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M A T E R I A L S  S C I E N C E

Chiral superconductivity in the alternate stacking 
compound 4Hb-TaS2
A. Ribak1*, R. Majlin Skiff2, M. Mograbi2, P. K. Rout2, M. H. Fischer3, J. Ruhman4, K. Chashka1, 
Y. Dagan2, A. Kanigel1†

Van der Waals materials offer unprecedented control of electronic properties via stacking of different types of 
two-dimensional materials. A fascinating frontier, largely unexplored, is the stacking of strongly correlated phases 
of matter. We study 4Hb-TaS2, which naturally realizes an alternating stacking of 1T-TaS2 and 1H-TaS2 structures. 
The former is a well-known Mott insulator, which has recently been proposed to host a gapless spin-liquid ground 
state. The latter is a superconductor known to also host a competing charge density wave state. This raises the 
question of how these two components affect each other when stacked together. We find a superconductor with 
a Tc of 2.7 Kelvin and anomalous properties, of which the most notable one is a signature of time-reversal symmetry 
breaking, abruptly appearing at the superconducting transition. This observation is consistent with a chiral super-
conducting state.

INTRODUCTION
Chiral superconductors have received much attention in recent years 
as a canonical example of a topological phase of matter. Theoretically, 
they are predicted to host Majorana bound states in the vortex cores 
or at sample edges (1, 2), which have non-Abelian mutual statistics. 
Beyond the fundamental importance of observing such a phenomena, 
it has also been proposed as a useful technology for quantum memory 
and quantum computation (3). Chiral superconductors are charac-
terized by an order parameter that is odd under time-reversal symmetry 
(TRS) and is manifested by magnetic fields at edges and defects (4). 
Therefore, they can be detected with probes such as muon spin 
relaxation (5) and polar Kerr effect (6).

Of all the known superconductors, only few exhibit signatures of 
TRS breaking, and even fewer are candidates for this elusive chiral 
phase. The best known among them are Sr2RuO4, believed to be of 
p + ip symmetry (5), and UPt3 (7), a potential f + if superconductor, 
as well as the heavy-fermion superconductor URu2Si2 (8) and SrPtAs 
(9, 10), which were suggested to be of d + id symmetry. Open ques-
tions remain, however, in all cases (11–13). Specifically, recent nu-
clear magnetic resonance measurements of Sr2RuO4 show a clear 
decrease in the Knight shift on entering the superconducting state, 
casting doubt on the p-wave nature of the superconducting order 
parameter (11).

In this work, we show evidence for chiral superconductivity in 
the transition-metal dichalcogenide 4Hb-TaS2. We show that this 
polymorph of TaS2 is a superconductor with a relatively high Tc and 
anomalous transport properties. 4Hb-TaS2 exhibits a spontaneous 
appearance of magnetic moments with the onset of superconductivity.

4Hb-TaS2 belongs to the P63/mmc hexagonal space group, with a 
unit cell that consists of alternating layers of 1H-TaS2 (half of 2H-TaS2) 
and 1T-TaS2 (see Fig. 1A). The overall crystal is inversion symmetric, 
with the inversion point lying in the center of the 1T layer. The weak 

interlayer coupling allows us to describe 4Hb-TaS2 as a stack of 
two-dimensional (2D) monolayers: 1H-TaS2 with a locally broken 
inversion symmetry giving rise to antisymmetric spin-orbit coupling 
(14) and 1T-TaS2, known as a Mott insulator that fails to order 
magnetically (15). Recently, it was proposed that the ground state of 
1T-TaS2 is a gapless quantum spin liquid (16, 17, 18). Thus, 4Hb-
TaS2 is a system in which superconducting layers naturally reside in 
proximity to layers that have strong spin fluctuations. Consequent-
ly, it realizes a unique heterostructure of strongly correlated phases 
with drastically different ground states, albeit having the exact same 
chemical composition and almost the same structure.

