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Abstract. The recent commissioning of the 36 T Series-Connected Hybrid Magnet at the
National High Magnetic Field Laboratory has uncovered an undesirable consequence of using
super critical helium for cooling of superconductors. This recent dry magnet cooling
technology greatly reduces the LHe requirements of the magnet and may be utilized more
frequently in the future. Because the supercritical helium does not complete a phase transition
with the addition of heat, the fluid can quickly expand. The increased expansivity of
supercritical helium over liquid helium for a given heat load is capable of creating larger
pressure waves. The impact pressure for compressible helium gas flow is combined with the
speed of sound for ideal gases to determine if a high-speed pressure wave is sufficient to
explain the premature failure of the burst discs in the over-pressurization protection system.
The addition of an impact pressure can explain, under the right conditions, a reduction of up to
40% in the burst disc pressure rating. The Griineisen parameter is shown to relate to the
expansivity and values for the parameter are given in the supercritical range. A proposal to
reroute the pipe near the burst disc is made to mitigate the effects of the impact pressure.

1. Introduction

The Series Connected Hybrid (SCH) magnet at the National High Magnetic Field Laboratory consists
of a Florida-Bitter resistive coil insert and a superconducting cable-in-conduit conductor (CICC)
outsert. The insert and outsert are connected in series and with 20 kA are able to generate a magnetic
field of 36 T with a homogeneity of 1 ppm in the sample volume [1, 2]. The SCH is cooled using a
17.3 g/s flow of 4 Bar supercritical helium at 4.8 K. Because the helium is supercritical instead of the
standard liquid traditionally used for cooling magnets, the magnet is referred to as a dry magnet.
Pressurized supercritical helium has been shown to have heat transfer rates of ~10 kW/m?, which is
comparable to pool boiling [3]. The use of dry magnet designs has increased because the helium usage
can be decreased. For instance, the 45 T Hybrid magnet at the NHMFL uses ~280 W of cooling (via
feeding a 1,750 L helium reservoir) for an 11 T outsert while the SCH uses ~120 W of cooling (via
~100 liquid liters of helium at super critical pressures) for a 13 T outsert. Due to an unstable helium
market, increased helium prices are making dry magnets a more appealing option.

2. Premature failure
The disadvantages of dry magnet systems are still being discovered. Since late 2017 the SCH has
operated as a user magnet. During this time several adjustments have been made to the cooling
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parameters, quench detection limits, and quick-acting vent relief setpoints to help smooth operations.
One of the largest operational hurdles involved the premature rupture of the burst discs.

Although it is safer for the discs to fail at a lower value than specifications, replacement after
rupture was expensive, time consuming, and delayed magnet operations. The lock-out tag-out of all
pressure and voltage sources into the SCH was used to safety access the burst disc, but it took a couple
of hours to apply and remove. The costs of the lost helium and replacement rupture discs are
substantial. Additionally, the magnet would be not run for the remainder of the day as the cooling
system was recovered.

The SCH uses three protection devices in parallel: Quick-acting valves, resealing pressure relief
valves, and burst discs [4]. Quick-acting valves connected to the magnet quench detection system were
originally set at 6 Bar. The resealing pressure reliefs open at 12 Bar and the SCH burst discs are rated
at 20 Bar. This arrangement provides pressure relief at various values and should reseal if the pressure
is less than 20 Bar. However, a static pressure gauge tapped perpendicular to the flow indicated the
burst discs were breaking at pressures as low a 12 Bar.

A design flaw in the burst disc causing the metal film to buckle at pressure below the set point was
discovered following the premature failure. This observation significantly reduced confidence in
future performance. Static pressure tests of the burst discs showed that the actual rupture pressure was
more than 30% more than the set pressure. Downstream support rings were added, and the burst discs
were retested. The modified burst discs correctly failed at 20 Bar. Even after this design issue was
addressed the burst disc would continue to prematurely rupture at pressures of 10.7 Bar. A more in-
depth examination was needed.

During a quench, the pressure generated inside the CICC can be enormous and hard to predict. At
full field, the SCH can generate pressure waves with a static pressure of 10.7 Bar. Due to the
perpendicular orientation, the pressure sensor only measures the static pressure. Measurement of
additional dynamic pressure was not accounted for in the original design. However, the additional
pressure it adds is responsible for the premature failure. Pressure sensors measure each of the three
incoming lines (high-field, mid-field, and low-field) and the exit line. The pressure plot of a typical
quench is shown in Figure 1.
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Figure 1. Pressure plots of SCH quenches
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During this particular quench the burst disc in the high field cooling circuit broke. Although this
circuit shows the lowest pressure, the actual pressure seen by the burst disc is believed to also be ~
10.7 Bar. The pressure sensor does not record 10.7 Bar because it is downstream of the burst disc.

