
Magnetostructural and EPR Studies of Anisotropic Vanadium trans-
Dicyanide Molecules
Mohamed R. Saber, Komalavalli Thirunavukkuarasu,* Samuel M. Greer, Stephen Hill,*
and Kim R. Dunbar*

Cite This: Inorg. Chem. 2020, 59, 13262−13269 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: A series of trans-dicyanide vanadium(III) com-
pounds based on acetylacetonate, (PPN)[VIII(acac)2(CN)2]·
(PPN)Cl·2MeCN (1), and salen ligands, (Et4N)[V

III(salen)-
(CN)2] (2a), (PPN)[VIII(MeOsalen)(CN)2]·DMF·2MeCN (3),
and (PPN)[VIII(salphen)(CN)2]·DMF (4) [salen = N,N′-
ethylenebis(salicyl-imine), MeOsalen = N,N′-ethylenebis-
(methoxysalicylimine), salphen = N,N′-phenylenebis(salicyl-
imine), and PPN = bis(triphenylphosphine)iminium], were
prepared and structurally characterized. High-field EPR studies
reveal that the complexes exhibit moderate magnetic anisotropy
with positive D values of +5.70, +3.80, +4.05, and +3.99 cm−1 for 1−4, respectively.

■ INTRODUCTION

The early 3d transition metals of groups 4−6 in cyanide
environments are excellent candidates for developing mole-
cules that exhibit strong exchange interactions, as shown in a
theoretical paper by Ruiz and co-workers.1 In particular, a
cyanide environment is expected to promote strong exchange
interactions due to increased π-back bonding into the cyanide
π* orbitals.1−3 In support of this hypothesis is the fact that the
combination of VII (t2g

3) and CrIII (t2g
3) spin centers in

Prussian blue (PB) analogues has been found to lead to bulk
magnetic ordering well above room temperature.4−6

Of specific interest to the current study is the fact that the
vanadium(III) ion is known to participate in strong ferro-
magnetic superexchange interactions in dinuclear species7,8

and often exhibits sizable magnetic anisotropy, with negative
axial zero-field splitting (ZFS) parameters, |D|, of up to 20
cm−1.8−10 These attributes poise VIII building blocks to be
excellent prospects for bistable systems such as single-molecule
magnets (SMMs) and single-chain magnets (SCMs), and for
molecular magnets in general.11 Indeed, Sessoli and co-workers
were able to achieve an increase of the spin state and a
significant enhancement of SMM properties by replacing the
central iron(III) ion with vanadium(III) in a tetrairon(III)
cluster.11

Despite the advantages that one could obtain by
incorporating VIII ions into molecular magnets containing
cyanide, there are only a few well-known vanadium cyanide
building blocks,12−17 specifically K4[V(CN)6],

12 K3[VO-
(CN)5],

13 K4[V(CN)7]·2H2O,16 and (Et4N)3[V(CN)6],
17

most likely due to the tendency for low valent vanadium
complexes to decompose in the presence of oxygen and

water.18−25 Indeed, the incorporation of the hexacyano-
vanadate(III) anion [VIII(CN)6]

3− into PB-type materials has
proven to be difficult because of the ease of oxidation of VIII to
VIV,26 but the room temperature cyanide-based magnet,
VII

0.42V
III
0.58[Cr

III(CN)6]0.86·2.8H2O (TC = 315 K), reported
by Verdaguer’s group is a notable example of a vanadium
containing molecule-based extended magnet.6 It is also
important to point out that the first room temperature
molecule-based magnet, V(TCNE)2 (TC = 350 K), reported by
Miller et al. is also based on vanadium, albeit VII and not VIII.27

Molecules that contain cyanovanadate building blocks are
quite rare.24,25 The only example of a discrete cyanide-bridged
molecule containing VIII is the one reported by Long and co-
workers who demonstrated that the reaction of [(cyclen)V-
(CF3SO3)2](CF3SO3) with (Et4N)CN in DMF produces the
tetrahedral cage complex, [(cyclen)4V4(CN)6]

6+, which
exhibits relatively strong antiferromagnetic coupling, resulting
in a ground state spin of S = 0.24

We have a longstanding interest in the incorporation of
anisotropic early transition-metal centers into discrete cyanide-
based molecules,28,29 an example of which is the synthesis and
magnetic studies of a new early transition-metal cyanide
building block based on TiIII.30 As part of our pursuit of new
VIII dicyanide building blocks, we elected to use salen type
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[(salen = N,N′-ethylenebis(salicylimine), MeOsalen = N,N′-
ethylenebis(methoxysalicylimine), salphen = N ,N′-
phenylenebis(salicyl-imine)], and acac (acac = acetylaceto-
nate) ligands. Salen-type cyanide building blocks are known for
a number of metals,31−37 including the [RuIIIsalen(CN)2]

−

molecule which has been incorporated into several interesting
heterometallic cyanide clusters.38,39 The diketonate family has
also been used as capping ligands for cyanide compounds with
RuIII and CoIII.38−44

Herein, we report the syntheses, structural characterization,
spectroscopic studies, as well as magnetic and EPR measure-
ments of new anisotropic vanadium dicyanide building blocks
with acac- and salen-based ligands with axial coordination
geometries.