RESULTS
We have grown single crystals of 4Hb-TaS2−xSex with x = 0.01, using a 
standard chemical vapor transport method (19). The small amount of 
Se stabilizes the 4Hb structure. Details about the sample preparation 
process and the structure characterization appear in the Supplementary 
Materials.

4Hb-TaS2 was first synthesized by Di Salvo et al. (19). The trans-
port data can be described as a mixture of 1T and 2H, with metallic 
conductivity in the ab plane and semiconducting conductivity along 
the c axis. The in-plane resistivity was shown to be three orders of 
magnitude smaller than the out-of-plane resistivity. This “mixture” 
of 1T and 2H is also visible in the x-ray photoelectron spectroscopy 
spectrum of the Ta 4f core levels, which displays three peaks—two 
from the “1T” layers and one from the “1H” layers (fig. S2) (20).

The electronic dispersion along the -M direction was measured 
using angle-resolved photoemission spectroscopy (ARPES) and is 
presented in Fig. 1D. The main finding is that the band structure of 
the 4Hb-TaS2 is a mixture of the metallic 2H layer and the band 
structure of the 1T shifted toward the Fermi level, leaving no spectral 
gap. This should be compared with the 1T structure where a band-
gap of 0.2 eV was measured and interpreted as a Mott gap (21, 22). 
The parts of the band structure associated with the 1T and the 1H 
layers are marked in the figure.

Two electron pockets, similar to the ones in 2H-TaS2, can be ob-
served surrounding the points ​k = ± 1 / ​A ̊ ​​ together with the shifted 
band structure of 1T-TaS2. The 1T part of the band structure is 
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reconstructed by the well-known ​​√ 
_

 13 ​ × ​√ 
_

 13 ​​ charge density wave 
(CDW).

An ARPES intensity map at the Fermi level is shown in Fig. 1E. 
The intensity map reveals that within the alternate-stacking layered 
crystal, every layer retains its original electronic dispersion. The Fermi 
surface is a mixture of the Fermi surface of 2H-TaS2 with its familiar 
dog-bone–shaped pockets around the M points and the reconstructed 
1T-TaS2 bands contribution around the  point.

Figure 2A shows Ce/T versus T, where Ce is the electronic part of 
the specific heat after the removal of the phonon contribution 
(for details, see the Supplementary Materials). The transition into a 
superconducting state below Tc = 2.7 K is seen both in specific heat 
and resistance measurements (see inset in Fig. 2B), which is substantially  
enhanced compared to bulk 2H-TaS2 (Tc = 0.7 K). The enhancement 
is most likely the result of the 1T layers that create a buffer layer 
between the 1H and 1H′ layers. A similar enhancement was observed 
in 2H-TaS2 samples, where a buffer layer was intercalated (23, 24), 
and in 2D flakes (25, 26).

The heat capacity Ce(T) also exhibits a residual linear-in-T 
contribution observed below Tc (finite intersect in the T → 0 limit 
marked by the dotted line in Fig. 2A). This residual contribution is 
independent of magnetic field and amounts to 15% of the normal-
state heat capacity (dashed line). Furthermore, it has been reproduced 
in samples from different growth batches showing the same magni-
tude, supporting that this residual contribution is an intrinsic effect 
relevant to the physics in 4Hb-TaS2.

After the subtraction of the residual heat capacity, we obtain a 
standard s-wave–like shape that decays exponentially to zero (Fig. 2B). 
The extracted gap  is found to be 0.4 ± 0.05 meV(see the Supple-

mentary Materials for more details), in good agreement with the 
transverse field muon spin rotation (SR) results shown in the Sup-
plementary Materials. Thus far, the picture emerging is that of a 
fully gapped superconductor coexisting with a second phase with a 
constant density of states, at least down to an energy resolution 
equivalent to 300 mK.