3. Theory
In order to explain the premature burst disc failure, the incompressible dynamic pressure in a one-

dimensional isentropic flow is analysed for velocities less than 0.3 Mach.
1

Py = ;Pvz (1
where p is the density and v is the velocity. At the conditions present in the SCH (T'=4.8 K, P =4.00
BAR) the additional dynamic pressure of a Mach 0.3 pressure spike does not make a significant
contribution to the static pressure. But helium quench speed inside CICC may exceed 0.3 M. In fact,
the high speeds of a resulting pressure spike due to quench was proposed as a quench detection
method in 1988 [5]. This method is currently being used on the SCH in parallel with the traditional
voltage quench detection means [4] and also in use by others [6]. In the SCH, the pressure rise may
happen as quickly as 0.1 second.

To examine velocities larger than 0.3 Mach, a compressible form of the impact pressure (also twice
the dynamic pressure) must be considered. The stagnation pressure coefficient has previously been

defined as
_ PP
Cro =107 2)
where P, is the stagnation pressure and P is the static pressure. Equation 2 can be rewritten using the
Newton-Laplace equation for the speed of sound in an ideal gas, using y = 5/3 as the specific heat

ratio for helium.

— PomP _ 6 (Po_ )
Cpo = ZypM2z  5M? (P 1 @)
The pressure ratio of the stagnation and static pressure ratios can be expressed in a one-dimensional
isentropic flow along a streamline [7] as

- y/v-1
=[] g
When solved for helium the equation is reduced to
P, M? 5/2
%< [144] °

Using the Binominal Theorem the previous Equation 5 can be expanded to
% — 14 5M2  s5M*  5MS

= + =y + 237 (6)
The stagnation pressure coefficient can then be added to the expanded stagnation and static pressure
ratio

2 4
Coo =1+ +7—+- (7
Plugging this back into the stagnation pressure coefficient definition gives the impact pressure for
compressible helium flows

2 4
P —P=3pv?[1+5 4+ 4] ®)
2 4
PO—PzinM2[1+MT+%+--~] ©)

which is valid for of M < 1. The presence of shock waves would disrupt the streamline assumption
made on Equation 4.

At the extreme limit of these equations, consider a velocity of M = 1. Equation 6 then reduces the
impact pressure to a temperature-independent relationship as the density component cancels out. With

some algebra it can be rewritten as
PO PO

E FEE— ~ 2053

(10)
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This means that for flows of M = 1 the stagnation pressure can be more than twice the amount of the
static pressure. Under these conditions a rupture disc rated for 20 Bar can break while measuring
approximately 9.74 Bar on the static pressure gauge.

The quench on the SCH created conditions of a 10.8 Bar static pressure and at least a 20 Bar
stagnation pressure to rupture the disc. Solving Equation 6 in combination with the Laplace-Newton
equation under these conditions leads to a pressure wave speed of M = 0.74. A theoretical prediction
of pressure wave velocities is complex and would involve several assumptions [8]. The experimentally
calculated velocity seems reasonable and achievable.

4. Griineisen parameter for supercritical helium

The above equations show that it is possible to produce impact shocks with velocities lower than Mach
1. The question then becomes how to avoid the unwanted pressure impact. Magnets utilizing pool
boiling have not produced such large impact pressures because the heat from the quench is largely
absorbed by the latent heat of helium (H.= 21 kJ/kg) during the phase transition. Per mass this has the
same heat absorbance as approximately a 4 K temperature rise [9]. When forced flow supercritical
helium is used instead, the operating point is above the phase transition and therefore all heat
deposited will result in a rise in temperature and fluid expansion [10].

To examine the change in specific volume and the heat deposited to the fluid via enthalpy change,
the Grineisen parameter for supercritical helium is determined. The Griineisen parameter has been
defined in several ways. The simplest definition is the ratio between the volumetric thermal
expansivity 8 and the specific heat C, [11].

r= 3/Cp (10

By substituting know relations for both volumetric thermal expansivity 8 and the specific heat C,,
under constant pressure [12, 13], Equation 11 can be rewritten as

(57)

_B/ _ \er/p — (&

r="/c,=»r (&) ~ p (Sh)p (12)
6T/ p

where v is the specific volume and h is the enthalpy. Under this rearrangement, the Griineisen

parameter can be used to compare the change in specific volume compared to the enthalpy added to
the fluid.
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Figure 2. Griineisen parameter for helium near critical point
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To reduce the pressure wave propagation speed, high Grineisen numbers should be avoided. Using
NIST REFProp version 10 [14], the Grineisen parameter for supercritical helium and gas helium for
pressures ranging from 0.1 — 0.5 MPa and temperatures from 3 — 10 K are shown in Figure 2.

