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CeRhIn5 is a Kondo-lattice prototype in which a magnetic field B∗ ' 30 T induces an abrupt
Fermi-surface (FS) reconstruction1,2 and pronounced in-plane electrical transport anisotropy3 all
within its antiferromagnetic state. Though the antiferromagnetic order at zero field is well-
understood, the origin of an emergent state at B∗ remains unknown due to challenges inherent
to probing states microscopically at high fields. Here, we report low-temperature Nuclear Magnetic
Resonance (NMR) measurements revealing a discontinuous decrease in the 115In formal Knight shift,
without changes in crystal or magnetic structures, of CeRhIn5 at fields spanning B∗. We discuss
the emergent state above B∗ in terms of a change in Ce’s 4f orbitals that arises from field-induced
evolution of crystal-electric field (CEF) energy levels. This change in orbital character enhances hy-
bridisation between the 4f and the conduction electrons (c.e.) that leads ultimately to an itinerant
quantum-critical point at Bc0 ' 50 T.

Development of the peculiar electronic state above B∗

in CeRhIn5 is signaled clearly in quantum oscillations,1

magnetoresistance,1,2 magnetostriction4 but not in spe-
cific heat.5 The lack of a detectable specific heat anomaly
suggests that B∗ may not reflect a well-defined phase
transition but a crossover from one state to another4

where not only the Fermi surface reconstructs from small-
to-large1 but also in-plane anisotropy develops in electri-
cal resistivity.3 Qualitatively, these responses could be
consistent with a field-induced change in crystal and or
magnetic structure from below to above B∗ – a distinctly
plausible interpretation that could be tested straightfor-
wardly by a diffraction measurement if B∗ were suffi-
ciently low to be accessible in neutron or x-ray exper-
iments. Even if such measurements could be made at
fields to 30 T and higher, experiments point to a more
complex picture, with similarities to other correlated
electron systems. Electrical resistivity studies reveal a
hysteretic transition at B∗ that was interpreted intially
to reflect the formation of a density wave, analogous to
that found in correlated copper-oxide materials.2 More
recent studies are even more surprising:3 when an ap-
plied field is tipped about 200 from the tetragonal c-axis
toward in-plane perpendicular directions, there is a strik-
ing inequivalence of electrical resistivity for current flow
along each pair of orthogonal crystallographic directions.
This unexpected in-plane symmetry breaking is consis-
tent with a proposed strong XY nematic susceptibility
that is similar to but distinct from Ising-nematicity that
is found in high-Tc copper oxide,6,7 iron-pnictide8,9 and
correlated ruthenate materials.10

Evidence for all the changes in electronic properties
at B∗ and their weak coupling to the crystal lattice3,4

appears only within the magnetically ordered state of
CeRhIn5. In this limit, partially Kondo-compensated Ce
moments order below TN = 3.8 K in a spin-spiral struc-
ture with ordering wave-vector Q = (0.5, 0.5, 0.297) and

moments in the tetragonal plane.11 This structure, how-
ever, is unstable against modest applied pressure12 or in-
plane applied magnetic field.11,13,14 The near degeneracy
of accessible orders in CeRhIn5 supports the possibility
that a field of 30 T could change the nature of magnetism
at B∗, but with little change in entropy or susceptibility.
What might underlie the emergence of the new electronic
state above B∗ and a change in magnetic character, if
this indeed happens, are fundamental questions raised
by recent discoveries in CeRhIn5 and are relevant more
broadly to the physics of a Kondo lattice.

With its sensitivity to local spin, charge and lattice
degrees of freedom,15,16 NMR is a powerful tool to probe
the evolution of complex electronic states in correlated
electron materials at very high magnetic fields.17–19 Fig-
ure 1 presents the 115In NMR spectra (I = 9/2) from
two inequivalent sites of our CeRhIn5 single crystal with
B applied along the c-axis at 0.5 K below TN(B). Each
Ce atom is surrounded by four tetragonally coordinated
In(1) and eight In(2) atoms with local orthorhombic sym-
metry (Fig. 1d and Supplemental Material). At low fields
(Fig. 1a), there are 9 equally-separated transitions asso-
ciated with In(1) NMR. In contrast, the lower relative
intensities of the In(2) NMR signal are a consequence
of spectral broadening due to a distribution of internal
fields arising from an oscillating hyperfine (internal) field

B
‖c
int(2) associated with c-axis incommensuration of the

spin-spiral magnetic structure20,21 (see Figure 1d and
Supplemental Material).

