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Abstract: Surface hardening improves the strength of low-carbon steel without interfering with the
toughness of its core. In this study, we focused on the microstructure in the surface layer (0–200 µm)
of our low-carbon steel, where we discovered an unexpectedly high level of hardness. We confirmed
the presence of not only upper bainite and acicular ferrite but also lath martensite in the hard surface
layer. In area of 0–50 µm, a mixed microstructure of lath martensite and B1 upper bainite was formed
as a result of high cooling rate (about 50–100 K/s). In area of 50–200 µm, a mixed microstructure of
acicular ferrite and B2 upper bainite was formed. The average nanohardness of the martensite was
as high as 9.87 ± 0.51 GPa, which was equivalent to the level reported for steel with twenty times
the carbon content. The ultrafine laths with an average width of 128 nm was considered to be a key
cause of high nanohardness. The average nanohardness of the ferrites was much lower than for
martensite: 4.18 ± 0.39 GPa for upper bainite and 2.93 ± 0.30 GPa for acicular ferrite. Yield strength,
likewise, was much higher for martensite (2378 ± 123 MPa) than for upper bainite (1007 ± 94 MPa) or
acicular ferrite (706 ± 72 MPa). The high yield strength value of martensite gave the surface layer an
exceptional resistance to abrasion to a degree that would be unachievable without additional heat
treatment in other steels with similar carbon content.
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1. Introduction

Low-carbon steels are widely valued for their high ductility and toughness, but their strength and
hardness have remained inferior to other steels [1–3]. In fact, for most applications of low-carbon steels,
both hardness and strength, especially surface hardness, are important basic mechanical properties.
The hardened surface layer improves the strength of the material while the tough core is retained.

Many surface hardening methods have been developed, such as laser hardening, induction hardening,
carburizing, and nitriding [4]. However, all these methods require extra processing, which increases the
cost. In a previous study, we produced an as-cast low-carbon steel with a hardened surface layer without
introducing extra processing steps such as alloying, rolling, heat treatment, or surface treatment [5].
The average Vickers hardness in the surface area was 420 HV, which reached the hardness of martensite.
At the same time, our steel has similar ductility and toughness as that of ordinary low-carbon steel.

On a microscale, the properties of different microstructures vary greatly, especially in quenched
low-carbon steel, which can contain various microstructures—bainite, acicular ferrite, polygonal ferrite,
and lath martensite, sometimes coexisting within a small area [6,7]. Lath martensite, usually the hardest
microstructure in low-carbon steel, is characterized by ultrafine laths, appearing roughly parallel in
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packets separated from one another by high-angle boundaries [8,9]. During martensite transformation,
interstitially dissolved carbon atoms line up in one direction, creating a body-centered tetragonal (bct)
rather than a body-centered cubic (bcc) crystal structure [10–17]. Bainite, the second hardest microstructure,
is characterized by parallel fine grains, either laths or plates, in separate blocks [11,18]. Acicular ferrite is
characterized by randomly distributed needles with high-angle misorientation [19,20].

In current study, we aim to elucidate the main microstructures in the hard surface layer.
Furthermore, in order to tease apart the properties of various microstructures, we characterized
them by using nanoscale hardness tests. We believe that by adjusting the fabrication parameters as we
did, researchers should be able to get the same structure with the same properties that we were able to
achieve. We quantitatively characterized each constituent in the hard surface layer, including phase,
morphology, and hardness/strength. We analyzed the main cause of high hardness in the surface layer
and deduced the probable formation process of the mixed microstructure.

2. Materials and Methods

Rods of TG30 steel were heated to 1600 ◦C in an induction furnace. FeO was added to adjust free
oxygen content to 35–50 ppm. Fe-Ti was added to the melt to adjust Ti (0.01–0.02%). Fe-Mn and Fe-Si
were sequentially added to adjust Mn content and Si content (see Table 1 for chemical compositions).
Two 9-mm-thick copper plates with a 2.5-mm-wide chamber between them were pressed into the melt
and removed. This step took 0.24 s, during which heat transferred from the center to the surface and
then to the copper plates, resulting in a flat steel sheet, 2.5 × 75 × 100 mm3, which was then subjected
to 30 s of air cooling and finally quenched in water. The solidification rates, as simulated using Procast
software (Version 2018, ESI Group, Paris, France), were about 900–1000 K/s at 0–50 µm depth and
about 400–900 K/s at 50–200 µm depth. The rates were in the sub-rapid solidification range.

Table 1. Chemical compositions.

