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We design efficient controlled-rotation gates with arbitrary angle acting on three-spin encoded
qubits for exchange-only quantum computation. Two pulse sequence constructions are given. The
first is motivated by an analytic derivation of the efficient Fong-Wandzura sequence for an exact
cnot gate. This derivation, briefly reviewed here, is based on elevating short sequences of swap
pulses to an entangling two-qubit gate. To go beyond cnot, we apply a similar elevation to a
modified short sequence consisting of swaps and one pulse of arbitrary duration. This results
in two-qubit sequences that carry out controlled-rotation gates of arbitrary angle. The second
construction streamlines a class of arbitrary cphase gates established earlier. Both constructions
are based on building two-qubit sequences out of subsequences with special properties that render
each step of the construction analytically tractable.

I. INTRODUCTION

In their original proposal for spin-based quantum com-
putation, Loss and DiVincenzo envisioned a quantum
computer in which every qubit is encoded into the two-
dimensional Hilbert space of a spin-1

2 particle, such as the
spin of an electron trapped in a quantum dot [1]. Uni-
versal quantum gates can be carried out by adiabatically
pulsing the Heisenberg exchange Hamiltonian JSi ·Sj be-
tween pairs of spins, if combined with controlling time-
dependent magnetic fields that are local in the spin po-
sitions. In a subsequent proposal, in which logical qubits
are represented by pairs of spin- 1

2 particles, universality
is achieved through control of the Heisenberg exchange
Hamiltonian supplemented by a static magnetic field gra-
dient within each two-spin qubit [2]. If, however, logical
qubits are encoded using at least three spin- 1

2 particles,
controlled exchange by itself is a universal resource for
quantum computation [3, 4].

A comprehensive review of computing schemes based
on various three-spin qubit implementations is given in
Ref. [5]. In the present work we focus on the exchange-
only proposal introduced in Ref. [6], in which each qubit
is encoded using three spin- 1

2 particles, and quantum
gates are realized by turning on-and-off the exchange cou-
pling between pairs of spins. As opposed to alternate
exchange-only computing schemes in which the exchange
coupling acting between certain spins is always turned
on [7–16], in the present computing scheme this coupling
is assumed to be completely off unless it is being pulsed.
Reference [6] provided the first explicit exchange-pulse
sequences forming a universal gate set consisting of arbi-
trary single-qubit rotations and a controlled-not (cnot)
gate (see also Ref. [17]).

After the first demonstration of coherent control of the
exchange interaction in a semiconductor double quantum
dot [18], there have been numerous advances in fabricat-
ing and operating quantum dot systems for three-spin
qubits [19–28]. Among these experiments are many re-

alizations of the particular kind of exchange-only qubit
considered here [19–21, 24, 25], including a recent demon-
stration of a single-qubit device with average gate errors
of 0.35% [28].

For exchange-only quantum computation with ex-
change pulses, single-qubit rotations are conceptually
easy to obtain, requiring at most four pulses for an ar-
bitrary rotation about the Bloch sphere [6]. The con-
struction of two-qubit gates is significantly more compli-
cated. This is because interqubit pulses, which act on
spins that belong to different logical qubits, cause leak-
age out of the encoded qubit space, while any pulse se-
quence resulting in a logical gate needs to maintain the
qubit encoding. Given the large search space for unitary
operators acting on six spins, the necessity of such in-
terqubit pulses greatly complicates the problem of finding
pulse sequences for entangling two-qubit gates. Indeed,
most such sequences have first been found through nu-
merical searches [6, 29–31], among which is the optimal
known two-qubit sequence found by Fong and Wandzura,
which results in a cnot gate [30, 32]. Recently, we pro-
vided a straightforward, analytic derivation of the Fong-
Wandzura pulse sequence [33].

The first two-qubit gate sequences that have originally
been constructed in an analytic fashion are those pre-
sented in Ref. [34]. These sequences can be used to
directly enact an arbitrary Controlled-phase (cphase)
gate, which, when acting on two qubits with state labels
a = 0 or 1 and b = 0 or 1, is defined as applying the
identity to the two-qubit states |ab〉 = |00〉, |01〉 and |10〉
while multiplying the |11〉 state by a phase factor of eiφ

for some phase φ. Note that such cphase gates with
small phases φ are an integral part in (i) the standard
implementation of the quantum Fourier transform (see,
e.g., Sec. 5.1 in Ref. [35]), and (ii) variational quantum
eigensolver algorithms [36–38] applied to certain chem-
istry applications [39]. The ability to carry out efficient
cphase gates may thus prove valuable in NISQ devices
[40]. As opposed to those pulse sequences mentioned
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above [6, 29–31], the sequences of Ref. [34] have a built-in
degree of freedom that allows one to directly carry out
arbitrary cphase gates.

Recently, another set of pulse sequences for cnot has
been constructed using analytic tools rather than brute
force search [41]. A crucial idea in this interesting devel-
opment is to simplify the search for two-qubit sequences
by allowing for leakage out of the encoded Hilbert space.
The amount of leakage is then systematically suppressed
by iteratively projecting these operations onto the com-
putational Hilbert space, with every subsequent itera-
tion reducing the amount of leakage while increasing the
length of the pulse sequence. Under certain assumptions,
some of the sequences presented in Ref. [41] have even
shorter total duration (though comprising more clock cy-
cles) than the Fong-Wandzura sequence.

In this paper we show in two different two-qubit
gate constructions how the insights gained in our earlier
work on deriving two-qubit gate sequences can be used
to analytically construct related sequences resulting in
controlled-rotation gates locally equivalent to arbitrary
cphase. To make the derivation of our sequences in-
tuitively accessible, we review some of the core aspects
of the relevant previous studies [33, 34]. The sequences
found in this work, similar to those of Ref. [34], contain
a small number of exchange pulses whose durations can
be adjusted to choose the phase φ of the cphase gate.

In the first construction, we design an entirely new
class of two-qubit gate sequences by modifying the funda-
mental structure of the Fong-Wandzura sequence, which,
as we have shown previously, manifests itself as a simple
three-spin sequence of five exchange pulses [33]. We also
substantiate this result by working out a concrete mem-
ber of this gate class. In the second construction, we take
a set of tools developed in an earlier work on designing
two-qubit gate sequences [34] and reorganize them in a
way that significantly reduces the total pulse count at
the cost of some additional complexity in the construc-
tion. Assuming the spins encoding the logical qubits are
arranged along a linear array and only nearest-neighbor
pulses are allowed, the arbitrary cphase sequences pre-
sented here consist of only a few more pulses than the
optimal Fong-Wandzura cnot sequence. Our two-qubit
gates are efficient, since building arbitrary cphase out
of cnot and single-qubit rotations requires calling cnot
twice. As detailed in the Conclusions VI, compared to
this double-cnot construction or the cphase pulse se-
quences constructed in Ref. [34], we find that our new
sequences reduce the total pulse count by a factor ∼ 1.5.