At low-fields and well below TN, a hyperfine field of
B⊥cint(1) = 0.17 T lies in the Ce-In(1) (ab-) plane and
rotates between the adjacent layers with the incommen-
surate pitch of the magnetic structure shown in Fig.
1d.20,21 At higher fields with B applied along the c-axis,
B⊥cint(1) can be neglected (B � B⊥cint(1)). The magnetic
field along the c-axis induces a canting of the Ce local
moment13 (Figure 1d) leading to extra internal fields
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FIG. 1: High field 115In NMR spectra for distinct regions of the B along-c versus T phase diagram of CeRhIn5. a, b and c
are In(1) and In(2) NMR spectra at 0.5 K for excitation frequencies 48.5 MHz, 290.65 MHz and 393.6 MHz respectively. The
shaded magenta areas are simulations for the In(1) equidistant transitions, and the green area indicates a simulation for the
incommensurate In(2) pattern (see Supplemental Material). The solid gray curve is the overall In-NMR simulated spectrum
that includes both contributions. The non-hashed and hashed areas indicate the formal Knight shifts of In(1) and In(2) below
(K′S(1) = 7.4(1)%, K′S(2) = 1.5(2)%) and above (K′L(1) = 5.2(1)%, K′L(2) = 1.1(2)%) the crossover at B∗ ∼ 30.8 T. The
crossover field is indicated by a vertical orange dashed strip in b). Light gray symbols are data. The vertical gray and black
arrows indicate the expected In(1) transitions for formal Knight shifts K′S(1) = 7.4% and K′L(1) = 5.2%, respectively. The solid
and dashed arrows indicate whether In(1) transitions were observed (solid) or not (dashed). The difference between gray and
black arrows indicates a change in the shift ∆K′(1) for fields above B∗ ∼ 30 T, but the line-shape and width of the transitions
remain similar across B∗. Although smaller, there also is a change in K′(2) as well, which follows the same trend as K′(1) and
is discussed in the text. To assure confidence in these measurements in the AFS and AFL phases, we measured a spectrum
at 290.65 MHz while sweeping the field up and at 393.6 MHz in a down-field sweep. Results were reproducible. An Al-NMR
signal (not shown) was used as a field marker. The probe used to acquire the 48.5 MHz spectrum shows extrinsic NMR signals
from 207Pb and/or 209Bi present in the solder and coaxial cable in the NMR circuit visible at 0.5 K, B ∼ 6.8 T and 7.5 T.
d CeRhIn5 crystallographic structure. The Ce, Rh, In(1) and In(2) sites are indicated in dark blue, yellow, red and green,
respectively. In the left figure, we also show the magnetic structure (black arrows at the Ce site) for zero field and, in the
right figure, how the magnetic structure evolves to a conical configuration by applying a magnetic field along the c-axis. The
respective hyperfine (internal) fields for In(1) and In(2) sites are indicated by red and green arrows, respectively. The field
induced hyperfine (internal) field at In(1) and In(2) sites are indicated by gray arrows in the right figure.

B
‖c
int(1) and B

‖c
int(2) at both In(1) and In(2) sites, respec-

tively. Therefore the local field at In(1) can be modeled
as:

Blocal(1) '
[
1 +K‖cc.e.(1)

]
B +B

‖c
int(1) (1)

For the Kondo-lattice CeRhIn5, the first term in Eq. (1)
is associated with a contribution from itinerant quasipar-
ticles and the second term with the internal field at In(1)

due to the out-of-plane Ce-moment component. This

internal field component B
‖c
int(1) = A

‖c
ordµCe cos(β/2),

where A
‖c
ord is the diagonal c-component of the hyper-

fine coupling tensor from the ordered local moments and
β is the angle of the conical spin structure (see Fig. 1d).
This term is proportional to B due to the Zeeman in-
teraction. Therefore, the local internal field Blocal(1) at
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In(1) sites is:

Blocal(1) = [1 +K ′(1)]B, (2)

with K ′(1) defining the formal In(1) Knight shift that
bears contributions from both local and itinerant spin
susceptibilities. In the case of In(2), the hyperfine field
resulting from the in-plane ordered Ce moments follows
the oscillatory non-commensurate character of the mag-

netic structure, B
‖c
int,0(2) = Bi0 cos(2πQzz) (Fig 1d).

