar coupling Hamiltonian can be reintroduced under MAS when the *rf* fields satisfy the modified Hartman-Hahn condition under MAS,

$$\omega_{1H} - \omega_{1N} = n\omega_r \text{ for ZQ}, \quad \omega_{1H} + \omega_{1N} = n\omega_r \text{ for DQ}, \quad n = \pm 1, \pm 2.$$
(22)

Figure 2(c) shows the pulse sequence used for ${}^{1}H/{}^{14}N$ heteronuclear correlation through double cross-polarization (DCP). The key question is how the large ${}^{14}N$ frequency offsets affect spin-locking and polarization transfer.

For ¹⁴N, applying a long *rf* pulse cannot maintain efficient spinlock under the MAS modulation of the quadrupolar coupling, which is an order of magnitude larger than the *rf* field strength. The theory and previous two experiments have shown that the quadrupole frequency offset is indeed removed when viewed in the QJF, and the *rf* field is scaled by s_n and its phase spread that depends on crystallite orientation. Without the modulating frequency offsets, spin-locking can be achieved but along the direction determined by the phase of s_n . This phase spread causes signal cancellation and is the reason for the poor spin-lock efficiency in the regular rotating frame. However, the phase cancellation does not occur if two long pulses are used. This is the essence of why high efficiency can be achieved for all three indirectly detected ¹H/¹⁴N correlation experiments including the DCP method.

Proper *rf* fields and Hartman-Hahn conditions are critical to cross-polarization. Figure 7 shows how a 1 ms ¹H spin-lock behaves with *rf* field strength. The rotary resonance conditions to the spin-lock are evident at $\omega_{1H} = 0.5\omega_r$ and ω_r from the homonuclear dipolar coupling and $\omega_{1H} = \omega_r$ and $2\omega_r$ from the chemical shift anisotropy. A high-order secondary resonance at $\omega_{1H} = 1.5\omega_r$ is also visible.³¹ These conditions need to be avoided to have efficient spin-locking for cross-polarization. Considering that a strong effective ¹⁴N *rf* field is difficult to generate due to the low ¹⁴N gyromagnetic ratio and the

FIG. 7. Proton intensities as a function of *rf* field strength ω_1 of a 1 ms spin-lock showing the various resonant conditions at integer and half-integer multiples of the spinning frequency $\omega_r/2\pi = 95$ kHz. The arrow points to the ¹H *rf* field used for ¹H/¹⁴N DCP experiments.

 s_n scaling in the QJF, the $\omega_{1H} + \omega_{1N}^{\text{eff}} = \omega_r DQ$ matching condition with $\omega_{1H} \sim 0.8\omega_r$ was chosen for DCP experiments. Restricted by a limited effective ¹⁴N *rf* field in the QJF, it is essential to use fast MAS such that ¹H *rf* fields with good spin-lock can be found to match the Hartman-Hahn condition in the gaps among these resonance conditions.

Figure 3(c) shows that the efficiency for the DCP experiment is comparable to D-HMQC and T-HMQC. A ±10% linear ramp was applied to the ¹H *rf* field amplitude to compensate for mismatch of the Hartman-Hahn condition due to *rf* field inhomogeneity and the distribution of s_n scaling to the effective ¹⁴N *rf* fields in the QJF. The offset dependence shows that efficient DCP also occurs when the frequency of the ¹⁴N spin-lock is applied at the spinning sideband positions with even slightly higher intensity than at the center band position.

The main difference between the DCP and HMQC experiments is the T_2 contribution from the observed spin (i.e., ¹H) to the ¹⁴N line width along the indirect dimension. The comparison in Fig. 6 shows clearly narrower line widths along the ¹⁴N dimension for the DCP experiment. Multiple-pulse ¹H decoupling was applied during the t_1 -period to remove broadening from the *J*-coupling. Figure 6 also shows more cross peaks due to relayed ¹H-¹H transfer via spindiffusion during the ¹H spin-lock. Relayed transfer is undesired as it affects the direct relationship between cross-peak intensity and ¹H/¹⁴N distance. It has been shown recently that the spin-diffusion can be reduced by setting the ¹H spin-lock off-resonance at the Lee-Goldburg condition.³²⁻³⁴

V. CONCLUSIONS

In summary, we have shown both theoretically and experimentally that long pulses can efficiently encode spin-1 nuclei like ¹⁴N with large quadrupolar couplings under MAS. The theory derived in the quadrupolar jolting frame (QJF) has successfully explained the mechanism that yields high efficiency and sideband-free features of the three 2D 1 H/ 14 N experiments. Average Hamiltonian and Floquet theories provide a clear and simple picture for spin dynamics of long 14 N pulses under MAS: a scaled effective *rf* field with a phase spread and the elimination of large modulating 14 N quadrupolar couplings in the QJF. For experiments using a pair of encoding pulses, the phase spread for powder samples does not cause cancellation and high efficiencies can be obtained. This idea and the efficient and sideband-free features can likely be extended to other half-integer quadrupolar nuclei to design more efficient indirect detection and correlation methods. Work along this direction is under way.