This paper is organized as follows. Section II discusses
some of the basic tools and notation used in this study.
In Sec. III, we present the construction—based on our
earlier derivation of the Fong-Wandzura sequence [33]—
of conceptually new two-qubit gates. Next, in Sec. IV we
establish two-qubit sequences by way of refining the ear-
lier arbitrary-cphase construction presented in Ref. [34].
Explicit example pulse sequences for arbitrary cphase
gates, one for each construction, are given in Sec. V, and

(a)

(b) (c)

FIG. 1. Various multispin states given in a notation in which
spin- 1

2
particles, represented by •, are enclosed by ovals la-

beled by total spin. (a) Three-spin qubit encoding of Ref. [6]
showing the logical |0〉 and |1〉 states, together with the non-
computational state, |nc〉. (b) A pair of three-spin qubits with
state labels a and b. (c) Highlighting the five rightmost spins
with total spin f = 1

2
or 3

2
(but not 5

2
, because the rightmost

three spins are initialized with total spin 1
2
) acted on by the

two-qubit pulse sequences constructed in this paper.

we conclude in Sec. VI. The equivalence of the two differ-
ent representations of the Fong-Wandzura sequence given
in Refs. [30] and [33] is worked out explicitly in Appendix
A. Appendices B through D provide various supporting
explanations and calculations.

II. ROTATIONAL SYMMETRY

In this work we specify states of multiple spins using
only total-spin quantum numbers. We are allowed to do
so because the isotropic Heisenberg exchange Hamilto-
nian JSi · Sj , the only resource for realizing quantum
gates considered here, is rotationally invariant.

Figure 1 shows the three-spin qubit encoding of Ref. [6]
in a convenient notation (introduced to the present con-
text in Ref. [34]) in which spins are enclosed by ovals
labeled by the total spin of all particles inside. In this
encoding, which we adopt in our work, logical qubits are
represented by three spins with total spin 1

2 . In the text

a spin- 1
2 is represented by the symbol •, and spins are en-

closed by parentheses labeled by total spin. For instance,
the three-spin qubit basis states shown in Fig. 1(a) are
written in the text as |a〉 = (•(••)a)1/2 with a = 0 or 1
defining the standard qubit basis. Spin states—ordered
top to bottom in all following figures—are ordered left to
right in the text. Figure 1(a) also shows the noncompu-
tational three-spin state denoted by |nc〉, which has total
spin 3

2 . Note that we treat a spin state like (•(••)a)1/2 as
a single state in Hilbert space even though it is two-fold
degenerate taking into account Sz quantum numbers.

Suppose that we pulse the exchange Hamiltonian H =
J(Si · Sj + 3

4 ) acting on two spins. In the basis (••)a
with state ordering a = {0, 1}, the matrix representation
of the time evolution operator corresponding to such a
pulse, Uij(t) with dimensionless time t ∈ [0, 2) (setting
~ = 1), is given by

Uij(t) = diag(1, e−iπt) (1)

= e−iπt/2eiπtẑ·σ/2. (2)

Here, σ = (σx, σy, σz) denotes the Pauli matrix vector.
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FIG. 2. Two representations of the Fong-Wandzura pulse sequence, which are locally equivalent (or equal up to a single-qubit
operation). In Appendix A it is shown explicitly how the sequence on the LHS, derived in Ref. [33], can be turned into the
sequence on the RHS, obtained numerically in Ref. [30] (given here up to single-qubit rotations).

Note that we work in units with π/J = 1 so that t = 1
carries out a swap up to an overall phase. The inverse of
an exchange pulse of duration t is a pulse of duration s =
2−t. We often use the fact that, if we take the states (••)0

and (••)1 as the up and down states of a pseudospin,
Eq. (2) can be interpreted as a z-axis pseudospin rotation
through positive angle πt [up to an overall phase with
respect to the standard SU(2) phase choice].

Below we construct sequences of exchange pulses,
which are described by time evolution operators of the
type of Eq. (1), for carrying out entangling two-qubit
gates. As pointed out above, finding such a two-qubit
sequence is nontrivial because pulse sequences acting on
two three-spin qubits do not, in general, maintain the
qubit encoding. To be specific, consider the two encoded
qubits shown in Fig. 1(b). Note that exchange pulses
applied to spins within a three-spin qubit leave its total
spin invariant, whereas a pulse acting on two spins from
different encoded qubits (in general) alters each qubit’s
total spin and therefore results in leakage out of the com-
putational space.

The two-qubit gate sequences presented below can be
applied to only five of the six spins encoding two logical
qubits, which can be chosen to be those five spins high-
lighted in Fig. 1(c). As shown in Ref. [34], any pulse
sequence that acts on only five spins and carries out a
leakage-free two-qubit gate for total spin 1 of the two en-
coded qubits results in the very same gate for total spin
0. In contrast, when applying the original cnot sequence
found by DiVincenzo et al. [6] to the qubits shown on
the LHS of Fig. 1(b), all six spins undergo nontrivial ex-
change pulses (i.e., pulses different from swap), and a
cnot gate is carried out only if the total spin of the two
encoded qubits is 1.

III. GENERALIZING THE DERIVATION OF
THE FONG-WANDZURA SEQUENCE

In this section we construct a family of two-qubit gate
sequences whose derivation can be understood as a gen-
eralization of the derivation of the Fong-Wandzura pulse
sequence presented in Ref. [33]. It is thus worthwhile re-
viewing some of the main steps of that derivation (see also
Note [42]). In doing this, we take the Fong-Wandzura se-
quence as a starting point and imagine “reverse engineer-

ing” it to reveal its fundamental structure, and then show
how this structure can be altered to find new two-qubit
gate sequences. We note that the order of ideas presented
in this review is the reverse of that of Ref. [33], where the
Fong-Wandzura sequence is constructed essentially from
the bottom up.