The out-of-plane contribution of the Ce moments for the
hyperfine field at the In(2) site lies in the c-direction22–24

and is also proportional to the external field due to the
Zeeman interaction. Therefore the local field at an In(2)
site can be defined in terms of a formal Knight shift,
K ′(2):

Blocal(2) = [1 +K ′(2)]B +B
‖c
int,0(2) (3)

As indicated by solid vertical (gray) arrows in Figs.
1a and 1b, below B∗ ∼ 30.8 T the position of In(1)
transitions can be calculated (see Supplemental Mate-
rial) assuming a formal Knight shift K ′S(1) = 7.4(1)%
and quadrupolar frequency νQ = 6.77(1) MHz.

The subscript S stands for the magnetic phase AFS,
B ≤ B∗, with a small FS and, as introduced later, L
for AFL, B > B∗, with a large FS. The formal Knight
shift bears contributions from both local and itinerant
spin susceptibilities. The value of K ′S(1) is consistent

with the paramagnetic value25 of K
‖c
PM(1) ' 8.0%. The

spectrum from In(2) in the AFM phase can be calculated
similarly by assuming a periodically oscillating internal

fieldB
‖c
int,0(2) = 0.27 T along the c-axis,21 with nearly the

same low-field quadrupolar parameters20,26 and a formal
Knight shift K ′S(2) = 1.5(1)%. Taking these parameters
into account, we calculate the 115In NMR spectrum that
is given by red and green colours for contributions from
In(1) and In(2), respectively. The gray solid curve is the
simulated (convoluted) overall 115In NMR spectrum from
both In signals.

The simulated spectra in Fig. 1b are made on the ba-
sis of low-field NMR parameters20,26 that account well for
spectra in Fig. 1a and agree with experiment for fields up
to 30.8 T where some deviation from simulation and ex-
perimental results begins just where the new AFL phase
sets in. However, above B∗ ' 30.8 T, the spectra are
well simulated by keeping all low-field nuclear quadrupo-
lar parameters but with an abrupt decrease of both In(1)
and In(2) formal shifts from K ′S(1) = 7.4(1)% to K ′L(1)
= 5.1(1)% and K ′S(2) = 1.5(1)% to K ′L(2) = 1.1(2)%, re-
spectively, indicating absence of a detectable local struc-
tural distortion at B∗. The simulation remains compa-
rably good at fields well above B∗ (Fig. 1c). The larger
∆K ′(1) compared to ∆K ′(2) is consistent with the larger
hyperfine coupling constant of In(1),27 but the relative
decrease of K ′(1) and K ′(2) is similar, implying a de-
crease in bulk magnetization28 in the high-field state that
is reflected in part by a decrease in the slope of the c-axis

magnetization around B∗.13 Opening a density-wave gap
in the reconstructed large FS is consistent with the de-
crease in formal shifts if Kc.e., which is proportional to
the susceptibility of itinerant quasiparticles, dominates
K ′L. This is a scenario proposed previously,1,2 but, as
we have concluded, the nesting wave vector that opens a
gap must be similar to the zero-field Q. A related sce-
nario is that the decrease in formal Knight shifts is due

to a decrease in internal field B
‖c
int(1) = A

‖c
ordµCe cos(β/2)

that arises from a reduction of the ordered moment, µCe,
and/or a decrease of the hyperfine coupling constant,

A
‖c
ord. Both of these depend on the extent to which Ce’s

4f electrons hybridise with band electrons28 and, in the
limit of stronger hybridisation, would reflect additional f
spectral weight being transferred to band states,29 with
a corresponding increase of the FS. Because a magnetic
field tends to weaken Kondo hybridisation as it polarizes
spins of both conduction and localized electrons, this sce-
nario superficially seems unlikely but as discussed below
is supported by simplified model calculations.

From the high-field data and spectra simulation, we
can conclude that the magnetic structure does not change
qualitatively through B∗. One possibility is that the
magnetic structure adopts the commensurate order with
Q = (0.5, 0.5, 0.25) observed for CeRhIn5 when B⊥c & 2
T11,14 that is not so different from the low-field incom-
mensurate Q = (0.5, 0.5, 0.297). For a commensurate Q,

the internal field B
‖c
int,0(2) at In(2) will take only dis-

tinct values, but an incommensurate Q creates an os-

cillating B
‖c
int,0(2) that produces a characteristic ”double

horn” spectral distribution pattern. Such a distribution
is, indeed, revealed by the NMR data and simulation pre-
sented in Figs. 1b and 1c. We conclude that the mag-
netic structure of CeRhIn5 remains incommensurate with
a similar, if not identical, Q = (0.5, 0.5, 0.297) above B∗.