■ RESULTS AND DISCUSSION
Syntheses and Characterization. VIII precursors of

general formulas [VIII(L)Cl(THF)] (L = salen ligand),
[VIII(acac)Cl2(THF)2], and [VIII(acac)2Cl(THF)] are used
to prepare cyanide derivatives.45−48 The reaction of
[VIII(acac)2Cl(THF)] with two equivalents of (PPN)CN in
acetonitr i le afforded yel low crysta l s of (PPN)-
[VIII(acac)2(CN)2]·(PPN)Cl·2MeCN (1) (Figures 1 and

S1), which involves cocrystallization with an equivalent of
(PPN)Cl (PPN = bis(triphenylphosphine)iminium). Attempts
to prepare the (Et4N)[VIII(acac)2(CN)2] compound by
reacting [VIII(acac)2Cl(THF)] with two equivalents of
(Et4N)CN in acetonitrile resulted in yellow crystals of

(Et4N)2[V
III(acac)(CN)4] as determined by X-ray measure-

ments. These results indicate a tendency for the acac ligands to
be labilized. In an analogous fashion, the salen precursors were
reacted with two equivalents of (PPN)CN or (Et4N)CN in
DMF/MeCN to prepare the corresponding dicyanide
complexes, (Et4N)[VIII(salen)(CN)2] (2a), (PPN)-
[VIII(salen)(CN)2] (2b), (PPN)[VIII(MeOsalen)(CN)2]·
DMF·2MeCN (3), and (PPN)[VIII(salphen)(CN)2]·DMF
(4).
Compound 1 crystallizes in the triclinic P1 space group

(Table S1) with the anion consisting of a vanadium center with
four equatorial O atoms from two acac ligands and two carbon
atoms from axial cyanide ligands (Figure 1). The charge on the
anion is balanced by one PPN+ cation, but there are also
additional equivalents of (PPN)Cl and two acetonitrile solvent
molecules in the structure. Selected bond distances and angles
are listed in Table S2. The V(1)−O bond distances of
1.966(2) Å and 1.978(2) Å are in the usual range of reported
VIII diketonate complexes.49 The V(1)CN distance of
2.168(2) Å is slightly longer than the corresponding distances
reported for (Et4N)3[V(CN)6]

17 [2.127(3) Å], K4[V(CN)7]·
2H2O

16 [2.147(7) Å], (Et4N)[Tp*V(CN)3]
25 [2.085(7) Å],

and [(cyclen)V(CN)3]
24 [2.160(6) Å]. The cyanide ligands

are nearly linear with a VCN angle of 179.6(2)°; the C
N bond distance of 1.150(3) Å is typical for vanadium cyanide
complexes.12−16,24,25 The chelate ring of the acetylacetonate
ligand is twisted out of the coordination plane with a dihedral
angle of ∼19.2°.
Similarly, the salen-containing compounds exhibit a pseudo-

octahedral environment around the central vanadium in the
anion, with the N2O2 donor atoms of the salen ligand
occupying the equatorial coordination sites, while the axial
sites are occupied by carbon donors of axial cyanide ligands
(Figures 2a, S2, and S3). The charge on the anion is balanced
by (Et4N)

+ in 2a and (PPN)+ in 2b. Selected bond distances
and angles are compiled in Table S2. Compound 2a crystallizes
in the orthorhombic space group Fdd2 (Table S1). It exhibits a
V(1)−O(1) bond distance of 1.921(2) Å and a V(1)−N(2)
bond distance of 2.094(2) Å. These values are comparable to
those observed for previously reported vanadium salen
complexes.50 The metal cyanide distance, V(1)CN =
2.178(3) Å, is slightly longer than that found in 1, and the
average CN bond distance is 1.159(3) Å. The cyanide
ligands are slightly bent at an average VCN angle of
175.9(2)°. Compound 2b (Figure S3) crystallizes in the
orthorhombic space group Pcca (Table S1). The [VIII

salen(CN)2]
− anion exhibits very similar bond distances and

Figure 1. Molecular structure of the [VIII(acac)2(CN)2]
− anion in 1.

