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Abstract
We present results on the in-field critical current (Ic) performance of 4.0 µm thick REBCO film
with 15% Hf addition with fields up to 31.2 T and field orientations in the B∥ab plane and B∥c
axis. Unlike the behavior at B∥c, the critical current at B∥ab is only very weakly dependent on
field, decreasing from self-field to 31.2 T by only 22%, i.e. from the self-field value
of ∼7700 A/4 mm width to ∼6300 and 5812 A/4 mm width at 14 and 30 T, respectively. These
values are remarkably 3 and 5.7x higher than the corresponding critical currents at B∥c. The
in-field behavior of the present 15% Hf sample at field orientation B∥c axis is nearly identical to
the previously reported record values found in 4.3 and 4.6 µm thick 15% Zr samples in terms of
critical current density. In contrast to the pinning force behavior in the B∥c orientation, which
saturates to a constant value of 1.7 TN m−3 above ∼5–6 T, the pinning force in the B∥ab
orientation increases near-linearly, reaching a remarkable value of over 11.5 TN m−3 at 31.2 T.
These results demonstrate the potential of thick REBCO conductors at 4.2 K for high field and
energy density applications, in particular where the magnetic field is contained near the
ab-plane.

Keywords: — High temperature superconductors, MOCVD, superconducting films, flux
pinning, critical current

(Some figures may appear in colour only in the online journal)

1. Introduction

With continuous progress in the development of REBCO
coated conductors, they have become increasingly attractive
for low temperature (4.2–20 K) and intermediate to very high

field applications, due to their high current density and the
ability to operate at much higher fields compared to LTS con-
ductors, opening possibilities for attaining very high mag-
netic fields and/or high magnetic energy density. Recently,
an exciting fusion reactor project has been announced that
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Figure 1. Critical current vs. magnetic field at 4.2 K for field orientations B∥ab and B∥c for the present 15% Hf-containing GdYBCO tape
and Ic(B∥c) of the previously reported 15% Zr containing GdYBCO tape [16]. The dashed lines are log-linear fit to the data above 9 T, with
alpha value of 1.02.

would provide a net energy gain with a footprint of just a frac-
tion of the ITER reactor, where the enabling technology is the
REBCO conductor producing a field of 12 T (maximum field
at conductor 21 T) at 20 K [1]. One can foresee the poten-
tial for significant further performance increase by increasing
the critical current of the conductor and/or lowering the oper-
ating temperature towards 4.2 K. Other examples include the
record 42.5 T magnet with a 13.5 T REBCO coil insert oper-
ating at 4.2 K, all-HTS magnet demonstrations and/or designs
with fields of 25–32 T, a conceptual study of a steady state
100 T HTS magnet, various SMES devices operating at tem-
peratures of 4.2–20 K, MRI coils and superconducting motors
and generators [2–15].

Significant progress in understanding and overcoming
obstacles to growing thick REBCO films with high current
densities has been made in recent years [16–32]. Additionally,
the understanding and control of the parameters influencing
the effectiveness of artificial pinning centers (APC) in increas-
ing in-field critical currents has significantly progressed from
both fundamental and processing aspects [16–18, 20, 33–61].
Among the most studied systems are BaZrO3 (BZO) and
BaHfO3 (BHO), with varying reports regarding whether either
of the two systems has any clear advantage over the other.

We have recently reported the performance of 4+ µm thick
REBCO films at 20–40 K and 4.2 K [16, 17]. The engineer-
ing current density (Je) of the conductor at 4.2 K, 14 T at
the ‘worst’ orientation B∥c axis was measured at 5 kA mm−2

which constitutes an over five-fold increase over Nb3Sn. How-
ever, the remaining unanswered question on the performance
of these thick films is their performance at B∥ab. For toroid-
based designs (fusion tokamak, SMES), this field orientation
is the most relevant, as the field is concentrated near the ab
plane direction. In this letter, we report on both B∥ab and B∥c
performance of a 4.0 µm thick film REBCO tape with 15%
Hf addition at 4.2 K and fields up to 31.2 T. The main object-
ives are: 1.) to compare the optimized BHO sample to the per-
formance of the previously reported optimized BZO sample at
B∥c where nanorods are effective pinning centers, and 2.) to
compare the performance of the same tape in the B∥ab plane
relative to B∥c.