At high fields, the In spectrum, acquired in a hybrid 45
T magnet, broadens as shown in Figs. 1b and 1c. This
broadening is more evident for the equidistant In(1) tran-
sitions where the linewidth increases from ∆L ' 0.020(5)
T in the low-field limit to ∆L ' 0.10(1) T in the high-
field limit. We consider possibilities for this broadening.
Though not dramatically, the linewidth increases with
increasing fields from 26 to 42 T, which likely is due to
the crystal experiencing a slight field gradient in the hy-
brid magnet. From the magnet’s known (in)homogeneity,
we estimate that the linewidth would increase by at
most 9 % in this field range. Field-induced electronic
anisotropy from the proposed XY nematicity3 in princi-
ple should contribute to NMR line-broadening. Such a
nematic electronic texture would induce anisotropy in the
in-plane hyperfine field component at the In(1) site (Fig.
1d), resulting in line-broadening or even splitting each
In(1) transition, and by breaking local tetragonal sym-
metry of the In(1) site, would produce non-equidistant
In(1) transitions due to a modified electric field gradient
(EFG). Within the accuracy of our measurements, how-
ever, the separation between In(1) transitions remains



4

constant for fields spanning B∗, and there is no clear ev-
idence for splitting of In(1) transitions. Though the pro-
nounced in-plane symmetry breaking of magnetotrans-
port appears atB∗, weak magnetoresistive anisotropy be-
gins to develop3 already near 17 T where specific heat and
de Haas-van Alphen measurements with field along the
c-axis also find the onset of enhanced Sommerfeld coeffi-
cient and quasiparticle mass.5 Whether these effects are
precursors to proposed nematicity above B∗ is unknown
but, whatever their origin, conceivably could manifest in
larger linewidths shown in Figs.1b and 1c. Nevertheless,
In(1) lineshapes remain symmetric and do not broaden
noticeably as field is swept through B∗. The absence of a
change in crystal and magnetic structures as a function
of field and particularly the abrupt decrease in formal
Knight shift at B∗ (Fig. 2) are primary conclusions that
come directly from our NMR measurements.

The ground states of CeRhIn5 and its isostructural
family members, CeCoIn5 and CeIrIn5, depend on the
orbital character of their 4f wavefunctions that deter-
mines the extent of f hybridization with In electronic
states.30 In a tetragonal environment, the CEF splits
the J = 5/2 manifold of CeRhIn5’s 4f1 state into three
doublets whose energy separation and wave-functions
(see Supplemental Material) have been determined by
linear-polarised soft-X-ray absorption and inelastic neu-
tron scattering experiments in zero magnetic field.31,32

Fields of order B∗ ' 30 T (∆CEF ' 7 meV ' 81 K) are
sufficient to induce mixing of the wave-functions of the
Γ2
7 doublet ground state with the first excited doublet

state Γ1
7. This level mixing manifests as a bending of

the field-dependent CEF energy levels (see Supplemental
Material).

We now consider the consequences of magnetic degrees
of freedom. Although a general solution of a theory of a
strongly interacting Kondo lattice like CeRhIn5 has not
been solved, we incorporate the magnetic Rudderman-
Kittel-Kasuya-Yosida (RKKY) interaction into the above
electronic framework. This magnetic interaction is repre-
sented by an effective spin-spin interaction term, jkJm ·
Jn. Specifically, we consider a simplified mean-field
model with intra- and inter-layer nearest-neighbor (nn)
exchange couplings (jx = jy ≡ j0 and jz ≡ j1, Fig. 1d)
to play the role of an effective RKKY interaction com-
bined with the appropriate CEF hamiltonian term (see
Supplemental Material).