The derivation given in Ref. [33] is based on the obser-
vation that the pulses of the Fong-Wandzura sequence as
published in Ref. [30] can be rearranged without chang-
ing the unitary operation carried out by this sequence so
that it consists of recurring patterns of a smaller pulse se-
quence. This fact is illustrated in Fig. 2, where we show
two different representations of the Fong-Wandzura se-
quence acting on two encoded three-spin qubits. The
LHS of Fig. 2 shows a pulse sequence, which was analyt-
ically derived in Ref. [33] as an equivalent representation
of the originally published version of the Fong-Wandzura
sequence [30], which, upon removing four pulses used for
single-qubit rotations, is shown on the RHS of the same
figure. In Appendix A it is shown explicitly how the se-
quences of Fig. 2 can be turned into one another (up to
a single-qubit swap pulse not shown in this figure) us-
ing only a small set of elementary manipulations, such
as moving swap pulses past other pulses, or combining
neighboring pulses that act on the same pair of spins to
single pulses.

Figure 3 illustrates the main steps of our reverse-
engineering process. In the version of the Fong-Wandzura
sequence shown on the LHS of Fig. 2, a six-pulse se-
quence appears three times. As shown in Fig. 3(a), we
refer to this repeated sequence as R. It has been shown
in Ref. [33] that R preserves the total spin of the three
spins encoding the logical qubit with state label b. This
qubit therefore suffers no leakage when acted on by R or,
consequently, by the full cnot sequence.

As shown in Fig. 3(a), we represent the three spins
encoding the qubit with state label b by what we call an
effective spin- 1

2 particle F,

(•(••)b)1/2 = F. (3)

This allows us to view the Hilbert space of the five spins
shown in the figure as a tensor product of the Hilbert
space of three spin- 1

2 particles with that of a single qubit.
Ignoring Sz quantum numbers, the Hilbert space of these
five spins is spanned by the states ((••)a(•(••)b)1/2)f
with ab = 00, 01, 10 and 11 if f = 1

2 , together with
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ab = 10 and 11 if f = 3
2 . When replacing the three

rightmost spins (•(••)b)1/2 by F, for the state labeling
that corresponds to the basis of the matrix representation
of the Fong-Wandzura sequence in Fig. 3(a) we have

abf = {00
1

2
, 01

1

2
|10

1

2
, 11

1

2
, 10

3

2
, 11

3

2
}

−→ af = {01
2
|11
2
,1

3

2
}. (4)

Note that this af basis is spanned by two-dimensional
basis states, printed in bold face, and that the matrix
shown in Fig. 3(a) consists of 2×2 block elements rather
than numbers, reflecting the tensor product structure de-
scribed above. Unless otherwise noted, we adopt the con-
vention that, as in the basis (4) or the matrices shown
in Fig. 3, solid lines separate Hilbert space sectors with
a = 0 and 1. The reason we are allowed to concentrate
on the Hilbert space spanned by the basis (4) is that,
as emphasized above, R conserves the total spin of the
logical qubit represented by F. To continue using this
af basis, in the present section we require all pulse se-
quences that act on a collection of spins including F to
similarly conserve the total spin of F.

Given the matrix shown in Fig. 3(a), the operation
carried out by the two-qubit sequence shown in this figure
applies the 2 × 2 identity, 1, if a = 0, and the 2 × 2
matrix M = n̂0 · σ [33] if a = 1, regardless of the value
of f ; here n̂0 is a certain three-dimensional unit vector
(see Note [43]). Accordingly, in the two-qubit basis ab =
{00, 01, 10, 11} the matrix of the gate carried out by this
sequence is

UFW = diag(1,M). (5)

With M = n̂0 ·σ this gate is locally equivalent to cnot.
In Ref. [33], the two-qubit sequence of Fig. 3(a) has

been derived through an elevation of the simpler se-
quences shown in Fig. 3(b). By elevation we mean a pro-
cess of deriving five-spin sequences from simpler three-
spin sequences in a way that allows us to infer properties
of the unitary operator produced by the former based on
the latter. In this case the simpler sequences consist of
explicit swaps and pulses of duration r = 0 or 1, which
we denote as r-pulses. According to Eq. (1), the matrix
representation of an r-pulse acting on two spins in the
basis (••)a with state ordering a = {0, 1} is

Ur = diag(1, e−iπr) = diag(1,m), m2 = 1. (6)

If r = 0 then m = 1 and the r-pulse carries out the iden-
tity operation. If r = 1 then m = −1 and the r-pulse car-
ries out a swap. Note that the sequence in Fig. 3(a) can
be obtained by replacing the lowermost spin in Fig. 3(b)
with the particle F introduced above in Eq. (3), and
further replacing each r-pulse with an R sequence.

The pulse sequence shown in Fig. 3(b) can be evaluated
straightforwardly, because all its pulses are equivalent to
simple particle permutations (the identity for r = 0 and
swap for r = 1). This evaluation is illustrated in Fig. 3(c)
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

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

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M
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21
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=
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(b)
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

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



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m

1
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b

r rr
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c

=
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= =
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2321
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1
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, 𝑚 = 𝑒𝑖𝜋𝑟

= ±1

FIG. 3. (Color online) Crucial step in our derivation of the
Fong-Wandzura sequence [33]. (a) The Fong-Wandzura se-
quence, as given on the LHS of Fig. 2, applied to the five
spins shown in Fig. 1(c), together with its matrix represen-
tation in the af -basis (4) with M = n̂0 · σ. The lowermost
three spins are represented by an effective spin- 1

2
particle, F,

and R represents the repeated six-pulse sequence. (b) Simple
three-spin sequence consisting of three r-pulses (pulses with
duration r = 0 or 1 as defined in the main text) and two
explicit swaps, which is used to deduce crucial properties of
the sequence in (a). (c) Graphical evaluation of the sequence
shown in (b) for the cases r = 0 and 1, where swap pulses
are represented by particle permutations. As described in the
text, we use (c) to show that the sequence in (b) is, in both
cases, equivalent to an r-pulse applied to the top two spins.
In (b) we also show the matrix representation of this r-pulse
in the basis ac = {0 1

2
|1 1

2
, 1 3

2
}.

for both r = 0 and r = 1, thus verifying the identity
that the five-pulse sequence shown in Fig. 3(b) is equal
to a single r-pulse applied to the top two spins. The
corresponding matrix representation, shown in Fig. 3(b),
can be directly read off Eq. (6).

