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ABSTRACT: Structural characterization of misfolded protein aggregates is essential to understanding the molecular mechanism of
protein aggregation associated with various protein misfolding disorders. Here, we report structural analyses of ex vivo transthyretin
aggregates extracted from human cardiac tissue. Comparative structural analyses of in vitro and ex vivo transthyretin aggregates using
various biophysical techniques revealed that cardiac transthyretin amyloid has structural features similar to those of in vitro
transthyretin amyloid. Our solid-state nuclear magnetic resonance studies showed that in vitro amyloid contains extensive nativelike
β-sheet structures, while other loop regions including helical structures are disrupted in the amyloid state. These results suggest that
transthyretin undergoes a common misfolding and aggregation transition to nativelike aggregation-prone monomers that self-
assemble into amyloid precipitates in vitro and in vivo.

Transthyretin (TTR) is a 55 kDa homotetrameric protein
consisting of four 127-residue β-barrel subunits.1,2 The

primary role of TTR is to transport thyroid hormones and
retinol binding protein in plasma and cerebrospinal fluid. TTR
misfolding and aggregation are associated with numerous
amyloidoses featuring cardiomyopathy and polyneuropathy.3−6

For example, aggregation of wild type TTR (TTRwt) is
implicated in senile systemic amyloidosis (SSA) that affects
nearly 25% of the population over the age of 80.7 In addition,
more than 100 single-point mutations have been identified and
most of these TTR variants (TTRv) can undergo misfolding
and aggregation, leading to the onset of ATTR amyloidosis.
Previous extensive biochemical studies have revealed a

detailed molecular mechanism of TTR misfolding and
aggregation in vitro.8−15 However, whether TTR undergoes
the same misfolding and aggregation transition in vivo remains
unknown. To gain insights into the misfolding and aggregation
in vivo, it is essential to examine TTR aggregates formed under
physiological conditions (human tissue) and compare
structural features of ex vivo and in vitro TTR amyloids. In
this study, we carried out comparative structural analyses of in
vitro as well as ex vivo TTR amyloid extracted from human
cardiac tissues by using various biophysical techniques,
including Fourier transform infrared spectroscopy (FT-IR),
transmission electron microscopy (TEM), and solid-state
nuclear magnetic resonance (NMR).
The ex vivo TTRwt amyloid fibrils were extracted from the

cardiac tissue of an SSA patient.16 The cardiac extracts were
examined with thioflavin T (ThT) fluorescence and poly-
acrylamide gel electrophoresis (PAGE). The enhanced ThT
fluorescence confirmed the amyloid property of the cardiac
extracts (Figure S1). Sodium dodecyl sulfate (SDS)−PAGE
analysis also showed that TTR is the major component of the
amyloid, consistent with previous structural analyses of the
fibrils deposited in cardiac tissue (Figure S2).16

Our previous mechanistic studies of TTR misfolding in vitro
revealed that nativelike aggregation-prone TTR monomers
form dimers, which self-associate to form small spherical
oligomers in vitro,12 as shown in Figure 1a and Figure S3. TTR
aggregates extracted from human cardiac tissue were examined
by TEM (Figure 1b and Figure S4) for comparative structural
analysis. Small spherical oligomers, indistinguishable from in
vitro oligomers, were also observed in ex vivo cardiac TTR
amyloid.
Structural features of the in vitro and ex vivo TTR amyloids