In the inset of Fig. 2C, we show the critical field, Hc2, as a function 
of the angle , between the applied field and the ab plane ( = 0 
denotes field aligned in the plane), measured at T = 30 mK. The 
magneto-resistance exhibits strong anisotropy, with ​​H​c2​ ∥ ​ / ​H​c2​ ⊥ ​  >  17​. 
The angular dependence of Hc2, plotted in the inset, is consistent 
with the predictions of a highly anisotropic Ginzburg-Landau theory 
(see the Supplementary Materials), reflecting the quasi-2D nature 
of superconductivity in 4Hb-TaS2.

We also note that a naïve calculation of the Clogston-Chandrasekhar 
limit using the estimated minimal gap from the exponential decay 
of the specific heat (see the Supplementary Materials) ​​​0​ 

min​  =  0.36​ meV, 
yields a paramagnetic limit of Hp = 5 T, much smaller than the ob-
served ​​H​c2​ ∥ ​​. Moreover, because of strong Ising spin-orbit coupling, 
we anticipate the critical Zeeman field to greatly exceed this value (27).

A

B

C

H

H

H

H

T (K)

T (K)

T (K)
C

C
T

(º)

Fig. 2. Specific heat and transport measurements. (A) The electronic contribution 
to the heat capacity divided by the temperature Ce/T is plotted as function of T. The 
dashed line represents the total electronic specific heat in the normal state, and the 
dotted line is a residual linear contribution coming from the 1T layers (see the main text 
for details). (B) The electronic-specific heat after the removal of the 1T contribution 
displaying a BCS-type behavior with  = 0.4 meV. Inset: Resistance versus tempera-
ture shows enhanced Tc. (C) Hc2 as a function of temperature for in-plane (red circles) 
and out-of-plane (blue triangles) field orientations. For better visibility, ​​H​c2​ ⊥ ​​ is multi-
plied by 10. Inset: The angular dependence of Hc2 showing strong anisotropy.
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Fig. 1. Structure of 4Hb-TaS2. (A) 3D schematic drawing of a unit cell of 4Hb-TaS2 
showing the alternate stacking of octahedral (T) and trigonal prismatic (H) layers. 
Top views of 1H and 1T layers are shown in (B) and (C), respectively. The top view 
of the 1H layer displays the in-plane broken mirror symmetry. (D) An ARPES detector 
image obtained at T = 15 K using 72 eV of photon energy reveals the electronic 
band structure along the -M direction. (E) A Fermi surface mapping under the same 
conditions. The band structure is a combination of 2H-TaS2 and CDW reconstructed 
1T-TaS2, which was rigidly shifted toward the Fermi level [horizontal white dashed 
line in (D)]. The dashed line represents the 2H-TaS2 Fermi surface.
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The quasi-2D picture is further supported by the temperature 
dependence of ​​H​c2​ ∥ ​​ shown in Fig. 2C. We observe an unusual linear 
dependence of the in-plane critical field through the entire tem-
perature range. Similar behavior has been reported in Bi2Se3 under 
pressure (28), where it was interpreted as a result of a polar p-wave 
state, and also in KOs2O6, where it was ascribed to a multiband effect 
(29). We note that the Zeeman-limited Hc2 typically results in a 
nonlinear temperature dependence, and thus, we argue that even 
the in-plane field is most likely orbitally limited.

To extract coherence lengths from the orbital limited fields, we 
use the highly anisotropic Ginzburg-Landau theory. The in-plane 
coherence length is found from the perpendicular critical field 
(see Fig. 2C) ​​​ ab​​  = ​ √ 

_
 ​  ​​ 0​​ _ 

2 ​H​c​ 
⊥​
​ ​  =  186 ​A ̊ ​​, and using ​​H​c2​ ∥ ​  = ​   ​​ 0​​ _ ​​ ab​​ ​​ c​​

​​, we find 

the out-of-plane coherence length to be ​​​ c​​  =  9.8 ​A ̊ ​​. This length is 
comparable to the interlayer spacing of 1H layers. We can therefore 
conclude that 4Hb-TaS2 is a stack of weakly coupled 2D super-
conductors with weak orbital out-of-plane tunneling currents.