The matrix representation of an initially generic R se-
quence in the basis (•F)d with state ordering d = {0,1}
is [33]

R = diag(1,M), M2 = 1. (7)

Here, the requirement M2 = 1 is an elevated version of
the requirement m2 = 1 in Eq. (6), and is needed for the
R sequence to be viewed as an elevated r-pulse. For the
one-dimensional case the equation m2 = 1 has the two
solutions m = ±1. In contrast, the equation M2 = 1
has, in addition to the equivalent solutions M = ±1, a
continuum of solutions, M = n̂ · σ, where n̂ can be any
unit vector. Finally, as discussed in Ref. [33], by elevating
the simple pulse sequence of Fig. 3(b) to that of Fig. 3(a),
one can directly infer the matrix representation of the
Fong-Wandzura sequence shown in Fig. 3(a).

We now turn to our new pulse sequence construction,
which is based on the insights gained through the reverse
engineering process described above. Figure 4(a) shows a
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FIG. 4. (Color Online) Two-qubit gate construction general-
izing that shown in Fig. 3, with steps in reverse order. (a) Se-
quence of particle interchanges and a t-pulse. It is readily seen
that this sequence is equivalent to only applying the t-pulse to
the top two spins. (b) Sequence of four swaps and one t-pulse,
which is simplified using (a) by interpreting swaps as parti-
cle interchanges. Its corresponding matrix representation is
shown in the indicated basis with ac = {0 1

2
|1 1

2
, 1 3

2
}. (c) Two-

qubit sequence, which is an elevated version of the sequence
shown in (b), applied to the five spins shown in Fig. 1(c). The
logical qubit (with state label b) is represented by an effec-
tive spin- 1

2
, F. The corresponding matrix with arbitrary M

is given in the effective basis (4), i.e., af = {01
2
|11

2
,13

2
}.

simple sequence of spin permutations and one exchange
pulse of arbitrary duration t, or t-pulse, which is clearly
equivalent to the single t-pulse shown on the RHS. Re-
placing all particle permutations with swaps yields the
pulse sequence identity shown in Fig. 4(b). The matrix
representation corresponding to the five-pulse sequence
shown in Fig. 4(b) can thus be directly read off Eq. (1).

In a similar way as the two-qubit pulse sequence shown
in Fig. 3(a) can be interpreted as a generalization of the
sequence in Fig. 3(b), we now generalize the sequence
shown in Fig. 4(b) to the two-qubit sequence in Fig. 4(c).
This last sequence is applied to the five spins shown in
Fig. 1(c) upon representing the logical qubit with state
label b by an effective spin- 1

2 , F. The schematic oper-
ations T and S can be viewed as elevated versions of t-
pulse and a swap, respectively, and are realized by pulse
sequences—to be determined—which are applied to one
spin- 1

2 , •, and the three spins inside the effective spin- 1
2 ,

F. Note that the effective Hilbert space of these particles
is spanned by the states (•F)d with d = 0 or 1, but not
2 because the total spin of the three-spin qubit hidden
inside F, as given in Eq. (3), is initialized to be 1

2 .
The t-pulse, whose matrix representation is shown in

Fig. 4(b), is generalized to the T operation by promot-
ing the numbers 1 and m = e−iπt to the unitary 2 × 2
matrices 1 and M, respectively. As opposed to the ma-
trix M introduced above, the matrix M is not required
to fulfill any special condition (besides being unitary).

The matrix representation of the operation carried out
by T when applied as in Fig. 4(c) in the basis (•F)d
with d = {0,1} is then

T = diag(1,M). (8)

A swap operation, whose matrix is given by Eq. (6) for
the case of m = −1, is similarly generalized to the S
operation by promoting the numbers ±1 to the 2 × 2
matrices ±1, respectively. Accordingly, the matrix cor-
responding to the S-operation when applied to • and F
as in Fig. 4(c) in the basis (•F)d with d = {0,1} is

S = diag(1,−1). (9)

The matrix representation of the two-qubit sequence
shown in Fig. 4(c) consists of 2 × 2 block elements that
act on the Hilbert space of the three-spin qubit hidden
inside the effective spin- 1

2 , F, because the operations T ,
S and swap conserve this qubit’s total spin. To find
this matrix representation, we first note that each of its
2 × 2 block elements must be a polynomial linear in M,
α01 + α1M, because there is only one operation in this
sequence, T , whose matrix contains an element unequal
to ±1, namely M. These polynomials are determined for
any M by the special case of M = e−iπt1, for which the
sequence shown in Fig. 4(c) is equivalent to that shown
in Fig. 4(b). Accordingly, the matrix shown in Fig. 4(c)
is an elevated version of that shown in Fig. 4(b).

When applying the pulse sequence of Fig. 4(c) to the
logical qubits shown in Fig. 1(b), we can deduce its action
by noting that its matrix representation in the basis (4)
is the identity for a = 0, and M for a = 1 (independent
of f). This corresponds to the quantum gate

U2qubit = diag(1,M). (10)

The sequence of Fig. 4(c) may thus be used to carry out
an arbitrary controlled-operation gate with the control
and target being the encoded qubits with state labels a
and b, respectively. For the parameterization

M(φ) = eiξeiφn̂·σ/2 (11)

the two-qubit gate (10) is then a controlled-rotation gate
with angle φ and axis n̂ and an additional phase ξ. Here
we write M = M(φ), since φ is the only parameter invari-
ant under single-qubit rotations.

In principle, one can use any four-spin pulse sequences
satisfying Eqs. (8) and (9) for the operations T and S,
which have been left implicit up to now. Since Eq. (10)
is a function of M only, the actual two-qubit gate then
only depends on the particular realization of the T se-
quence. In Appendix B we derive an explicit set of pulse
sequences for T and S. In doing this, we combine in-
sights gained by deriving the Fong-Wandzura sequence
[33] with tools from Ref. [34]. The resulting set of two-
qubit gate sequences is given in Sec. V.
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IV. OPTIMIZED CPHASE GATES

We now present an analytic two-qubit gate construc-
tion based on a set of tools and concepts developed
previously for constructing pulse sequences for arbitrary
cphase gates [34]. The resulting sequences carry out the
same two-qubit gates using fewer exchange pulses.