Our model does not explicitly include the Kondo inter-
action but considers it to renormalise the bare spin-spin
exchange, so that j0 and j1 are effective exchange cou-
pling constants. With this simple mean-field model we
calculate the specific heat thermal dependence (see Sup-
plemental Material) constraining the value of calculated
constants to give the zero-field Neel temperature TN =
3.8 K and keeping the experimentally determined ratio
j0/j1 ' 8.33 For B = 0, we find effective j0 = 0.72 K and
j1 = 0.088 K, which are an order of magnitude smaller
than those derived from a model that gives the zero-field
magnetic structure.33 This is consistent to the fact that

115K’(1)

FIG. 2: Results of a mean-field model with CEF, Zeeman
and effective RKKY interactions. Measured and calculated
TN(B) for the set of coupling constants j0 and j1 shown in
the inset. Both coupling constants are suppressed at a similar
rate upon increasing magnetic field until B∗ = 30 T. Above
this field, their values increase, suggesting renormalisation of
the effective RKKY interaction due to enhanced Ce 4f -c.e.
hybridisation. See text for a discussion. The yellow diamonds
are the measured In(1) formal Knight shift at 0.5 K.

thermal fluctuations tend to suppress the mean field or-
dering temperature for a quasi 2D system like CeRhIn5

(j0/j1 ' 8).

Following the same approach, we estimate the field de-
pendence of j0 and j1, shown in the inset to Fig. 2, that
is required to reproduce the TN(B) phase boundary. As
seen, j0 and j1 decrease linearly up to 30 T before increas-
ing above B∗. From the Shrieffer-Wolff transformation,
the Kondo exchange is proportional to the square of the
f − c.e. hybridisation matrix element.34 A reasonable in-
terpretation of the increase in exchange constants above
B∗, then, is that this reflects an enhanced hybrisiation
in the high-field state due to field-induced change in the
orbital character of the 4f wave function. Obviously, a
more realistic theoretical framework that explicitly takes
into account the Kondo interaction as well as a frustrat-
ing inter-layer next nn exchange and orbital degrees of
freedom is desirable to substantiate our interpretation.

Our NMR measurements and model calculations thus
provide a microscopic basis for the origin of the unusual
electronic state that emerges at high fields in the Kondo-
lattice CeRhIn5: field-driven mixing of the orbital char-
acter of the 4f wave function enhances Kondo hybridi-
sation that induces a large FS above B∗ = 30 T where
it experiences a density-wave instability due to nesting
at a Q close to, if not the same as, that characterising
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magnetic order in the zero-field antiferromagnetic state.
There is no detectable change in local structure at fields
to 42 T. Except for the field scale B∗, which is specific
to the Kondo interaction and crystal-field wave functions
of CeRhIn5, similar high-field states should be generic
to Kondo-lattice materials. With the essential role of
the orbital nature of wave functions and its consequences
for Kondo coupling, B∗ could be considered in the zero-
temperature limit to reflect an orbitally selective type of
Kondo-breakdown quantum-critical point35,36 within the
ordered state. This is an interpretation suggested ini-
tially by Jiao et al.1 and now we provide a microscopic
rationale for it.
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1. 115In NMR in CeRhIn5

The field-swept 115In-NMR spectra (In nuclear spin I = 9/2, natural abundance 95.7% and nuclear gyromagnetic
ratio 115γ/2π = 9.3295 MHz·T−1) were obtained at 500 mK and at constant frequencies of 48.5 MHz ( 5.2 T), 290.65
MHz ( 31.2 T) and 393.6 MHz ( 42.2 T). A nucleus with I ≥ 1 such as 115In has both an electric quadrupole moment
eQ and a magnetic dipole moment. In this situation, for non-cubic sites the degeneracy of nuclear energy levels is
lifted even at zero magnetic field due to the interaction between eQ and the electric field gradient (EFG) described
by:

HQ =
hνQ

2

[
3I2z − I2 +

η

2

(
I2+ + I

2

−
)]

(1)

where h is Planck’s constant, νQ = e2qQ/2I(2I − 1) is the quadrupole frequency along the principal axis of the
EFG, with eq = Vzz. The asymmetry parameter of the EFG is defined as eta = (Vxx − Vyy)/Vzz with the second
derivative of the electrical potential Vαα being the EFG along the direction α (α = x, y, z).

When 115In experiences an EFG, the ten degenerate nuclear spin states split into five energy levels, yielding four
resonance frequencies. However, for the NMR measurements, we applied magnetic fields to lift the degeneracy of the
magnetic dipole degrees of freedom, even though the nuclear energy levels were already split by the electric quadrupole
interaction. Therefore, the total effective Hamiltonian is described by:

HN = HQ +HZ =
hνQ

2

[
3I2z − I2 +

η

2

(
I2+ + I

2

−
)]

+ ~γn [1 +K ′(2)] I ·B (2)

where K is commonly defined as Knight shift, B is the applied magnetic field and the term (1 + K)B is defined as
the effective field Beff .