were further investigated using FT-IR (Figure 2 and Figure
S5). Previous FT-IR studies showed that absorption peaks
arising from the stretching vibrations of main chain CO
groups (amide I) and from the N−H bending vibrations
(amide II) in the peptide backbone are strongly sensitive to
secondary structures and hydrogen bonding patterns in the
amide backbone. Thus, FT-IR has been used to investigate
structural features of amyloids formed by various aggregation-
prone proteins.17−19 In our FT-IR studies of the in vitro and ex
vivo TTR amyloids, the two amyloid states exhibited almost
identical absorption peaks in the IR spectra, particularly the
amide I (1600−1700 cm−1) and II (1500−1600 cm−1) bands
(Figure 2), suggesting that the two amyloids exhibit similar
structural characteristics. Protease K digestion analyses of the
in vitro and ex vivo aggregates are also consistent with the
TEM and FT-IR results (Figure S6).
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Our combined structural studies indicate that in vitro mTTR
amyloid formed at pH 7.4 has structural properties similar to
those of ex vivo cardiac TTR amyloid. However, previous
mechanistic studies, including our structural studies, have
utilized mildly acidic conditions (pH 4−5) to induce amyloid
formation of TTRwt.12,15,20,21 Thus, structural characteristics
of the mTTR and TTRwt amyloids formed at pH 7.4 and 4.4,
respectively, were compared by using solid-state NMR (Figure
S7). The 13C chemical shifts of backbone (Cα) and aliphatic
side chains are highly sensitive to local environments such as
secondary structures and ϕ and ψ dihedral angles. Thus, the
two-dimensional (2D) 13C−13C correlation NMR experiment
is an ideal tool for comparative structural studies of biological
molecules. In the overlaid 2D 13C−13C correlation NMR
spectra, NMR cross-peaks between the backbone (50−65
ppm) and side chain carbons (10−70 ppm) and between side
chain carbons (10−50 ppm) overlap well. The nearly identical
2D spectra for the two TTR amyloids clearly indicate that the
TTR amyloid states have similar molecular conformations.
These solid-state NMR results suggest that TTR has similar
misfolding and aggregation pathways at both pH 7.4 and 4.4,
and the mechanistic studies of TTR misfolding and
aggregation at pH 4.4 may also provide valuable insight into
in vivo TTR misfolding and aggregation.

Previous structural studies showed that TTR amyloid
formed at pH 4.4 had extensive nativelike β-sheet struc-
tures.20,22−27 In this study, more detailed solid-state NMR
experiments were carried out to clearly identify the nativelike
β-structured regions and other regions that undergo a
misfolding transition. The 2D 13C−13C correlation NMR
spectra were acquired and compared for the native (red) and
amyloid (black) states of TTR (Figure 3). The NMR spectra

for the two states overlap well, suggesting that the amyloid
state contains extensive nativelike structures. It is also notable
that numerous cross-peaks from native TTR disappear in the
amyloid state, indicative of structural changes during
misfolding and aggregation.
To identify the residues that undergo structural changes,

three-dimensional solid-state NMR experiments (NCACX,
NCOCX, and CANCO)28,29 were performed for the
sequential resonance assignment of the native TTR (Figure
S8). The chemical shift changes in the 2D DARR spectra were
mapped into the crystal structure of native TTR (Figure 4).
The residues with cross-peaks that disappeared in the amyloid
spectrum are colored green, and the overlapped regions are
colored yellow. The cross-peaks in the boundary in Figure 3
and Figure S9 (green asterisks) are indicated in red, and the
loops in purple could not be assigned presumably due to the
high flexibility of the loop regions in the native state.

Figure 1. TEM images of (a) in vitro and (b) ex vivo TTR amyloid.
The in vitro TTR amyloid was obtained by incubating recombinantly
generated monomeric TTR (mTTR; F87M/L110M) at a protein
concentration of 0.5 mg/mL in PBS buffer (pH 7.4) at 37 °C for 2
days. The ex vivo TTR amyloid was extracted from human cardiac
tissue (TTRwt).

Figure 2. Amide I and II bands of the FT-IR spectra for in vitro
mTTR (red) and ex vivo (black) TTR amyloid.

Figure 3. Overlaid two-dimensional 13C−13C correlation solid-state
NMR spectra for the native (red) and amyloid (black) states of
TTRwt formed at pH 4.4 obtained at a proton frequency of 800 MHz.
A dipolar-assist rotational resonance (DARR) with a 20 ms mixing
time was used for the mixing scheme.