2. Experimental

A (GdY)-Ba-Cu-O (GdY)BCO film containing 15% Hf was
deposited using the advanced MOCVD (A-MOCVD) system
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Figure 2. Pinning force vs. magnetic field at 4.2 K for field orientations B∥ab and B∥c for the present 15% Hf-containing GdYBCO tape
and Fp(B∥c) of the previously reported 15% Zr-containing GdYBCO tape [16].

[16–19], under deposition conditions described in [16]. The
film was deposited on LaMnO3 capped Hastelloy C276 tapes
12 mm wide over a deposition length of 30 cm. A micro-
bridge with dimensions 80 × 500 µm was made using a
focused ion beam (FIB) in order to enable measurement of
very high currents at B∥ab. In addition to the small size of the
bridge that enabled measuring currents within the limits of
the experimental setup, the FIB bridge also offers the advant-
age over etched bridges of the capability to sustain higher
currents without delamination. The critical currents at B∥ab
and B∥c orientations were measured on the same sample, as
the FIB bridge survived measurements down to 0 T (self-
field). The 2D-XRD measurements were performed in a new
state-of-the-art facility at the University of Houston utiliz-
ing a microfocus source, Goebel mirror, 0.5 mm collimator
and a high-resolution Vantec 500 detector. Transmission elec-
tron microscopy (TEM) was performed on a JEOL 2000FX
microscope.

3. Results and discussion

Figure 1 shows the critical current at 4.2 K of the meas-
ured 15%Hf-containing GdYBCO sample at both orientations

B∥ab and B∥c. For convenience, the previously-reported data
on the 15% Zr samples at field orientation B∥c are also super-
imposed on the graph. Two remarkable observations can be
made from the data:

(a) The critical current at B∥ab reaches 6300 A/4 mm-width
at 14 T and 5812 A/4 mm-width at 30 T. These extraordin-
arily high values are 3 and 5.7x higher than the values
obtained from the same sample at B∥c with the same fields
(2114 and 1013 A/4 mm, respectively).

(b) The critical current of the 15% Hf sample at B∥c is nearly
identical or practically identical to the previously repor-
ted 15% Zr samples, as well as the alpha value of 1.02
(J ∼ B−α).

The corresponding critical current density values (Jc) at
B∥ab are 40.5 and 36.3 MA cm−2 at 14 and 30 T, respectively.
In order to obtain an estimate of engineering current density,
we use the same values as for the Zr sample [16] of 50µm thick
Hastelloy, 200 nm buffer, 40 µm Cu stabilizer and 3 µm thick
silver, which leads to Je values of 16.2 and 14.9 kA mm−2 at
B∥ab, 14 and 30 T, respectively. Compared to Je ∼1 kAmm−2

of Nb3Sn at 15 T [62], the performance is higher by a factor of
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Figure 3. 2D-XRD diffraction pattern of the 4.0 µm thick GdYBCO film with 15% Hf addition. The pattern reveals sharp out of plane
texture of GdYBCO, strong BZO (101) and (002) peaks, as well as absence of REO (004) and (222) peaks or any other secondary phase,
including a-axis oriented GdYBCO grains.

over 16 times. The corresponding values for B∥c are 5.4 and
2.6 kA mm−2 at 14 and 30 T.

Measurements of critical current of REBCO at 4.2 K, B∥ab
are relatively scarce (e.g. [55, 63],). The measurements on
REBCO tapes from four commercial manufacturers at 12 and
14 T indicate about six-fold anisotropy of Jc between B∥ab
and B∥c [63, 64]. From the measurements provided on a high
Je REBCO tape reported in [55, 62], we estimate Je at B∥ab
and B∥c of 3.42 and 0.53 kA mm−2 at 15 T and 2.72 and
0.33 kA mm−2 at 30 T, respectively. This constitutes Jc aniso-
tropy of 6.5 at 15 T and 8.3 at 30 T. Regarding the Je values
at B∥ab, the present data are higher by 4.7 and 5.5x at 15 and
30 T, respectively.

Figure 2 shows the pinning force for the same samples—
the present 15% Hf-added GdYBCO at B∥ab and B∥c, as
well as the previously reported 15% Zr-added GdYBCO at
B∥c. The pinning force in the B∥c direction reaches a satur-
ation point at ∼5-6 T, identical for both Hf and Zr contain-
ing samples, after which it is constant up to 31.2 T at a level
of 1.7 TN mm−2. Remarkably, unlike the B∥c direction, the
pinning force in the B∥ab direction near-linearly increases,
reaching near 6 TN m−3 at 15 T and exceeding 10 TN m−3

at 30 T. The shape of the curve indicates no signs of satura-
tion of Fp at fields immediately above 31.2 T, where it reaches
11.5 TN m−3.