Thermal ellipsoids are drawn at the 50% probability level. Hydrogen
atoms have been omitted for the sake of clarity.

Figure 2. Molecular structure of (a) the [VIII(salen)(CN)2]
− anion in 2 and (b) the [VIII(MeOsalen)(CN)2]

− anion in 3. Thermal ellipsoids are
drawn at the 50% probability level. Hydrogen atoms have been omitted for the sake of clarity.
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angles to 2a [V(1)O(1) = 1.9133(10) Å, V(1)N(2) =
2.0990(12) Å, V(1)CN = 2.1898(15) Å, and VCN
= 173.32(13)° (Table S2)]. The N,O chelate ring of the salen
ligand exhibits a dihedral angle with the metal coordination
plane of 19.848(6)° in 2a and 22.01(1)° in 2b.
Compound 3 crystallizes in the monoclinic space group P21/

c (Table S1) with a similar pseudo-octahedral coordination
environment for the complex anion, with the N2O2 donor
atoms of the MeOsalen ligand in the equatorial coordination
sites and carbon donors of the cyanide ligands in the axial
positions (Figures 2b and S4). The bond distances [V(1)−
O(1) = 1.909(2) Å and V(1)−N(2) = 2.082(2) Å] are very
similar to those of 2a, whereas the metal cyanide distance
[V(1)CN = 2.178(3) Å] and the CN bond lengths
[1.145(4) Å] are slightly shorter. The VCN angle of
172.0(3)° is also slightly more bent than in the case of 2a,
while the N,O chelate ring of the MeOsalen ligand forms a
similar dihedral angle with the coordination plane of
23.633(6)° (Table S2), similar to related octahedral VIII

salen moeties.50,51 The crystal contains two partially occupied
disordered acetonitrile molecules and a DMF molecule of
crystallization.
Compound 4 crystallizes in the monoclinic space group P21/

c (Table S1) with a pseudo-octahedral environment for the
complex anion (Figures 3 and S5). The bond distances

[V(1)−O(1) = 1.9034(16) Å, V(1)−O(2) = 1.8997(16) Å,
V(1)−N(3) = 2.082(2) Å, V(1)−N(4) = 2.1114(19) Å] and
average metal cyanide distance V(1)CN = 2.172(2) Å are
very close to those in 2a, while the average CN bond
distance is 1.152(3) Å. The cyanide ligands are slightly bent
with a VCN angle of 176.7(2)°, whereas the N,O chelate
ring of the salphen ligand forms a dihedral angle of 25.780(6)°
with the coordination plane. The crystal contains a disordered
DMF molecule of crystallization.
The IR spectra of the compounds (Table S3) are consistent

with the presence of terminal cyanides as indicated by the
ν(CN) stretching frequencies at 2045 cm−1 in 1 and in the
2100−2104 cm−1 range in 2−4. Surprisingly, the ν(CN)
stretching mode for 1 is shifted to a lower frequency compared
to the corresponding modes observed for simple cyanide salts,
whereas for 2−4, the vibration shifts to higher frequencies and
lies within the range of other reported vanadium cyanide
precursors.12−16,25 The presence of the coordinated Schiff base

ligands in 2−4 is indicated by the ν(CN) stretching
frequencies of the imine group at 1618−1666 cm−1.

Magnetic Studies. Magnetic measurements were per-
formed on crushed crystals at an applied magnetic field, H =
1000 Oe, over a temperature range, T = 1.8 to 300 K. The χT
versus T plot for 1 (Figure 4) reveals a room temperature value

of 0.96 emu·K·mol−1, corresponding to an isolated VIII ion with
S = 1, a Lande ́ factor g = 1.94, and a temperature-independent
paramagnetism (TIP) contribution of 1.0 × 10−4 emu·mol−1.
Upon lowering the temperature, χT gradually decreases until
∼15 K is reached, after which it sharply drops to 0.43 emu·K·
mol−1 at 2 K, indicating ZFS effects. The temperature
dependence of the χT product over the 2−300 K range was
fit using the program PHI52 to the following spin Hamiltonian:

μ μ̂ = ̂ − + + ̂ − ̂ + · ̂
⎯⇀⎯

H D S S S E S S g H S( ( 1)/3) ( )z x y
2 2 2

B 0
(1)

where Ŝ is the spin operator with components Ŝi (i = x, y, z), μ0
is the vacuum permeability, and μB is the Bohr magneton,
yielding axial and rhombic ZFS parameters, D = +5.72 cm−1

and E = +0.41 cm−1 (E/D = 0.072), respectively, and isotropic
g = 1.92. Field-dependent reduced magnetization data at
temperatures between 1.8 and 4.5 K reveal nonsuperimposable
iso-field lines when plotted versus H/T due to the presence of
ZFS interactions (Figure 4, inset). Fits using ANISOFIT2.053

led to estimates of the ZFS parameters for 1 of D = +5.6 cm−1

and E = 0.14 cm−1 (E/D = 0.025), with g = 1.96, which are
quite similar to the PHI results. The lack of saturation of the
magnetization, even at 7 T, is not unexpected due to the
anisotropic nature of the VIII center, but approaches the
expected value of ∼2μB. A similar behavior, consistent with
isolated anisotropic VIII centers, was observed for 2a, 2b, 3, and
4 (Figures S6−S9). Fits of χT and reduced magnetization data
led to ZFS parameters, D = +5.3, +3.97, +4.2, and +4.3 cm−1

for 2a,b−4, respectively, with E ∼ 0 in each case, to within the
uncertainty of the fits. The fit for 2a indicates the presence of
intermolecular antiferromagnetic interactions (zJ = −0.33
cm−1), presumably due to the smaller size of the Et4N

+

cations [V···V separation of 7.734(1) Å] as compared to the
significantly larger PPN+ cations in the other samples [V···V =
10.496(1) Å in 2b].

Figure 3. Molecular structure of the [VIII(salphen)(CN)2]
− anion in

4. Thermal ellipsoids are drawn at the 50% probability level.
Hydrogen atoms have been omitted for the sake of clarity.

Figure 4. Temperature dependence of the χT product (δ) for 1. The
solid line corresponds to the best fit using PHI (see main text). Inset:
Reduced magnetization of 1. Solid lines correspond to the best-fit
using ANISOFIT2.0.
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EPR Studies. While magnetic measurements can, in theory,
provide estimates of ZFS parameters, inaccuracies often arise
due to insufficient constraints provided by bulk thermody-
namic data.54 It is better to use a spectroscopic technique such
as EPR (in this case, high-field EPR due to the sizable ZFS
energies involved),55,56 which directly measures energy
splittings that can be related to ZFS parameters in a
straightforward manner.
Multifrequency high-field EPR measurements in magnetic

fields up to 14.5 T were performed on powder samples57 of all
compounds, except for 2, where 2a was measured as a single-
crystal.58 Representative spectra for 2a are shown for several
different frequencies in Figure 5a. An angle-dependent study

was first performed (Figures S10 and S11) in order to orient
the crystal such that the applied magnetic field was aligned as
close as possible to the local z- (or hard-, vide inf ra) axis
associated with one of the two distinct molecular orientations
within the unit cell.59 To extract the spin Hamiltonian
parameters, the peak positions observed for each frequency
were gathered in a 2D plot of frequency versus resonant
magnetic field (Figure 5b) and fit to eq 1.

The first thing to note from Figure 5 is the high-quality of
the crystal, which gives extremely sharp resonances for a
transition-metal complex with such a large magnetoanisotropy.
This enables clear resolution of two sets of resonances
corresponding to the two distinct molecular orientations. As
seen in Figure 5b, the open squares (□) exhibit a purely linear
field dependence indicative of a diagonal Hamiltonian,
confirming that the applied field is parallel to the z-axis of
the ZFS tensor. Also notable is the absence of any breaking of
the degeneracy of the two branches that intercept the zero-field
axis at 114 GHz. This observation confirms that the rhombic
ZFS parameter E = 0 for 2a (see also Figure S12), to within the
resolution of the measurement (<0.03 cm−1). Therefore, the
zero-field intercept exactly gives the D parameter (= 3.80
cm−1) for 2a. Meanwhile, 80 GHz simulations displayed in the
lower portion of Figure 5a for both signs of D confirm that the
anisotropy is of the easy-plane type (D > 0). Finally, the open
circles (○) in Figure 5b, corresponding to the other molecular
orientation, give the best simulation with a tilt angle of ∼60°
with respect to the aligned molecules (see also Figure S11),
information that is only accessible via single-crystal measure-
ments. This is supported by examination of the unit cell which
indeed shows two molecules with ∼65° separating their C−V−
C axes (Figure 5b inset). This observation suggests that the z-
axis of the ZFS tensor is nearly aligned with the C−V−C axes.
Analyses of multifrequency EPR spectra obtained for

powders of compounds 1, 3, and 4 proceeded similarly, but
they considered all of the canonical turning points in the
powder average. The spectra, along with 2D frequency versus
resonant field plots (“Florida maps”), are reported in the
Supporting Information (Figures S13−S16). The ZFS
parameters obtained from the EPR fits are listed in Table 1.