Figure 5 shows the three basic pulse sequences used
in this construction, U3, U3, and U4. Consider the
three spin- 1

2 particles shown in Fig. 5(a), whose three-
dimensional Hilbert space is spanned by the states
((••)a•)c with quantum numbers ac = 0 1

2 , 1 1
2 and 1 3

2 .
The first building block for our two-qubit gate construc-
tion is the operation U3 shown in Fig. 5(a), which has
been introduced in Ref. [34]. The pulses making up U3

are of durations t and t̄ with 0 ≤ t ≤ t̄ ≤ 2, which fulfill

tan(πt/2) tan(πt̄/2) = −2. (12)

As discussed in Ref. [34], the matrix representation of
the operation U3 in the ac-basis shown in Fig. 5(a) with
state ordering ac = {0 1

2 |1
1
2 , 1

3
2} is

U3(φ) =

 e−iπt̄

1

e−iφ

 , (13)

where

φ = π(t+ t̄− 1), φ ∈ [0, 2π]. (14)

As indicated by the solid lines in Eq. (13), the operation
U3 conserves the total spin of the top two particles (de-
noted a) shown in Fig. 5(a). Note that U3 acts trivially
on the one-dimensional a = 0 subspace, i.e., here it is
proportional to the identity, while it applies a phase shift
of e−iφ between the a = 1 states with c = 1

2 and 3
2 .

The pulse sequence for U3 is shown in Fig. 5(b). Since
this sequence is the mirror image of the U3 sequence
in Fig. 5(a), we can directly infer the matrix repre-
sentation of U3 in the mirrored basis (•(••)a′)c to be
simply that given in Eq. (13). Therefore, in the basis
a′c = {0 1

2 |1
1
2 , 1

3
2} we find

U3(φ) =

 e−iπt̄

1

e−iφ

 (15)

with t, t̄ and φ related to one another via Eqs. (12) and
(14). As opposed to the operation U3, this mirrored op-
eration U3 conserves the total spin of the lower two spins
shown in Fig. 5(b) (denoted a′), and applies a phase shift
of e−iφ between the a′ = 1 states while it acts trivially if
a′ = 0.

The inverse of a t, t̄, t sequence shown in Fig. 5(a),
which results in the operation U3(φ), is the same three-
pulse sequence but with durations s, s̄, s, where s = 2− t
and s̄ = 2 − t̄ (note that s ≥ s̄ since t ≤ t̄). For the

=

(c) 

(a) 

=

(b) 

=

U4 φ( )

U3 φ( )

U3 φ( )

U3 φ( )

2 3

t1t1

t1
s1s1

s1

tt
t

t
tt

c
a

c

a '

a

b d

4 3

FIG. 5. Pulse sequences adapted from Ref. [34] carrying out
operations serving as building blocks for our two-qubit gate
construction. (a) Operation U3, whose matrix representation
is given by Eq. (13) in the indicated ac-basis. (b) Operation
U3, whose matrix representation (15) is given in the indicated
a′c-basis (•(••)a′)c. The parameters t, t̄ and φ shown in both
(a) and (b) are related to one another via Eqs. (12) and (14).
(c) Operation U4, whose matrix representation (17) is given
in the indicated bd-basis. Here, the explicit t1, t̄1, t1 and s1,
s̄1, s1 sequences carry out U3(2π/3) and U3(4π/3) operations,
respectively. By solving Eqs. (12) and (14) for φ = 2π/3, one
finds t1 = 0.426548 [34]. The values of t̄1, s1 and s̄1 are then
determined by Eq. (12) and the relation t1 +s1 = t̄1 + s̄1 = 2,
which follows from the fact that 4π/3 = 2π− 2π/3 (see main
text).

operation carried out by this inverse sequence, U3(χ),
we take from Eq. (14) that χ = π(s + s̄ − 1) = 2π − φ.
Similarly, the inverse of the U3(φ) operation, whose t, t̄, t
sequence is shown in Fig. 5(b), is the same sequence with
durations s, s̄, s (again with s = 2−t and s̄ = 2−t̄), which
carries out the operation U3(χ) with the same χ = 2π−φ.

Finally, Fig. 5(c) shows the third sequence, U4, which is
applied to four spins. By our usual convention of ignoring
Sz quantum numbers, the Hilbert space associated with
these spins is six-dimensional. For the indicated basis,
((••)a(••)b)d, the d = 0 space is spanned by the states
with ab = 00 and 11, the d = 1 space by the states
with ab = 01, 10 and 11, and the d = 2 space by the
ab = 11 state. As shown in the figure, the pulse sequence
of U4 consists of a number of pulses of fixed durations,
independent of φ, together with a U3(φ) sequence [see
Fig. 5(a)].

The operation U4 was designed in Ref. [34] to apply a
simple phase factor to all a = 0 states ((••)a=0(••)b)d=b,

U4(φ) = e−iπt̄1, (a = 0). (16)

We therefore concentrate on the four-dimensional a =
1 Hilbert space, which is spanned by the states
((••)a=1(••)b)d with bd = 10, 01, 11 and 12. In the ba-
sis bd = {10|01|11, 12} the operation U4 has the matrix
representation

U4(φ) =


1

1

e−iφ

e−iφ

 . (17)
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(a) 

(b) 

b

a

fc
c
f

(c) 

c
f

c
f

z

x
2n̂

1cos− )3/1(−

z

x

1cos− )9/7(−

x

z
ẑ

3n̂
U3 φ( )

U3 φ( )

U4 φ( )a, b→1

FIG. 6. Operations U4, U3 and U3 applied to the five spins
shown in Fig. 1(c). Each operation acts trivially if the total
spin of the topmost or lowermost two particles is 0. We thus
work in an effective Hilbert space by setting both a and b
to 1, as indicated by the symbols N [see Eq. (20)]. The U4

operation in (a) is surrounded by a permutation of one spin-
1
2

particle with two spin- 1
2

particles, denoted powt, which
ensure that the U4 sequence is applied to the two spin pairs
with total spins a and b. Each operation carries out a pseu-
dospin rotation on {↑1/2, ↓1/2} defined in Eq. (24) about the

indicated axes n̂2 [for U4 as shown in (a)], ẑ [for U3 in (b)]
and n̂3 [for U3 in (c)].

In this matrix, solid lines separate out the one-
dimensional b = 0 sector where U4 acts as the identity.
U4 thus acts trivially for both of the cases a = 0 or b = 0.

Note all three sequences shown in Fig. 5 act in a simple
way. They (i) conserve the total-spin quantum numbers
of certain spin pairs, and (ii) act trivially [i.e., propor-
tional to the identity] only if those quantum numbers are
equal to 0.

To design two-qubit gate sequences, we consider the
five spins shown in Fig. 1(c),

((••)a(•(••)b)c)f , (18)

where a, b = 0 or 1 define the states of the two logi-
cal qubits, and c, f = 1

2 or 3
2 . As opposed to Fig. 1(c),

here we take into account quantum states in which the
logical qubit with state label b has total spin c = 3

2 , be-
cause, as explained in Sec. II, the total spin of a three-spin
qubit, which is initialized to be 1

2 , is altered by certain
interqubit exchange pulses.

