Exploring the Dynamics of Zr-Based Metal-organic Frameworks Containing Mechanically Interlocked Molecular Shuttles

Benjamin H. Wilson^{a,b†}, Ghazale Gholami^{a†}, Kelong Zhu^c, Christopher A. O'Keefe^d, Robert W. Schurko^{*d} and Stephen J. Loeb^{*a}

- ^a Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
- ^b Discussion presenter.
- ^c School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China, 510275
- ^d Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390

Table of Contents	Page
¹ H and ¹³ C NMR Spectra of 2	S2
¹ H and ¹³ C NMR Spectra of 3	S3
¹ H and ¹³ C NMR Spectra of [H 3][BF ₄]	S4
¹ H and ¹³ C NMR Spectra of 4	S5
¹ H and ¹³ C NMR Spectra of H ₄ 5	S6
¹ H and ¹³ C NMR Spectra of ¹³ C 4-bromobenzaldehdye	S7
¹ H and ¹³ C NMR Spectra of 2*	S8
¹ H and ¹³ C NMR Spectra of 3 *	S9
¹ H and ¹³ C NMR Spectra of [H 3*][BF ₄]	S10
¹ H and ¹³ C NMR Spectra of 4 *	S11
¹ H and ¹³ C NMR Spectra of H ₄ 5 *	S12
Comparison of ¹³ C NMR Spectra for 4 and 4 *	S13
¹ H and ¹³ C NMR Spectra of 4 [*] , [H 4 [*]][BF ₄] and $[H_2$ 4 [*]][BF ₄] ₂	S13
Determination of Shuttling Rates (Solution) for 4 * and [H ₂ 4 *][BF ₄] ₂	S14
Solution ¹ H NMR Spectra of Digested MOFs	S17
SSNMR Spectra for UWDM-8 and PCN-57	S19
Synthesis of different protonation states of 4 * and UWDM-8	S19
VT-PXRD of UWDM-8 and UWDM-9	S20
VT ¹³ C MAS SSNMR Spectra of UWDM-8 and UWDM-9	S20
References	S21

Figure S1. ¹H NMR spectrum of Compound 2 (500 MHz, CDCl₃, 298 K)

Figure S2. ¹³C NMR spectrum of Compound 2 (125 MHz, CDCl₃, 298 K)

Figure S3. ¹H NMR spectrum of Compound 3 (500 MHz, CDCl₃, 298 K)

Figure S4. ¹³C NMR spectrum of Compound 3 (125 MHz, CDCl₃, 298 K)

Figure S5. ¹H NMR spectrum of Compound [H3][BF₄] (500 MHz, CD₃CN, 298 K)

Figure S6. ¹³*C* NMR spectrum of Compound [H3][BF₄] (125 MHz, CD₃CN, 298 K)

Figure S7. ¹H NMR spectrum of Compound 4 (500 MHz, CD₂Cl₂, 298 K)

Figure S8. ¹³C NMR spectrum of Compound 4 (125 MHz, CD₂Cl₂, 298 K)

Figure S9. ¹*H NMR spectrum of Compound H*₄*5* (500 *MHz, d*₆*-DMSO, 298 K*)

Figure S10. ¹³C NMR spectrum of Compound H₄5 (125 MHz, d₆-DMSO, 298 K)

Figure S11. ¹H NMR spectrum of ¹³C 4-bromobenzaldehyde (500 MHz, CDCl₃, 298 K)

Figure S12. ¹³C NMR spectrum of ¹³C 4-bromobenzaldehyde (125 MHz, CDCl₃, 298 K)

Figure S13. ¹H NMR spectrum of Compound 2* (500 MHz, CDCl₃, 298 K)

Figure S14. ¹³C NMR spectrum of Compound **2*** (125 MHz, CDCl₃, 298 K)

Figure S15. ¹H NMR spectrum of Compound **3*** (500 MHz, CDCl₃, 298 K)

Figure S16. ¹³C NMR spectrum of Compound **3*** (125 MHz, CDCl₃, 298 K)

Figure S17. ¹*H NMR spectrum of Compound* [*H3**][*BF*₄] (500 *MHz, CD*₃*CN, 298 K*)

Figure S18. ¹³*C* NMR spectrum of Compound [H**3***][BF₄] (125 MHz, CD₃CN, 298 K)