Element C Mn Si Ti Fe

Mass Fraction/% 0.023 0.64 0.21 0.016 Balance

A 10 mm × 5 mm × 2.5 mm sample was cut from the sheet. The cross-sectional plane of the sample
was milled and then polished using 0.05 µm Al2O3 suspension. The prior austenitic grains were
etched using a picric acid solution and measured using the linear intercept method. The average prior
austenitic grain size was 152 µm near the surface. The sample was then repolished and re-etched using
4% nital solution. We used a Hitachi SU1510/JSM-6700F SEM (Hitachi Group, Tokyo, Japan) to obtain
room-temperature microstructure images. From each of the three main microstructure types found at
the surface, we extracted a small specimen (4 µm × 2 µm × 50 nm) using a Helios nanolab 600 Focused
Ion Beam (FIB, FEI company, Hillsboro, OR, USA). With a JEM-ARM200cF TEM (JEOL Ltd., Tokyo,
Japan), we identified the Selected Area Electron Diffraction (SAED) patterns of each microstructure in
each specimen [21].

For nanoindentation, we marked the area of each type of microstructure in the cross-sectional
plane of the original sample using a Vickers hardness indenter (Shanghai Everone Precision Instruments
Co., Ltd., Shanghai, China). We then repolished it with a Vibromet 2 vibratory polisher (Buehler Ltd.,
Lake Bluff, IL, USA) in the preparation for nanoindentation tests. We applied the continuous stiffness
method (CSM) using an Agilent U9820A Nano Indenter G200 (Agilent Technologies, Inc., Santa Clara,
CA, USA) equipped with a TB-13989 Berkovich-type diamond head (Agilent Technologies, Inc.,
Santa Clara, CA, USA) with a displacement resolution less than 0.02 nm. The Poisson’s ratio v was set
at 0.3. To ensure the reliability of test results, the thermal drift effect during pressing was automatically
deducted. Eight test points were indented on each microstructure, and the indentations were arranged
in a dot array (Figure 1a). To avoid overlapping, the centers of test points were placed 20 µm apart.
For each indentation, we immediately took readings for nanohardness directly from the software of
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nanoindentation equipment. We plotted a nanohardness–displacement curve for each indentation.
After nanoindentation tests, the cross-sectional plane of the sample was etched again to screen the
nanoindentations on target microstructures (Figure 1b).
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Figure 1. Dot array of indentations: (a) in a polished plane, the nanoindentations were detected; (b) in
an etched plane, the nanoindentations crossed the grain boundaries in a microstructure.

3. Results

3.1. Microstructure

Based on SEM and TEM micrographs and SAED patterns from samples made by sub-rapid
solidification, we identified three microstructures on the surface area of our sample, down to a depth
of 200 µm: (1) lath martensite (M), consisting of fibers with fusiform grains randomly distributed
between them; (2) upper bainite (UB), consisting of roughly parallel laths arranged within randomly
oriented blocks; and (3) acicular ferrite (AF), consisting of needles with high-angle misorientations
(Figure 2a–c). The average width of all grains (laths or needles) was less than 1 µm.

Martensite usually has a bct structure, one in which there is deformation in the a-axis and the
c-axis. Our SAED patterns (Figure 2g) indicated a difference of about 0.4% between the interplanar
distances of the (110) plane and the (011) plane, indicating the possible presence of lattice distortion.
We used the following formulas to calculate the lattice distortion caused by C atoms in martensite [22]:

c = a0 + αp (1)

a = a0 − βp (2)

where c and a are lattice constants of martensite, a0 is the lattice constant of α-Fe (2.8664 Å), p is the
carbon content (wt%), α = 0.116 ± 0.002, and β = 0.013 ± 0.002.