The axial ZFS parameter, D, was found to be positive in all
cases, lying in the +3.8 to +5.7 cm−1 range. The rhombic term,
E, is absent in all compounds except for 1, where it is
substantial (∼0.73 cm−1 or E/D = 0.13). For this reason, we
constrained gx = gy for all compounds except 1. The obtained
parameters are comparable to those for previously reported VIII

complexes with positive axial anisotropy (∼5 cm−1 ≤ D ≤ 7
cm−1), e.g., K3V

III(ox)3·3H2O (D = +5.3 cm−1),60 VIII(acac)3
(D = +6.9 cm−1),61 [VIII(urea)6](ClO4)3 (D = +6.0 cm−1),62

and Cs[Ga:V](SO4)2·12H2O (D = +4.77 cm−1).63

■ THEORY AND DISCUSSION
To relate the experimentally determined ZFS parameters to
the physical structure of the compounds, we developed a
model based on ligand field (LF) theory. The π-accepting
nature of the CN− ligands results in the stabilization of the xz/
yz orbital pair and, thus, a ground state configuration of
|(xz)1(yz)1| (Figure 6). In this scenario the largest contribution
to the ZFS is positive and originates from the spin−orbit

Figure 5. (a) Oriented single-crystal high-field EPR spectra recorded
for 2a at multiple high-frequencies at a temperature of 1.5 K. (b) 2D
plot of frequency versus resonance position. The red lines in (b)
correspond to a second vanadium center tilted by ∼60°; the inset
depicts two VIII centers in the crystal structure with an angle of ∼65°
between their respective C−V−C axes. The lower two traces in (a)
are simulations of the 80 GHz, 1.5 K spectrum for both signs of D,
confirming its positive sign.

Table 1. EPR Spin Hamiltonian Parameters for Compounds
1−4

compound g(x,y,z) D (cm−1) E (cm−1)

1 1.93, 1.96, 1.98 +5.70 0.73
2aa 1.93, 1.93, 1.95 +3.80 0
3 1.95, 1.95, 1.99 +4.05 0
4 1.95, 1.95, 1.98 +3.99 0

aThe g values are calculated based on the relative crystal alignment
assuming a tilt angle of 60°.
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interaction of the ground state with the doubly degenerate first
excited state (|(xz)1(xy)1|, |(yz)1(xy)1|). The magnitude of this
contribution to D is proportional to λ2/Δa, where λ is the many
electron spin−orbit coupling constant and Δa is approximately
equal to the energy difference between the xz/yz and xy
orbitals. The π-interactions with the equatorial ligands also
affect the value of Δa. The salen and acac ligands will behave as
anisotropic π donors, meaning that the strength of the π
interaction in the plane of the ligand (π∥) will be different from
the one out of the plane (π⊥). These two interactions will have
competing effects on the magnitude of Δa and, in turn, the
anisotropy of the system. The π⊥ interaction destabilizes the
xz/yz orbital pair, bringing them closer to the xy orbital,
resulting in a larger D. If this interaction becomes strong

compared to the CN− back-bonding interaction, then the
orbital ordering could become reversed making the xy orbital
lowest in energy. Conversely, the π∥ component will destabilize
the xy orbital, thus increasing Δa and lowering D. To illustrate
these effects, we performed a series of LF theory calculations
based on the angular overlap model (AOM).64,65 It should be
noted that the obtained results, which are shown in Figure 6,
are approximate in that they consider only the 3F state and
assume rigorous D4h symmetry. A comparison with the
experimentally determined D values, and assuming a constant
ratio of the π⊥/π∥-interaction strength, is in accord with the
expectation that salen-based ligands are weaker π-donors than
the acac ligand. The observed ZFS parameters also underscore
the importance of ligand rigidity in the salen complexes to
suppress the rhombic distortion resulting in an E ≈ 0, as
compared to the less rigid acac ligand with a nonzero rhombic
term.

■ CONCLUSIONS
A family of new anisotropic vanadium cyanide building blocks
based on acetylacetonate, salen [N,N′-ethylenebis (salicyli-
mine)], 2-methoxysalen [N,N′-ethylenebis(2-methoxysalicyli-
mine)], and salphen [N,N′-phenylenebis (salicylimine)], were
prepared. Magnetic and high-field EPR studies revealed
moderate positive ZFS parameters, e.g., D = +5.70, +3.80,
+4.05, and +3.99 cm−1 for 1−4, respectively, which
approximately follow the variation in the LF strength of the
capping ligands. The results highlight the importance of ligand
rigidity for suppressing rhombic distortions. Attempts to
incorporate these building blocks into cyanide bridged chains
are in progress.
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