In the following section, the Knight shift is redefined for the particular case, here as a formal Knight shift K ′, by
taking into account the internal field created by the Ce 4f magnetic moments at the In sites.
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2. Simulation of high-field 115In NMR spectra

The In(2) spectra in the ordered phase (T = 0.5 K) were simulated by assuming an oscillating internal field z-

component given by B
‖c
int(2) = Bi0 cos (2πQz), where Bi0 = 0.27 T was estimated at zero field1,2 and Qz is the

z-component of the incommensurate AF wave-vector Q.
The fields of resonance for a given frequency were calculated after diagonalising the effective nuclear spin Hamilto-

nian of Eq. 2 assuming:

Beff = [1 +K ′(2)]B +B
‖c
int(2) (3)

Hence, the NMR pattern was obtained from a convolution of the calculated fields of the resonance with a Lorentzian
function. It is worth mentioning that any incommensurate value of Qz will lead to the same Â‘double hornÂ’ pattern
when the magnetic field is along the c-axis. Although the Qz-value is undetermined based solely on these NMR
results, the In(2) NMR spectrum is very sensitive to a transition from incommensurate to commensurate Qz.
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3. Field-induced evolution of Ce’s 4f orbitals

Starting with CEF parameters3 of the zero-field doublet wave functions Γ2
7, Γ1

7 and Γ6 and fully diagonalizing the
CEF + Zeeman Hamiltonian4, we calculate the effect of a magnetic field on these levels. The solid blue lines in Fig.
1A represent the field-dependent CEF energy levels of CeRhIn5 for B‖c.

Fields of order B∗ ' 30 T (∆CEF ' 7 meV ' 81 K) are sufficient to induce mixing of the wave-functions of the Γ2
7

doublet ground state with the first excited doublet state Γ1
7. This level mixing manifests as a bending of the field-

dependent CEF energy levels as shown in Fig. 1A for B‖c. Ignoring possible magnetic interactions (and consequently
magnetic order) as well a Kondo hybridization that broadens the the ground and excited CEF levels, we calculate the
corresponding magnetisation as a function of applied magnetic field B‖c at 0.5 K, with the result shown in Fig. 1B.
The calculated magnetisation bends over to a region of weaker yet monotonically increasing field dependence above
30 T, which is consistent with the decrease in formal Knight shift and enhanced hybridization near B∗ as well as
direct measurements of the magnetization.5 Given the simplicity of this approach, we do not expect the calculated
field-dependent magnetisation to capture all features of the experimental data, but the result is suggestive.

In Fig. 1C we present the field dependence of the weights of pure | ± 5/2〉 and | ∓ 3/2〉 orbitals. The zero-field CEF
Γ2
7 doublet ground-state of CeRhIn5 is a linear combination of both orbitals Γ2

7 ≡ |0〉 = α| ± 5/2〉 − β| ∓ 3/2〉 with
α = 0.62 and β = 0.78.3,6 As seen in this figure, the orbital contribution (weight) from the pure | ∓ 3/2〉 gradually
decreases and that from the pure | ± 5/2〉 grows with increasing field. With its in-plane oblate configuration, the
stronger |±5/2〉 character of occupied Ce f orbitals at high fields promotes f -c.e. hybridisation between Ce and In(1)
orbitals when B‖c, even though field-induced polarization of spins tends to weaken hybridization. The Kondo effect
and mixing of orbital contributions to the ground state should be smooth functions of applied field, but these results
suggest that the competition between apposing tendencies is tipped abruptly in favor of increased hybridisation near
B∗ and is the origin of anomalies found in various physical properties. Illustrations of the actual shapes of the overall

Γ6

Γ7
1

Γ7
2

ȁ± ۧ5/2

ȁ∓ ۧ3/2
𝛼L
2

𝛽H
2

𝛽L
2

𝛼H
2

Γ7,L
2

Γ7,H
2

FIG. 1: 4f crystal-electric field response to magnetic field. a Field-dependent Ce 4f CEF energy level scheme for B‖c (solid
blue lines). The hashed orange area near 30 T represents the field range where mixing between the ground- and first-excited
Γ7 CEF doublets occurs for B‖c. This mixing is reflected as well by a change in slope of magnetisation (b) and occupancy of
the pure | ± 5/2〉 (c) near 30 T. b Simulation of the magnetisation as a function of B‖c considering only CEF and Zeeman
interactions at 0.5 K. This simulation produces a weaker slope but continued growth of M(H) above 30 T. The extrapolated
solid red lines through calculated points indicate a crossover point between orbital states at 30 T. c Field dependence of the
zero-field Γ2