We now turn to the main result of our work: evidence of TRS 
breaking in the superconducting state seen in a SR measurement. 
In the absence of a magnetic order, the muon depolarization is a 
result of the randomly oriented static nuclear dipole moments and 
is described by the static Gaussian Kubo-Toyabe function (30)

	​​​ G​ z​​(t ) = ​ 1 ─ 3 ​ + ​ 2 ─ 3 ​​(​​1 − ​σ​​ 2​ ​t​​ 2​​)​​exp​(​​ − ​ 1 ─ 2 ​ ​σ​​ 2​ ​t​​ 2​​)​​​​	 (1)

where / is the local field distribution width, and  is the muon 
gyromagnetic ratio. The nuclear field distribution is temperature 
independent.

In Fig. 3, we show the temperature dependence of the muon 
depolarization rate in the absence of a magnetic field. We find an 
abrupt increase of the rate at T = Tc. This is a clear indication of a 
spontaneous appearance of magnetic moments in the sample due to 
the superconducting state. In the inset of Fig. 3, we present two 
representative Zero Field muon spin resonance spectra, above and 
below Tc (at 6 and 0.05 K, respectively). On the basis of the increase 
in  , we estimate the width of the randomly oriented magnetic field 
in the sample to be ~0.12 G.

Theoretical interpretation
With the onset of TRS breaking coinciding with the superconducting 
Tc, it is natural to assume an origin intrinsic to the superconducting 
phase for this TRS breaking. This leads to chiral superconductivity 
as a compelling explanation of TRS breaking: In such a state, mag-
netic moments are expected to appear due to local variations in the 
chiral order parameter resulting, for example, from edges or defects 
in the sample (4). Such a state is allowed by the hexagonal point 
group symmetry of 4Hb-TaS2 as we discuss below. While there are 
other scenarios that can account for signatures of TRS breaking 
within a superconducting phase, notably, combinations of nearly 
degenerate symmetry-distinct order parameters or frustrated inter-
band Cooper-pair scattering, these generically happen not at Tc but at 
a distinctly lower temperature (9). Thus, the most probable picture 
emerging from the data is that of a quasi-2D fully gapped chiral 
superconductor.

In the following, we discuss topological properties of such a chiral 
state. The weak interlayer coupling discussed above motivates us to 
study the superconducting state on isolated 1H layers with point 
group symmetry D3h. With TRS present in the normal state, chiral 
superconductivity requires a multicomponent gap function. Within 
the relevant symmetry group, there is only one such representation 
(31), which allows us to pinpoint the gap function

	​​ Δ​ E​​(k ) = ​Δ​ 0​​ [ (1 − α ) ​e​ k​​ ​σ​​ 0​ + α ​ο​k​ * ​ ​σ​​ z​ ] i ​σ​​ y​​	 (2)

where ​​e​ k​​  = ​ ∑ j=1​ 3 ​​ ​ ​​ j​ cos(k ⋅ ​T​ j​​)​ and ​​ο​ k​​  = ​ ∑ j=1​ 3 ​​ ​ ​​ j​ sin(k ⋅ ​T​ j​​)​ are the 
d-wave and p-wave basis functions in the D3h point group. Here, we 
have chosen only one chirality, in other words, only Cooper pairs with 
positive orbital angular momentum, while their negative counterparts 
are given by complex conjugation. The vectors ±Tj point to the six 
nearest neighbors on the triangular Ta lattice,  = exp (2i/3), and 
 is a non-universal weight, which quantifies the mixing of the 
d-wave and p-wave components that is allowed by the lack of an 
inversion center in the plane. Last, 0 and i denote the identity and 
Pauli matrices. Note that because of the alternate stacking of the 1H 
layers, the relative phase of the order parameters in Eq. 2 changes 
from layer to layer (31).