Only supercritical and gas state helium are included. The Griineisen parameter appears to diverge
near the critical temperature and spikes near the critical pressure. This is to be expected as
supercritical helium is known to be volatile and unstable. Therefore, the Griineisen parameter should
be the largest near the critical point (T. = 5.19 K, P. = 2.24 Bar). The kink in this data may be due to
larger errors in the NIST data near the critical point.

5. Future work

Currently, the burst discs are connected to the helium space via a 30-inch long straight pipe with
diameters varying from 0.92 — 1.37 inch. This straight pipe arrangement was chosen to reduce the
pressure drop between the pressurized gas and the vent, which is good practice. For dry magnet
purposes a new configuration (Figure 3) is proposed to reduce the impact pressure effects on burst
discs.

Capped end Burst disc

N~/

Flow from magnet

Figure 3. Impact pressure diffuser

This new burst disc configuration should reduce the impact pressure on the burst disc as
the pressure wave no longer has a straight and direct path to the burst disc. This configuration
should result in the burst disc experiencing a pressure closer to that of the static pressure.
This configuration should also maintain the flow capacity of the burst disc as the outlet vent
area is unchanged and the slightly larger pressure drop due to minor losses in the bend will
not reduce the already choked flow of the venting helium.

The pressure drop of the proposed inlet line produces approximately 0.8 psi pressure drop
which is less than 3% of the burst disc rating. This impact-resistant burst disc setup is still in
agreement with both ASME Section VIII Pressure Vessel Code [15] and the Compressed Gas
Association S-1.3 Pressure Relief Device Standards [16].

6. References

[1]  ChenJ, Cantrell K, Bai H, Bird M, and Bole S 2011 IEEE Trans. Appl. Supercond. 21,2118.

[2] Bird M, Brey W, Cross T, Dixon I, Griffin A, Hannahs S, Kynoch J, Litvak I, Schiano J, and
Toth J 2018 IEEE Trans. Appl. Supercond. 28, 4300706.

[3] Giarratano P, Arp V, Smith R 1971 Cryogenics 11, 385.

[4] Bai H, Bird M, Bole S, Cantrell K, Dixon I, Gavrilin A, Painter T, Xu Ting 2010 AIP Conf.



CEC 2019 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 755 (2020) 012130 doi:10.1088/1757-899X/755/1/012130

[5]
[6]

(71

(8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]

Proc. 1218, 1231.

Desner L 1988 Adv. Cryog. Eng. 33, 167.

Sharma A, Pradhan S, Prasad U, Varmora P, Khristi Y, Doshi K, and Patel D 2015 J. Fusion
Energ.34,331.

Houghton E, Carpenter P 2003 Aerodynamics for Engineering Students 5" Edition (Burlington:
Butterworth-Heinemann) p 278.

Babitch V, Churbanov V, Schmidt C, Tateishi H 1991 Cryogenics 31, 645.

Van Sciver S 2012 Helium Cryogenics (New York: Plentum Press)

Schmidt C 1988 Cryogenics 28, 585.

Souza M, Menegasso P, Paupitz R, Seridonio A, Lagos R 2016 Eur. J. Phys. 37,055105.

Schroeder D 1999 An Introduction to Thermal Physics (San Francisco: Addison Wesley
Longman) p 34.

Arp V 1975 Cryogenics 15, 285.

Lemmon E, Bell I, Huber M, and McLinden M. NIST Standard Reference Database 23:
Reference Fluid Thermodynamic and Transport roperties- REFPROP, Version 10.

ASME Boiler and Pressure Vessel Code, VIII Rules for Construction of Pressure Vessels, 2013.

Compressed Gas Association, CGA S-1.3, Pressure Relief Device Starndards Part 3, 2008.

Acknowledgments

Thank you to Edwin Diaz for help with the Binominal Theorem. This work was performed at the
National High Magnetic Flied Laboratory, which is supported by NSF DMR-1644779 and the State of
Florida.