Given that the carbon content of our steel is 0.023 wt%, the value for c should be about 2.869 Å and
the value for a should be about 2.866 Å. Thus, we calculated a difference of 0.05% between the interplanar
distances of the (110) plane (2.0266 Å) and the (011) plane (2.0277 Å). In fact, the actual difference
in martensite was higher than 0.05% as a result of carbon segregation in quenched low-carbon steel.
Due to the difference of carbon solubility in γ-Fe and α-Fe, extra carbon was expelled to surrounding
austenite (γ-Fe) when part of the austenite transformed into ferrite or bainitic ferrite during cooling.
The carbon content of the enriched austenite could reach 5–6 times of the average carbon content
of the steel [23]. The carbon-rich austenite then transformed diffusionlessly into martensite during
quenching, resulting in a relatively high carbon content in the martensite. In our study, the carbon
content in martensite would be about 0.14 wt% (6 times of 0.023 wt%). Thus, the calculated difference
between the interplanar distances of (110) and (011) planes could reach 0.31%. It was similar to 0.4%,
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the value calculated according to SAED patterns. Thus, we concluded that it was a bct crystal structure
in the area shown in Figure 2d.
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Figure 2. Microstructures found at 0–200 µm depth of the sample surface. (a) SEM image of martensite.
(b) SEM of upper bainite. (c) SEM of acicular ferrite. (d) TEM image of martensite with the width of
laths indicated between white dashed lines. (e) TEM of upper bainite with cementite outlined in white
dashed lines. (f) TEM of acicular ferrite. (g) SAED pattern of martensite with a zone axis of <111>.
(h) SAED of upper bainite with a zone axis of <111> and cementite with a zone axis of <010>. (i) SAED
of acicular ferrite with a zone axis of <001>.

The presence of martensite was confirmed by combining the lattice distortion from SAED results
and the compared micrographs with the published images of lath martensite [7,24–29]. The ultrafine
parallel laths in our TEM images were highly consistent with the known microstructures of lath
martensite, the width of the laths (0.1–0.25 µm, averaged 128 nm) was well within the known range for
martensite (0.1–0.5 µm) [28]. The straight grain boundaries between laths (shown in Figure 2d) that are
a characteristic of martensite [29] are clearly visible in our TEM micrographs.

Our TEM micrographs of upper bainite showed the characteristic structure of lath-like ferrite with
cementite (θ) between the laths (Figure 2e). Our SAED patterns indicated the presence of bcc α-Fe and
the secondary phase strips of cementite with an Isaichev relationship ({110}α//{103}θ, <111>α//<010>θ)
between the two phases (Figure 2h). The TEM micrographs of acicular ferrite showed relatively long
and coarse grains (Figure 2f), and these grains were all indexed to be α-Fe (Figure 2i).

Three of the observed constituents mixed with one another in the surface layer. In the area of
0–50 µm depth, the microstructure consisted of lath martensite and upper bainite with large aspect
ratios, which we called B1 (Figure 3a). In the area of 50–200 µm depth, the microstructure consisted of
acicular ferrite and upper bainite with low aspect rations, which we called B2 (Figure 3b). B1 appeared
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as large blocks with over 15 roughly paralleled laths, and the length/width ratios of the laths were
larger than 30. B2 appeared as an assortment of small blocks with several paralleled laths, and the
length/width ratios of the laths were less than 10.
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of lath martensite and B1 blocks of upper bainite in the 0–50 µm area. (b) Mixed microstructure of
acicular ferrite and B2 blocks of upper bainite in the 50–200 µm area.

3.2. Nanohardness and Yield Strength

Since the thin surface layer differed greatly in hardness with the hardness in interior part of our
steel, and the microstructure mixed one another in the thin layer, nanoindentation is the preferred
method for testing surface mechanical properties in each microstructure.

Based on data drawn from nanohardness–displacement curves, we knew that the average
nanohardness was much higher for the martensite than for the ferrites: 9.87 ± 0.51 GPa for lath
martensite, as opposed to 4.18 ± 0.39 GPa for upper bainite and 2.93 ± 0.30 GPa for acicular ferrite
(Figure 4). High nanohardness in steel is usually associated with high carbon content. The carbon
content (0.023 wt%) was considerably low in our steel matrix. Because of the existence of a mixed
microstructure in the surface layer, the nanohardness of the martensite in our steel reached levels as
high as those reported for steels with twenty times the carbon content (0.41 wt%) [30,31]. Ohmura et al.
explained that their nanohardness results indicated a significant grain size effect in Fe-C martensite [31].
We thus assumed that, as Ohmura et al. suggested, the unusually high hardness of our lath martensite
could be attributed to the fineness of the laths, whose width was only about 128 nm. This was nearly
as low as 0.1 µm, the minimum width given by He et al. for martensite laths [28].Metals 2020, 10, x FOR PEER REVIEW 6 of 10 
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The nanohardness of the upper bainite in our steel fell well within the range of 3–5 GPa reported
by other researchers [32–34]. On the other hand, the nanohardness reported for acicular ferrite by
Shang et al., whose indentation tests were performed exclusively inside individual grains, was about
1.5 times lower than our findings [35]. Our value was close to that achieved in aged, alloyed low-carbon
steels [36–40]. Our indentation tests were instead performed in a dot array that crossed grain boundaries,
thus including the effect of those boundaries on dislocation glide. The average nanohardness of
upper bainite was over 1 GPa higher than that of acicular ferrite, which we attributed mainly to the
contribution of grain size. The average width was about 0.6 µm for upper bainite laths and about
0.8 µm for acicular ferrite needles. The precipitation strengthening effect of cementite also contributed
to the higher hardness of upper bainite.