7 CEF doublet ground-state: the field-split eigenstates Γ2
7,H = αH | + 5/2〉 − βH | − 3/2〉 (green color) and Γ2

7,L

= αL| − 5/2〉 − βL|+ 3/2〉 (blue color) and individual field-dependent orbital weight contributions | ± 3/2〉 (dashed lines) and
| ± 5/2〉 (solid lines) of Γ2

7,H and Γ2
7,L as well as the averaged orbital weight contributions of | ± 5/2〉 (solid red line) and

| ± 3/2〉 (dashed red line). The red solid line (dashed line) indicates an overall enhancement (suppression) of the more oblate
| ± 5/2〉 (prolate | ± 3/2〉) orbital upon increasing magnetic field. The evolution of the spatial form of Γ2

7 orbital in real space

for zero-field and B‖c = 30T (field split Γ2
7,L and Γ2

7,H) is illustrated in a.
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Γ2
7 ground-states orbitals in real space at zero-field and 30 T are displayed in Figure 1A.
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4. Calculation of the mean field specific heat

The calculation of the specific heat data was obtained by solving the Hamiltonian used to describe the RKKY and
CEF interactions in CeRhIn5 given by:4

H =
∑

〈m,n〉
jkJm · Jn +

∑

m

[
B20O

0
2,m +B40O

0
4,m +B44O

4
4,m

]
+ gJµBJ ·B. (4)

where jk (with k = 0 or 1, as indicated in Fig. 1d in the main text) represents the effective RKKY exchange
interactions between neighbor spins, Jm and Jn, and the second and third terms are the tetragonal CEF and Zeeman
contributions, respectively. The on-site crystal field interaction is therefore fully taken into account. This model does
not explicitly include the Kondo interaction but considers it to renormalise the bare spin-spin exchange, so that j0
and j1 in Eq. 4 are effective exchange coupling constants. The first term in Eq. 4, then, ”mimics” magnetic (spin)
interactions in a generic Kondo lattice but is unable to predict the magnetic structure of CeRhIn5 that requires the
inclusion of next-nearest neighbor interactions.7

With a mean field approximation where Jm·Jn ∼ Jm 〈Jn〉, we numerically diagonalised the electronic Hamiltonian of
eq. 4 for each increment of applied magnetic field and evaluated the eigenvalues Ei and corresponding eigenfunctions:

|φi〉 =
J∑

m=−J
cim |m〉 (5)

where |m〉 form a complete basis for the manifold of angular momentum J. The internal (U) and Helmholtz (F ) free

FIG. 2: Specific heat from a mean-field model with CEF, Zeeman and effective RKKY interactions. Calculated mean-field
specific heat for several magnetic fields applied along the c-axis at low temperatures. The red arrows indicate the measured
magnetic ordering transition temperatures TN(B).8 This model does not predict long-range magnetic order for B ≥ 40 T, j0 ≤
0.72 K and j1 ≤ 0.088 K, but only gives a Schottky anomaly indicated by a question mark. This also signals the influence of
interactions/fluctuations not accounted by this framework, specially for B ≥ B∗.The inset shows temperature versus magnetic
field phase diagram for CeRhIn5. The circles and triangles are data extracted from Refs. 8 and 9, respectively.
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energies were calculated using the equations:

U =
1

Z

∑

i

Eiexp (Ei/kBT ) (6)

F = −kBTlnZ (7)

where Z =
∑
i exp (Ei/kBT ) is the canonical partition function and kB is the Boltzmann constant. Therefore, the

specific heat c is finally obtained by:

c = T
∂S

∂T
(8)

after computing the entropy S by using the relation F = U − TS.
Hence, Figure 2 shows the magnetic field dependence of the specific heat as a function of temperature simulated

to reproduce the measured B vs T phase diagram displayed in Fig. 3 in the main text. The crystal field parameters
used for this calculation, B20 = -10.789 K, B40 = 0.60343 K and B44 = 1.4854 K, were extracted from Ref. 3. The
Kondo interaction as well as the fluctuations were not taken into account by this mean field framework. Nonetheless,
it was still used to qualitatively evaluate the attenuation of effective exchange parameters as a function of magnetic
field.
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