Figure 6 shows how we apply the operations of Fig. 5
to the spins (18). This particular layout takes full advan-
tage of the spin-conservation feature summarized above,
since each of the three operations conserves the quan-
tum numbers a and b. From the discussion above, this
conservation is easy to see for the operations U3 and U3.
The U4 operation shown in Fig. 6(a), however, is defined
in Fig. 5(c) as acting on two neighboring spin pairs with
total spins a and b. To ensure the conservation of b, the
U4 operation is surrounded by permutations of one spin-
1
2 particle • with the pair of spins- 1

2 particles with total
spin b (assumed to be 1 in Fig. 6) represented by N. We
refer to this permutation of one spin- 1

2 particle with two

spin- 1
2 particles as powt.

We now concatenate the operations shown in Fig. 6 to
design arbitrary cphase gates of the form

Ucphase(φ) = diag(1, 1, 1, e−iφ) (19)

in the two-qubit basis ab = {00, 01, 10, 11}. As explained
in Appendix C 1, the operations of Fig. 6 result in simple
phase factors if a = 0 or b = 0, which only depend on the
state of one of the qubits and can therefore be undone by
single-qubit rotations before or after the main two-qubit
gate sequence. We can therefore focus on the nontrivial,
effective Hilbert space spanned by states (18) with ab =
11. As also shown in Fig. 6(a), this effective space is
obtained by replacing those spin pairs with total spin 1
by effective spin-1 particles denoted N,

(••)1 → N, (20)

((••)a=1(•(••)b=1)c)f → (N(•N)c)f . (21)

The corresponding four-dimensional Hilbert space is
spanned by the states with cf = 1

2
1
2 , 3

2
1
2 , 1

2
3
2 and 3

2
3
2 .

Figure 7 shows both the original pulse sequence pre-
sented in Ref. [34] (top panel, operation U5) as well as the
new sequence developed here (bottom panel, operation
U5). [We note that the U5 sequence is a slightly altered
version of that published in Ref. [34] due to a different
choice of qubit bases.] As shown on the right side of the
figure, applying the sequences U5 and U5 to two encoded
three-spin qubits enacts an arbitrary cphase gate up to
the indicated single-qubit rotations. Note that, qualita-
tively speaking, the new sequence for U5 is the same as
that for U5 upon replacing the outer U4 operations by
U3 operations. This is why these new sequences contain
fewer exchange pulses than those originally published in
Ref. [34].

We now explain how the two cphase gate sequences
shown in Fig. 7 can be derived analytically based on geo-
metric intuition. Our derivation is based on the fact that
both U5(φ) = U4(χ1)U3(φ1)U4(φ)U3(χ1)U4(φ1) and
U5(φ) = U3(φ3)U3(φ2)U4(φ)U3(χ2)U3(χ3) with χi =
2π− φi for i = 1, 2, 3 can be understood in terms of sim-
ilarity transformations. [Here and below the operations
U3, U3, and U4 are understood to be acting on the full
five-spin Hilbert space as shown Fig. 6.] To see the sim-
ilarity transformation structure, note that χ1 = 2π − φ1

implies U3(χ1) = U3(φ1)−1 and U4(χ1) = U4(φ1)−1, so
that we can write

U5(φ) = PU4(φ)P−1, P = U4(χ1)U3(φ1). (22)

Similarly, χ2,3 = 2π − φ2,3 implies U3(χ2) = U3(φ2)−1

and U3(χ3) = U3(φ3)−1, so that

U5(φ) = QU4(φ)Q−1, Q = U3(φ3)U3(φ2). (23)

Since each operation in Eqs. (22) and (23) is of the
form of a similarity transformation, any phases applied
by P or Q on the a = 0 or b = 0 subspace cancel out,
since here U4 acts proportional to the identity. For this
subspace, the only nonzero phase applied by either U5

or U5 is then that due to U4(φ) for a = 0. According
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= U5 φ( )

U4 φ( ) U5 φ( )U3 χ2( )
U3 χ3( )

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− φie

1
U5 φ( )

t
=

U4 φ( )
U3 χ1( )

U4 φ1( )
2n̂
φ1

χ1

z- ˆ

3n

φ2
z- ˆ

φ3

=

t

2n̂

U5 φ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− φie

1U3 φ1( )
U4 χ1( )

U3 φ2( )
U3 φ3( )

FIG. 7. (Color online) Constructing two-qubit gates applied to the five spins shown in Fig. 1(c). Top panel: U5 gate sequence of
Ref. [34] consisting of three U4 and two U3-like operations. Bottom panel: Optimized sequence U5 consisting of only one U4 and
four U3-like operations. As also shown, U5 and U5, constructed via similarity transformations and augmented by single-qubit
pulses explained in the text, can be used to carry out arbitrary cphase gates with φ ∈ [0, 2π]. The transformation of each
sequence is visualized by the respective diagram featuring two intersecting cones where χi = 2π − φi, and φi for i = 1, 2, 3 are
given by Eqs. (31)-(33). Note that the cones for the top panel have undergone a π rotation about the z axis when compared
to those given in Ref. [34]; this is due to the change in qubit basis which manifests itself in the six powt operations in this
sequence.

to Eq. (16) this phase factor is e−iπt̄, which, as shown
to the far right in Fig. 7, for each two-qubit sequence is
undone by a corresponding single-qubit pulse of duration
t̄ applied to the spin pair (••)a.

In order to understand how the operations shown in
Fig. 6 act on the ab = 11 Hilbert space spanned by the
states (21), we introduce a pseudospin

↑f= (N(•N)1/2)f , ↓f= (N(•N)3/2)f , (24)

for both the f = 1
2 and 3

2 sectors. The actions of U3,

U3 and U4 on these pseudospin spaces are worked out
in Appendix C 2. Consulting Eqs. (C17) and (C15), the
matrix representation of U4 on these f = 1

2 and f = 3
2

pseudospins {↑f , ↓f} is

U
f=1/2
4 (φ) = e−iφ/2eiφn̂2·σ/2, (25)

U
f=3/2
4 (φ) = e−iφ1. (26)

For f = 1
2 , U4(φ) is a pseudospin rotation through an-

gle φ about the axis n̂2 = (2
√

2/3, 0,−1/3) (see Note
[44]), which is indicated in Fig. 6(a). Similarly, consult-
ing Eqs. (C18) and (C19) we have

U3(φ) = e−iφ/2eiφẑ·σ/2, (27)

U3(φ) = e−iφ/2eiφn̂3·σ/2, (28)

each of which results in the same pseudospin rotation
through angle φ in both f = 1

2 and 3
2 sectors. The ro-

tation axes ẑ and n̂3 = (−4
√

2
9 , 0,− 7

9 ) are indicated in
Figs. 6(b) and (c), respectively.