Figure S19. ¹H NMR spectrum of Compound 4* (500 MHz, CD₂Cl₂, 298 K)

Figure S20. ¹³*C NMR spectrum of Compound* **4*** (125 *MHz, CD*₂*Cl*₂, 298 *K*)

Figure S21. ¹*H NMR spectrum of Compound H*₄*5** (500 *MHz, d*₆-*DMSO, 298 K*)

Figure S22. ¹³*C NMR spectrum of Compound H*₄*5** (125 *MHz, d*₆-*DMSO, 298 K*)

Figure S23. Comparison of ¹³C NMR spectra of **4** and **4*** (125 MHz, d_6 -DMSO, 298 K) showing the ¹³C enriched carbon environment *.

Figure S24. Partial ¹³C NMR solution spectra (125 MHz, CD_2CI_2 , 298K) of a) **4*** (neutral rotaxane linker), showing one peak due to fast-exchange of occupied and unoccupied sites, b) $[H4*]^+$ (+1 charged rotaxane linker) showing that the two sites are different and resolved, one is charged and occupied the other is neutral and unoccupied, c) $[H_24*]^{2+}$ (+2 charged rotaxane linker) showing two sites due to slow-exchange of occupied and unoccupied sites.

Figure S25. Partial ¹H NMR solution spectra, NH resonances (500 MHz, CD_2Cl_2 , 298 K) of a) **4*** (neutral rotaxane linker), showing one peak due to fast-exchange of occupied and unoccupied sites, b) [H**4***]⁺ (+1 charged rotaxane linker) showing that the two sites are different and resolved, one is charged and occupied the other is neutral and unoccupied, c) $[H_2$ **4** $*]^{2+}$ (+2 charged rotaxane linker) showing two sites due to slow-exchange of occupied and unoccupied sites..

Determination of Macrocycle Shuttling Rate in Solution

Figure S26. Variable temperature ¹³C NMR spectra of neutral **4**^{*} in toluene-d₈ (* = ¹³C-enriched atoms, (toluene-d₈ was chosen as a solvent since it has both a low freezing point and low polarity).

The shuttling rates were calculated from a line shape analysis of the NMR spectra using the program DNMR71.EXE.^{S1} Free energies of activation (ΔG^{\dagger}) were estimated using the Eyring equation: $\Delta G^{\dagger} = -RT \ln (kh/k_{\rm B}T)$, where *R* is the ideal gas constant, *h* is Planck's constant and $k_{\rm B}$ is Boltzmann's constant. The enthalpic (ΔH^{\dagger}) and entropic (ΔS^{\dagger}) contributions to the transition state were calculated from Eyring plots: ln (k/T) = $-(\Delta H^{\dagger}/RT) + (\Delta S^{\dagger}/R) + \ln (k_{\rm B}/h)$.

Figure S27. Comparison of the experimental and simulation ¹³C NMR data (left) for the ¹³C-enriched carbon of neutral **4***, Eyring plot (right) for the shuttling of neutral **4*** generated from the simulated data.

The shuttling rate for diprotonated **5**^{*} can be obtained from an EXSY experiment by using the equations shown below, where I_{AA} and I_{BB} are the diagonal peak intensities and I_{AB} and I_{BA} are the cross-peak intensities. k is the *sum* of the forward, k_1 , and backward, k_{-1} , pseudo-first order rate constants for the shuttling process. k_1 and k_{-1} are equal due to the identical stations and thus the observed pseudo-first order rate constant, k_{obs} can be determined. R is the ideal gas constant; h is Planck's constant and k_B is Boltzmann's constant.

 $r = I_{AA} + I_{BB}/I_{AB} + I_{BA}$, $k = 1/\tau_m \ln (r + 1/r - 1)$, $k = k_1 + k_{-1}$, $k_{obs} = k_1 = k_{-1}$

 $\Delta G^{\dagger} = -RT \ln \left(\mathbf{k}_{obs} h / \mathbf{k}_{B} T \right)$

Table S1. Kinetic parameters for shuttling process of diprotonated **4*** (no shuttling observed at 268 K).

Т (К)	I _{AA}	I BB	I _{AB}	I _{BA}	k obs (S ⁻¹)	ΔG [≠] (kcal mol ⁻¹)
320 K	19889000	19369000	2539400	2826600	0.27	19.6
330 K	5104100	5035800	1031000	1375300	0.43	19.9

Figure S28. Partial 2D EXSY ¹³C NMR (500 MHz, 320 K, CD₃CN, τ_m = 500 ms) spectrum of diprotonated 4*.