Chiral superconductivity belongs to symmetry class D in the 
10-fold way (32), which allows us to classify isolated 1H layers using 
a Chern number. Using a tight-binding model for TaS2 including 
up to the third-nearest-neighbor hopping (27, 33), we compute the 
Chern number within a BdG Hamiltonian as a function of , allow-
ing us to interpolate between the pure d + id- and p + ip-wave pair-
ing channels. The phase of the superconducting order parameter in 
Eq. 2 is presented in Fig. 4 (A and B) for the extreme cases  = 0 
(purely d-wave) and  = 1 (purely p-wave), respectively. We find 
that the Chern number vanishes in the limit of  = 0, i.e., ∁ = 0, 
because the inner and outer Fermi surfaces cancel each other. On 
the other hand, the Chern density is cooperative in the limit  = 1, 
where we obtain ∁ = −6. The interpolation between these two 
points is plotted in Fig. 4C. Note that the data points were computed 
numerically (not rounded to an integer) using the full BdG band 
structure with a mesh grid of 9.5 × 104 equally spaced points. Over-
all, we find that the Chern number of the Chiral state is highly sen-
sitive to the mixing ratio  (34). A challenging experimental goal is 
thus to measure a quantized thermal Hall conductance in this 
system.

Fig. 3. TRS breaking. A sudden increase in the zero-field muon spin relaxation rate 
 is observed at Tc (marked by the vertical line), marking the onset of TRS breaking. 
The dotted line is a guide to the eye. The inset shows two ZF-SR spectra at different 
temperatures, above and below Tc. The black lines are best fits to Eq. 1.
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DISCUSSION
We first address the question of the residual linear heat capacity 
observed below Tc (Fig. 2A). The scenario of macroscopic phase 
separation, where portions of the sample remain metallic, can be 
ruled out by the Transverse field muon spin rotation data. The 
TF-SR measurements were performed in field cooling conditions, 
and we found 100% superconducting volume fraction at base tem-
perature. Furthermore, we found only small sample-to-sample variation 
in the magnitude of this residual term.

A possible scenario is that the proximity gap induced in 1T layers 
is much smaller than the gap in the 1H and 1H′ layers, thus a tem-
perature lower than our base temperature of 300 mK will be needed 
to suppress the contribution of the 1T layers to the specific heat. 
This is a plausible explanation given the large Fermi surface mis-
match shown in Fig. 1E, which naturally leads to a weak proximity 
effect.

Another possible explanation for the linear heat capacity is a 
spin-glass state (35), forming at the 1T layers. The x-ray analysis 
indicates highly clean crystal structure and, therefore, any mechanism 
leading to such a state must be intrinsic (e.g., frustrated interactions). 
However, this state seems unlikely given that the time dependence 
of the SR signal does not fit the classic glass behavior (36, 37). 
Moreover, the magnitude of the residual is independent of field, 
and lastly, no spin-glass behavior in the susceptibility has been 
observed in earlier studies (23).

A more exotic scenario is that this contribution is coming from 
a neutral Fermi surface coexisting with the superconducting state. 
A gapless spin-liquid state has been proposed for the 1T polytype of 
TaS2 (16, 17).

We now turn to the microscopic origin of the possible chiral 
superconductivity. Phonon-mediated interactions typically favor 
s-wave pairing (38). In such a case, unconventional pairing is expected 
only if strong local repulsion, which reduces the attraction in the 
s-wave channel, is present. On the other hand, an attractive interac-
tion mediated by spin fluctuations naturally prefers non–s-wave 
superconductivity and, in particular, chiral symmetry when the 
Fermi surface encloses the  point as given here (see Fig. 1E). From 
this perspective, it is interesting to understand whether the proximity 
between the superconductor in the 1H layers and the Mott insulating 
state in the 1T layers is an essential ingredient. Our ARPES data in 
Fig. 1E suggest the possibility that the Mott insulator is lightly doped 
due to the stacking structure, resulting in strong spin fluctuations. 
Electronic pairing mediated by spin fluctuations in a quantum spin 
ice has been studied in (39) for the case of a rotationally symmetric 
Fermi surface. There, the authors found that the strongest pairing 
channel is odd-parity with the possibility of a multicomponent order 
parameter, consistent with the chiral superconductor proposed here. 
The results presented here, thus, raise a host of theoretical questions 
regarding the interaction between superconductivity, charged, and 
neutral itinerant fermionic excitations, which invite further study.