Using our tested average nanohardness values and the Equation (3) derived by Rodriguez et al.
based on stress–strain testing, we calculated the yield strength in each microstructure of the surface layer [41].
It was about 2378 ± 123 MPa for lath martensite, 1007 ± 94 MPa for upper bainite, and 706 ± 72 MPa for
acicular ferrite.

H = 4.15σY (3)

where H is nanohardness and σY is yield strength.
Our low-carbon steel, with only 0.023% carbon content, proved to be able to sustain deformations

without permanent deflection under a load of up to 2255 MPa. The high yield strength value of
martensite particularly gave the surface layer exceptional resistance to abrasion to a degree that would
be unachievable without additional heat treatment in other steels with similar carbon content.

4. Discussion

We created an illustration to show the distribution of the three microstructures in the surface
layer of our sample (Figure 5). Our steel sheet experienced two key phase transformation stages
during the cooling process: (1) liquid to solid transformation, (2) austinite to martensite or ferrite
(room-temperature microstructure). The cooling rates during solidification, i.e., during liquid to solid
transformation, were calculated to be about 900–1000 K/s at 0–50 µm depth and about 400–900 K/s at
50–200 µm depth. The high cooling rate at this stage resulted in a refined high-temperature microstructure
in the surface area, such as an average austinite grain size of 152 µm. The cooling rates at the second
stage were estimated to be about 50–100 K/s at 0–50 µm and about 10–30 K/s at 50–200 µm. According to
the continuous cooling transformation (CCT) curve of a low-carbon steel [42], we deduced the phase
transformation that occurred in the hard surface layer.
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In the 0–50µm depth area, the ferrite laths of upper bainite nucleated on austenite grain boundaries
on the surface and grew inward. The carbon was expelled from bainitic ferrite into the surrounding
austenite because of the difference in solubility of carbon in the two phases. With the further growth of
bainitic ferrite laths, the supersaturated carbon between the laths in the same block precipitated in
form of nanosized cementite strips, while the carbon expelled outside the block enriched the carbon
content in surrounding austenite. The carbon-rich austenite subsequently transformed diffusionlessly
into lath martensite as a result of a cooling rate of 50–100 K/s. Thus, the carbon content of the lath
martensite was higher than the average carbon content (0.023%) in our sample, resulting in apparent
lattice distortions in the crystal structure. A mixed microstructure of lath martensite and B1 upper
bainite was formed.

In the 50–200 µm depth area, the cooling rate was about 10–30 K/s, which was in the acicular
ferrite and bainitic ferrite transformation zone. Acicular ferrite nucleated and grew on inclusions
inside austenite grains prior to bainitic ferrite, which effectively separated the austenite grains into
small regions. The needles of acicular ferrite provided nucleation sites for bainite laths and also limited
the growth of the laths [43]. This resulted in a mixed microstructure of acicular ferrite with B2 upper
bainite laths in the 50–200 µm depth area.

5. Conclusions

1. In the thin surface layer of sub-rapid-solidified low-carbon steel (0.023 wt% C), we confirmed
the presence of not only upper bainite and acicular ferrite but also lath martensite. B1 upper
bainite formed prior to lath martensite, and both of them were in 0–50 µm depth. B2 upper bainite
formed after acicular ferrite, and both of them were in 50–200 µm depth. B2 upper bainite was
shorter than B1.

2. The unexpectedly high nanohardness of martensite in this low-carbon steel was 9.87 ± 0.51 GPa,
equivalent to the nanohardness level reported for steel with twenty times the carbon content.
This could be attributed to the fineness of the martensite laths with width of only 128 nm,
which was nearly as low as the minimum width given for martensite. The nanohardness was
4.18 ± 0.39 GPa for upper bainite and 2.93 ± 0.30 GPa for acicular ferrite.

3. Martensite at the surface had a yield strength of 2378 ± 123 MPa, substantially higher than upper
bainite (1007 ± 94 MPa) or acicular ferrite (706 ± 72 MPa). The high yield strength of martensite
in the surface layer gave the steel exceptional resistance to abrasion, to a degree that would be
unachievable without additional heat treatment in other steels with similar carbon content.
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