The magnitudes of the pinning force found in the present
sample have strong implications in terms of opportunities that
these results present for applications. For applications where
field magnitude is of primary interest, the induced magnetic
field B is directly proportional to Ic and the number of turns
per unit length, n, B ∼knI, where k is a geometric constant

dependent on the shape of the device. For a device operating
at B∥ab, this would constitute an 8–12 fold increase in peak
magnitude for the same amount of tape, or alternatively, a 8–12
fold reduction of the amount of tape needed for the same field.
However, for applications where magnetic energy density is
of primary concern, E ∼ B2 = knBI = knFp, therefore dir-
ectly linearly proportional to the pinning force. This suggests
that the magnetic energy density can be drastically increased
by operating the device at 4.2 K and with very high fields,
e.g. 30 T. On the other hand, for B∥c, Fp is constant above
5–6 T, indicating that for energy density, there are no benefits
to operating at fields higher than this saturation point. The cal-
culated maximum compressive stress during the measurement
at B∥ab, 30 T was ∼40 MPa, which the sample survived, as
the measurements were completed in the sequence 15–31.2 T,
followed by 31.2–0 T. The Ic values of repeated measurements
between 15–31.2 T were near identical.

Figure 3 shows the 2D-XRD scan of the present Hf-
containing sample, revealing sharp texture akin to that of the
previously reported Zr sample [16], with no signs of unwanted
secondary phases other than the BaHfO3. The sample is purely
c-axis oriented, with no trace of a-axis oriented grains, as also
confirmed by scanning electron microscopy (SEM). One not-
able difference compared to the Zr-containing sample [16] is
a complete lack of any of the rare earth oxide (RE2O3—REO)
peaks in the present Hf sample, as can be seen by comparing
the strong 004 and 222 REO peaks reported in [16] compared
to the present sample. The fact that the Hf and Zr samples show
near-identical B∥c performance, despite a large difference in
REO signal intensity, suggests that REO precipitates play no
significant role in B∥c pinning at 4.2 K. Further, by comparing
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Figure 4. Cross-section and plane-view TEM micrographs of the 4.0 µm thick, 15% Hf-containing GdYBCO sample. The microstructure
reveals continuous BaHfO3 nanorods aligned along c-axis, and almost complete absence of RE2O3 precipitates. The average nanorod
spacing and diameter are 18 and 5.4 nm, respectively.
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the 101 BZO peaks, there are no obvious differences between
the current Hf and the previously reported Zr samples.

Figure 4 shows a cross-section TEM micrograph of the
present Hf sample. The average BHO nanorod diameter is
5.4 nm, which is larger than the 3.7 nm diameter found in
the Zr sample [16]. On the other hand, the average spacing
between nanorods has been estimated to be 18 nm, which is
near-identical to the 19 nm average spacing found in the 15%
Zr sample. The 18 nm spacing corresponds to a matching field
of∼6.4 T, which agrees well with the observed saturation field
for the pinning force shown in figure 2. Regarding the REO
precipitates, unlike the previously reported Zr sample and in
accordance with the 2D-XRD results, there are no observable
REO precipitates in the shown micrograph. We did observe
some REO precipitates in this sample by TEM, but they have
been found to be scarce compared to the TEM observations
for the Zr sample [16].

4. Summary

An optimized REBCO sample with 15% mol. Hf addition and
4.0 µm thickness was produced using A-MOCVD and meas-
ured for Ic performance at 4.2 K both in B∥ab and B∥c orient-
ations up to a maximum field of 31.2 T. The critical current at
B∥ab reached remarkable values of 6300 and 5812 A/4 mm-
width at 14 and 30 T, respectively, which are 3 and 5.7 times
higher than the corresponding measured Ic(B∥c) values of
2114 and 1013 A/4 mm, respectively. The corresponding crit-
ical current density values are 40.5 and 36.3 MA cm−2 at
14 and 30 T, respectively. The critical current density of the
present 15% Hf sample in the B∥c field orientation has been
found to be near-identical to the values of the previously repor-
ted 4.3 and 4.6 µm thick REBCO films with 15% Zr addition
[16]. The engineering current density performance at B∥ab,
15 T is over 16 times higher than that of Nb3Sn. The pinning
force at the B∥ab orientation exceeds 10 TN m−3 above 30 T,
reaching 11.5 TN m−3 at 31.2 T.
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