To summarize, we have investigated 4Hb-TaS2 and found signs of 
TRS breaking in the form of an abrupt rise in the muon relaxation 
rate upon cooling below the superconducting transition temperature. 
Given the hexagonal symmetry and the Fermi surface topology, 
these findings suggest that 4Hb-TaS2 is a chiral superconductor. We 
further show that the unique structure of 4Hb-TaS2 consisting of 
stacked, weakly coupled layers of 1H-TaS2 and 1T-TaS2 results in a 
band structure, which combines the properties of both constituents: 
a 2D superconductor (1H) and a doped Mott insulator proposed to be 
a gapless spin liquid (1T). Both constituents show clear signatures 
both in ARPES and in the low-temperature specific heat. Its rela-
tively high superconducting Tc ≃ 2.7 K, the quasi-2D structure, and 
the ability to grow very large and clean single crystals make this 
material a promising platform for future study and applications. 
Furthermore, it opens new directions in the study of topological 
superconductivity using van der Waals heterostructures.

MATERIALS AND METHODS
High-quality single crystals of 4Hb-TaS2 were prepared using the 
chemical vapor transport method. The appropriate amounts of Ta 
and S were ground and mixed with a small amount of Se (1% of the 
S amount). The powder was sealed in a Quartz ampoule, and a small 
amount of iodine was added as a transport agent. The ampoule was 
placed in a three-zone furnace such that the powder is in the hot 
zone. After 30 days, single crystals with a typical size of 5 mm × 
5 mm × 0.1 mm grew in the cold zone of the furnace.

High-resolution ARPES measurements were performed at the 
I05 beamline at Diamond (Didcot, UK) and at the SIS Beamline at 
the SLS (Villigen, Switzerland) using a photon energy of 72 eV. The 
samples were cleaved in vacuum better than 5 × 10−11 torr at base 
temperature and measured for not more than 6 hours. The samples 
were measured at a temperature of 10 K. The energy resolution was 
6 meV in both beamlines.

Both zero-field and transverse-field SR measurements were 
performed at the DOLLY beamline at PSI (Villigen, Switzerland) 
over a temperature range from 7 K down to 300 mK. The transverse-
field measurements were performed using a 145-G field.

Fig. 4. Superconducting order parameter. (A) and (B) show the phase of the gap 
functions ek and οk, respectively, superimposed on the Fermi surface of 1H-TaS2. 
(C) The corresponding Chern number as a function of the mixing parameter  
appearing in Eq. 2. Note that the values presented here were computed numerically 
and are not rounded to an integer.
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Heat capacity measurements at various fields were performed 
using Quantum Design PPMS He3 probe. The addenda was mea-
sured in all fields and temperatures to ensure proper background 
subtraction.

Transport properties were measured using standard lock-in 
technique in a dilution refrigerator equipped with an 18-T magnet 
and a rotator probe at the Tallahassee National Laboratory. For the 
higher temperature range, a He3 probe in a PPMS was used.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/13/eaax9480/DC1
Section S1. Crystal growth and characterization
Section S2. Electrical transport and magnetization measurements
Section S3. Heat capacity measurements
Section S4. Muon spin rotation measurements
Section S5. Gap structure
Fig. S1. X-ray diffraction of 4Hb-TaS2 single crystals.
Fig. S2. XPS spectrum of 4Hb-TaS2.
Fig. S3. Transport measurements.
Fig. S4. Heat capacity measurements.
Fig. S5. Muon spin relaxation results.
Fig. S6. Tight-binding band structure.
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