Figure 4. Crystal structure of the monomeric form of native TTR
with colors for the residues that are absent (green). The cross-peaks
in the boundary (Figure S9) are colored red. The crystal structure was
drawn in two different views.
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The comparative solid-state NMR structural analyses of the
native and amyloid states of TTR indicate that the loop regions
(AB, CD, EF, and GH loops) and EF helix undergo structural
changes or become disordered during amyloid formation. The
AB and GH loops are located in the tetrameric interfacial
regions.30 Thus, the dissociation of the tetramers into
monomers may lead to the changes in local environments of
the loop regions, resulting in the chemical shift changes. In
addition, side chain interactions between strands C and B and
the DE loop appear to be disrupted in the amyloid state
(Figure S10a). It is also interesting to note that the chemical
shifts of the residues in A108 in strand G are affected during
misfolding and aggregation (Figure 4 and Figure S10b).
Residue A108 is involved in the formation of the binding
pocket in native tetrameric TTR. The dissociation of the native
tetramer into aggregation-prone monomers is the initial step in
the aggregation process, and thus, the disruption of the binding
pocket may result in the chemical shift changes of the residues
in strand G.
On the other hand, a majority of cross-peaks overlap well in

the overlaid spectra. Most of the cross-peaks come from the
residues in the two β-sheets (CBEF and DAGH), suggesting
that the overall nativelike β-sheet structures appear to remain
unchanged in the amyloid state (Figure 4). These results are
consistent with our previous structural studies using selective
13CO/13Cα labeling schemes that revealed the two β-sheet
structures are maintained in the amyloid state of TTR.20

Understanding the molecular mechanism of protein
misfolding and aggregation is essential for developing
therapeutic approaches. Previous mechanistic studies of TTR
misfolding and aggregation have provided detailed insights into
the molecular basis for misfolding and aggregation in vitro.
Under the amyloidogenic condition at mildly acidic pH values
of 4−5, tetrameric native TTR is dissociated into aggregation-
prone monomers that self-assemble into small oligomers and
subsequently amyloid precipitates.11,21 Comparative structural
analyses of ex vivo and in vitro TTR amyloids are essential for
investigating whether a similar TTR misfolding and
aggregation process takes place in vivo. Previous studies
showed that TTR forms a heterogeneous mixture of amyloids,
including thick and long filaments as well as less-ordered
aggregates in vivo depending on the age of onset and
mutations.31,32 Very recently, a cryo-EM structure of TTR
fibrils extracted from ATTRV30M cardiac tissues was
reported.33 The structural studies revealed that TTRV30M
adopts distinctive non-native conformations in the ex vivo
filaments, suggesting that the TTR variant protein becomes
unfolded during amyloid formation. The filamentous aggre-
gates were, however, not observed in the cardiac extracts from
a patient with ATTRwt amyloidosis used in this study.
Moreover, the ex vivo cardiac TTRwt amyloid resembles in
vitro TTR amyloid with extensive nativelike β-structures.
These observations suggest that TTR misfolding and
aggregation may take place through multiple pathways in
vivo depending on the disease phenotypes and mutations.
In summary, we report solid-state NMR studies that suggest

in vitro TTR amyloid formed at pH 4.4 contains extensive
nativelike β-sheet structures, while most of the native loop
structures are changed in the amyloid state, consistent with
previous structural studies.20,22,23,34 In addition, the in vitro
TTR amyloid has structural characteristics similar to those of
ex vivo cardiac TTR amyloid, suggesting that the TTR
misfolding and aggregation observed under mildly acidic

conditions may occur in vivo, as well. Structural character-
ization of ex vivo TTR variant amyloids associated with
distinct disease phenotypes will be of great importance for
understanding tissue-selective deposition of TTR amyloid,
which is currently underway in our laboratory.
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