ACKNOWLEDGMENTS

This work was supported by the National High Magnetic Field Laboratory through National Science Foundation Cooperative Agreement (No. DMR-1644779) and by the State of Florida.

REFERENCES

¹F. H. Larsen, H. J. Jakobsen, P. D. Ellis, and N. C. Nielsen, J. Phys. Chem. A **101**, 8597 (1997).

² F. H. Larsen, H. J. Jakobsen, P. D. Ellis, and N. C. Nielsen, Chem. Phys. Lett. 292, 467 (1998).

³K. J. Harris, S. L. Veinberg, C. R. Mireault, A. Lupulescu, L. Frydman, and R. W. Schurko, Chem. Eur. J. **19**, 16469 (2013).

⁴T. J. Bastow, D. Massiot, and J. P. Coutures, Solid State Nucl. Magn. Reson. 10, 241 (1998).

⁵Z. Gan, J. Am. Chem. Soc. **128**, 6040 (2006).

⁶S. Cavadini, A. Lupulescu, S. Antonijevic, and G. Bodenhausen, J. Am. Chem. Soc. 128, 7706 (2006).

⁷S. Cavadini, S. Antonijevic, A. Lupulescu, and G. Bodenhausen, J. Magn. Reson. 182, 168 (2006).

⁸Z. H. Gan, J. P. Amoureux, and J. Trebosc, Chem. Phys. Lett. 435, 163 (2007).

⁹D. Carnevale, X. Ji, and G. Bodenhausen, J. Chem. Phys. 147, 184201 (2017).

¹⁰X. Zhao, M. Edén, and M. H. Levitt, Chem. Phys. Lett. **342**, 353 (2001).

¹¹ A. Brinkmann and A. P. M. Kentgens, J. Am. Chem. Soc. **128**, 14758 (2006).

¹²S. Cavadini, Prog. Nucl. Magn. Reson. Spectrosc. 56, 46 (2010).

¹³Y. Nishiyama, M. Malon, Z. H. Gan, Y. Endo, and T. Nemoto, J. Magn. Reson. 230, 160 (2013).

¹⁴L. A. O'Dell, R. L. He, and J. Pandohee, CrystEngComm 15, 8657 (2013).

¹⁵M. Shen, J. Trébosc, O. Lafon, Z. Gan, F. Pourpoint, B. Hu, Q. Chen, and J.-P. Amoureux, Solid State Nucl. Magn. Reson. 72, 104 (2015).

¹⁶A. G. M. Rankin, J. Trébosc, P. Paluch, O. Lafon, and J.-P. Amoureux, J. Magn. Reson. **303**, 28 (2019).

¹⁷J. A. Jarvis, I. M. Haies, P. T. F. Williamson, and M. Carravetta, Phys. Chem. Chem. Phys. 15, 7613 (2013).

¹⁸E. Vaneck, R. Janssen, W. Maas, and W. Veeman, Chem. Phys. Lett. **174**, 428 (1990).

¹⁹C. P. Grey, W. S. Veeman, and A. J. Vega, J. Chem. Phys. **98**, 7711 (1993).

²⁰C. P. Grey and A. J. Vega, J. Am. Chem. Soc. **117**, 8232 (1995).

²¹ A. J. Vega, J. Magn. Reson. **96**, 50 (1992).

²²P. Caravatti, G. Bodenhausen, and R. R. Ernst, J. Magn. Reson. 55, 88 (1983).

²³ R. R. Ernst, G. Bodenhausen, and A. Wokaun, *Principles of Nuclear Magnetic Resonance in One and Two Dimensions* (Oxford University Press, New York, 1987).

²⁴ J. H. Shirley, Phys. Rev. **138**, B979 (1965).

²⁵ A. J. Pell, G. Kervern, L. Emsley, M. Deschamps, D. Massiot, P. J. Grandinetti, and G. Pintacuda, J. Chem. Phys. **134**, 024117 (2011).

²⁶ A. J. Pell, K. J. Sanders, S. Wegner, G. Pintacuda, and C. P. Grey, J. Chem. Phys. 146, 194202 (2017).

²⁷ M. H. Levitt, J. Magn. Reson. 82, 427 (1989).

²⁸M. Bak, J. T. Rasmussen, and N. C. Nielsen, J. Magn. Reson. 147, 296 (2000).

²⁹L. Braunschweiler and R. R. Ernst, J. Magn. Reson. **53**, 521 (1983).

³⁰D. G. Davis and A. Bax, J. Am. Chem. Soc. 107, 2820 (1985).

³¹I. Scholz, B. H. Meier, and M. Ernst, J. Chem. Phys. 127, 204504 (2007).

³²A. Venkatesh, I. Hung, K. C. Boteju, A. D. Sadow, P. L. Gor'kov, Z. Gan, and A. J. Rossini, "Suppressing 1H Homonuclear Spin Diffusion in Fast MAS 1H-X NMR Experiments," Solid State Nucl. Magn. Reson. (submitted).

³³W. I. Goldburg and M. Lee, Phys. Rev. Lett. 11, 255 (1963).

³⁴M. Lee and W. I. Goldburg, Phys. Rev. 140, A1261 (1965).