Solution NMR Analysis of Digested MOFs

Samples were digested in a saturated D_2O solution of K_3PO_4/d_6 -DMSO.

Figure S29. ¹*H* NMR of *UWDM-8* after digestion (500 MHz, DMSO-d₆), ratio of H_2 *TTCP* to **5**^{*} is ~4:1.

Figure S30. ¹*H* NMR of *UWDM-9* after digestion (500 MHz, DMSO-d₆), ratio of H_2 **TPDC** to H_4 **5** is ~4:1.

Solid-State NMR Analysis of MOF Synthesis

The presence of only a single peak for the carboxylic acid group (*) in the ¹³C SSNMR spectra of known **PCN-57** and as-synthesized **UWDM-8** infers that all four of the carboxylate groups of the $[5^*]^{4-}$ linker are incorporated into Zr-MOFs and bonded to Zr.

Figure S31. ¹³C SSNMR of as-synthesized UWDM-8 and PCN-57 (* = carboxylic acid group).

Synthesis of Various Protonation States of 4*, UWDM-8 and UWDM-9

Tetrafluoroboric acid diethyl ether complex (2 μ L, 0.015 mol) was added to a **4**^{*} (20 mg, 0.015 mmol) solution in CH₂Cl₂ (2 mL). The mixture was stirred for 5 min. Ether was added to precipitate the product. The solids were filtered, washed with some ether and air dried giving to [H₂**4**^{*}][BF₄]₂.

10 mg of $[H_24^*][BF_4]_2$ dissolved in mixture of CH_3CN (2 mL) and H_2O (1 mL) and sonicated for 5 min. Then CH_3CN was removed, solids were filtered and air dried to yield $[H4^*][BF_4]$.

The as-synthesized MOF, [**UWDM-8**-H][CF₃CO₂] (50 mg), was soaked in a 0.07 mol/L solution of proton sponge[®] (N,N,N',N'-tetramethyl-1,8- naphthalenediamine) in ethanol (60 mg in 4 mL EtOH). The mixture was kept in the dark at room temperature for 72 h (solvent replaced every 12 h and the qualitative level of deprotonation was monitored by UV irradiation). The crystals were then washed with fresh ethanol once and re-soaked in fresh ethanol for 2 h. The solids were filtered, air-dried and were activated at 160 ^oC for 12 h giving to **UWDM-8**.

25 mg of **UWDM-8** was soaked in a 2 M solution of CF_3SO_3H in ethanol at 60 $^{\circ}C$ for 24 h (solvent replaced every 12 h). The microcrystals were filtered, washed with ethanol, air dried and were activated at 160 $^{\circ}C$ for 12 h to give [**UWDM-8**-H₂][OTf]₂. The same methods were used for **UWDM-9**. The results of optical microscope images (Fig S32) of three states of **UWDM-9** were similar to **UWDM-8**.

Figure S32. Optical microscope images of the three protonation states of 4^* linkers in CD₂Cl₂ and microcrystals of **UWDM-8** under UV irradiation.

VT PXRD for UWDM-8 and UWDM-9

Powder X-ray diffraction (PXRD) measurements were recorded on a Brüker D8 Discover diffractometer equipped with a GADDS 2D-detector and operated at 40 kV and 40 mA. CuK α radiation (λ = 1.54187 Å) was used and the initial beam diameter was 0.5 mm. Samples were mounted in a 0.5 mm boron-rich capillary tube on a goniometer head. Data was collected as rotation frames at 20 value of 18° for 15 min.

Figure S33. Variable temperature PXRD analysis of UWDM-8.

Figure S34. VT PXRD analysis of UWDM-9.

VT ¹³C MAS SSNMR Spectra of UWDM-8 and UWDM-9

Figure S35. Variable temperature CP MAS ¹³C SSNMR analysis of **UWDM-8**. The temperature was increased in an attempt to induce exchange between the two sites.

Figure S36. VT CP MAS ¹³C SSNMR analysis of **UWDM-9**. The temperature was lowered in an attempt freeze out the limiting chemical shifts.

References

S1. Reich, H. J., DNMR71.EXE. J. Chem. Educ. Software 1996.