For the operations U5 and U5 to result in a cphase
gate, Eq. (19) states that the ab = 11 two-qubit states
((•N)1/2(•N)1/2)g with g = 0 and 1, which can be ob-
tained by combining the six-spin states shown in Fig. 1(b)
with Eq. (20), need to be multiplied by eiφ. Expand-
ing these two-qubit states in the basis (•(N(•N)1/2)f )g

yields finite overlap with both f = 1
2 and 3

2 states [such
concrete expansions are given by Eqs. (23) and (24) in
Ref. [34]]. U5 and U5 must therefore multiply both pseu-
dospin states ↑1/2 and ↑3/2 by the same phase factor e−iφ.

Note that the similarity transformations due to P and
Q in Eqs. (22) and (23), respectively, have no effect on the
f = 3

2 pseudospin sector because here U4 is proportional
to the identity [see Eq. (26)], so that

U
f=3/2

5 (φ) = U
f=3/2
5 (φ) = e−iφ1. (29)

U5 and U5 thus multiply the state ↑3/2 by e−iφ for arbi-
trary P and Q. The transformations (22) and (23) must
then ensure that ↑1/2 is multiplied by the same phase
factor. This is accomplished by mapping n̂2, the rota-
tion vector of U4, to −ẑ, so that in the pseudospin basis
{↑1/2, ↓1/2} we have

U
f=1/2

5 (φ) = U
f=1/2
5 (φ) = e−iφ/2eiφ(−ẑ)·σ/2

= diag(e−iφ, 1). (30)

The similarity transformation (22) found analytically
in Ref. [34], carried out by P = U4(χ1)U3(φ1), is visu-
alized by the two intersecting cones in the top panel of
Fig. 7. Here the green cone is described by rotating the
vector n̂2 about the z axis, and the yellow cone by rotat-
ing the vector −ẑ about the n2 axis. The transformation
due to P then consists of a rotation of the vector n̂2 about
the z-axis through angle φ1 to the intersection of the two
cones, followed by a rotation about the n2 axis through
χ1 = 2π − φ1 to the negative z axis. The rotation angle
is [34]

φ1 = cos−1 n̂2 · ẑ
n̂2 · ẑ− 1

= cos−1(1/4). (31)

The similarity transformation (23) for U5, carried out
by Q = U3(φ3)U3(φ2), is visualized by the green and
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gray cones shown in the lower panel of Fig. 7. Here the
green cone is the same as that used before, while the gray
cone is described by rotating −ẑ about the n3-axis. The
transformation due to Q is then a rotation of n̂2 about ẑ
through angle φ2 to the intersection of the cones, followed
by an n3-axis rotation through φ3 to −ẑ. It is a simple
exercise to show that the rotation angles are

φ2 = cos−1

(
− n̂3 · ẑ(1 + n̂2 · ẑ)

(n̂2 · x̂)(n̂3 · x̂)

)
= cos−1(−7/8), (32)

φ3 = cos−1

(
− n̂2 · ẑ + (n̂3 · ẑ)2

(n̂3 · x̂)2

)
= cos−1(−11/16).

(33)

These rotation angles then allow us to find the durations
of the individual pulses making up U3(φ2) and U3(φ3)
[together with their inverses U3(χ2) and U3(χ3)] by solv-
ing Eqs. (12) and (14). The resulting full cphase pulse
sequence for U5 is given in Sec. V below.

In summary, the main difference between the two-qubit
sequences of Ref. [34] and those constructed here, re-
spectively shown in the top and bottom panels of Fig. 7,
is that the former are built of only two operations, U4

and U3, while the latter are built of three, U4, U3 and
U3. These three operations result in pseudospin rota-
tions about distinct axes so the latter construction is
slightly more complex. However, the resulting two-qubit
sequences are more efficient, since the operation U3 con-
sists of fewer exchange pulses than U4 (cf. Fig. 7).

V. EXPLICIT PULSE SEQUENCES

Figure 8 shows explicit single-pulse representations of
two-qubit gate sequences for the constructions presented
above in Secs. III and IV, where single-qubit rotations are
carried out by pulses acting before and after the core se-
quence as indicated by the dashed lines. The gate shown
on the top panel of Fig. 8 is locally equivalent to the ar-
bitrary cphase gate shown in the bottom panel, both
of which are characterized by φ ∈ [0, 2π]. Most pulses
appearing in these sequences are independent of φ, while
those depending on φ are shown in red.

The top panel of Fig. 8 shows an explicit two-qubit
pulse sequence based on the schematic sequence of T , S
and swap operations shown in Fig. 4(c). As discussed in
Sec. III, this sequence results in an arbitrary controlled-
rotation gate of the form (10). To obtain this sequence,
we substituted for T and S the sequences derived in Ap-
pendix B and shown in Figs. 11 and 12, respectively. In
addition, simplifications yielding the single-qubit rota-
tions discussed in the appendix have been applied. For
the parameterization of the controlled operation (11),
i.e., M(φ) = eiξ(t)eiφ(t)n̂(t)·σ/2, we take from Eq. (B3)
that ξ(t) = −πt/2 and

φ(t) = 2 arccos((5 cos(πt/2) + 3 cos(3πt/2))/8). (34)

Given that φ(0) = 0 and φ(t1) = 2π with t1 =

4 arctan(
√

2−
√

3), this pulse sequence can be used to
carry out arbitrary controlled-rotation gates using values
of t ∈ [0, t1].

The lower panel of Fig. 8 shows an explicit pulse se-
quence based on the sequence for U5 given in the lower
panel of Fig. 7. This sequence is obtained by replac-
ing U3, U3 and U4 by their single-pulse representations
given in Fig. 5. To obtain the pulse durations t2 and t3
one needs to numerically solve Eqs. (12) and (14) with
φ = φ2 and φ3, respectively, as given in Eqs. (32) and
(33). As discussed in Sec. IV, the two-qubit gate carried
out by this sequence is an arbitrary cphase gate of the
form (19), where the values of t and t̄ depend on the
choice of the phase φ.

VI. CONCLUSIONS

For spin-based quantum computation in which quan-
tum gates are carried out by exchange-pulse sequences,
we have presented two different analytic constructions of
entangling two-qubit gates. Up to single-qubit rotations,
the resulting sequences can be used to carry out arbi-
trary cphase gates of the form (19), where the phase φ
can be chosen freely by adjusting the durations of a small
number of exchange pulses. Other known two-qubit gate
sequences either (i) result in a cnot gate [6, 29, 30, 41],
i.e., a gate locally equivalent to cphase with φ = π, or
(ii) consist of significantly more exchange pulses [34].

When comparing the lengths of different two-qubit
gate sequences, the minimum number of pulses depends
on the interspin connectivity, which is determined by the
spin layout assuming only nearest-neighbor pulses. Con-
sider the specific example sequences given in Fig. 8 where
the six spins making up two logical qubits are arranged
in a linear array. For these two sequences the total num-
ber of pulses are 28 (Fig. 8 top) and 25 (Fig. 8 bottom),
where, for a basis-independent comparison, we have ig-
nored single-qubit rotations, and continue to do so below.
We also consider the layout of maximal connectivity, in
which the exchange interaction can be tuned directly be-
tween arbitrary spin pairs. As can be deduced using the
manipulations introduced in Appendix A, the number
of required pulses for our sequences then reduces to the
number of pulses different from swap; i.e., for each of the
above two cases the total number of pulses drops from 28
to 22, and from 25 to 23. Our sequences are thus signif-
icantly shorter than those of Ref. [34], which consist of
39 pulses for either layout.

The number of pulses required to carry out the Fong-
Wandzura sequence is 18 for spins arranged on a linear
array [30], while it is 12 for the case of highest connec-
tivity (also easily established using the manipulations of
Appendix A). One way to obtain a cphase gate (19)
with φ 6= π would be to sandwich a single-qubit op-
eration between two cnots; using the optimal Fong-
Wandzura sequence this requires at least 2× 18 + 1 = 37
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FIG. 8. (Color online) Example two-qubit gates applied to encoded three-spin qubits. Top panel: sequence shown in Fig. 4(c)
enacting a controlled-rotation gate (10) with M = M(φ). Bottom panel: sequence for U5 shown in Fig. 7 (bottom panel) enacting
a cphase gate. The pulse durations independent of φ, besides those given explicitly in the figure, are: t1 = 0.426548 [34],
t2 = 0.469699 and t3 = 0.685037 (see main text); t̄i for i = 1, 2, 3 obtained using Eqs. (12); si and s̄i obtained using the
relations t̄i + s̄i = ti + si = 2 for i = 1, 2, 3. The durations of the pulses shown in red depend on the choice of φ. For the upper
panel, t and s are obtained using φ(t) as given in Eq. (34); for the lower panel t and t̄ are obtained using Eqs. (12) and (14).
The dashed lines on either side separate the core sequences from pulses that can be absorbed by single-qubit rotations.

or 2× 12 + 1 = 25 pulses. For either case, our sequences
are thus more efficient (see, however, Note [45]).

To summarize, in Sec. III we generalize the construc-
tion of the Fong-Wandzura sequence [30], which can be
used to enact a cnot gate, to a new construction for
controlled-rotation gates locally equivalent to arbitrary
cphase. Starting from the original Fong-Wandzura se-
quence, we did not simply change the durations of indi-
vidual pulses but rather altered its fundamental struc-
ture. The second two-qubit gate construction, presented
in Sec. IV, makes use of smaller pulse sequences whose
operations conserve the total spins of certain spin pairs
they act on [34]. By doing this, a large subspace of the
complete Hilbert space associated with the six spins en-
coding two logical qubits is rendered trivial. The result-
ing family of two-qubit sequences is, in essence, a stream-
lined version of that derived in Ref. [34]. In both of these
cases, ideas developed in Refs. [33] and [34] have been
generalized and used to construct entirely new pulse se-
quences for exchange-only quantum computation.
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FIG. 9. (Color online) Examples of elementary pulse-sequence
manipulations. swaps moved past other exchange pulses are
shown in red, and pulses whose connectivity is altered by
such a move are shown in blue. (a) Moving a swap past two
pulses of generic durations t1 and t2. (b) Rewriting an inverse√
swap as a swap followed by a

√
swap—affected pulses are

enclosed by red ovals. (c) Inserting a pair of swaps—new
pulses are enclosed by the red dashed circle. (d) Simplifica-
tion of a three-swap sequence using (a) followed by the re-
verse of (c). The three nearest-neighbor swaps encircled by a
blue dashed oval are thus equivalent to a single next-nearest
neighbor swap. Note that all reversed diagrams are true as
well.

Appendix A: Rearranging the Fong-Wandzura Pulse
Sequence

In this appendix we show explicitly that the Fong-
Wandzura pulse sequence, as it is published in Ref. [30],
is equivalent to the two-qubit gate sequence derived in
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Ref. [33]. Both of these sequences, which are shown in
Fig. 2, consist only of nearest-neighbor exchange pulses,
assuming the spins that these sequences act on are placed
on a linear array. These sequences can be transformed
into one another by carrying out a series of elementary
manipulations in which pairs of swaps, i.e., exchange
pulses of duration 1, are inserted into a pulse sequence,
or single swaps are moved past, or combined with, other
pulses.

Figure 9 exemplifies a number of such manipulations
by means of short pulse sequences acted on three spin-
1
2 particles. Figure 9(a) shows two equivalent sequences.
The one on the left-hand side (LHS) of the figure consists
of three nearest-neighbor pulses, beginning with a pulse
of duration t1 acting on the lower two spins, followed by
a pulse of duration t2 acting on the upper two spins, and
ending with a swap acting on the lower two spins. The
equivalent sequence on the right-hand side (RHS) of the
same figure consists of a swap followed by a t1-pulse,
both of which act on the lower two spins, and ends with
a next-nearest neighbor t2-pulse acting on the uppermost
and lowermost spins. The equivalence of these sequences
becomes evident upon replacing the swaps with spin per-
mutations. One way to manipulate pulse sequences is
thus to move swaps past other pulses while taking note
if after such a move these other pulses act on different
spins than before. As also shown in Fig. 9(a), in this ap-
pendix we adopt the convention that swaps moved past
other pulses are shown in red, and exchange pulses al-
tered by such a move are shown in blue.

Another way of manipulating a pulse sequence, which
is exemplified in Fig. 9(b), is that of replacing an inverse√
swap (pulse of duration 3/2) with a swap followed by a√
swap (pulse of duration 1/2). This is allowed because

an exchange pulse acting on a pair spins of duration t1+t2
is equivalent to two consecutive pulses acting on the same
pair of spins with durations t1 and t2. As a last example
of an elementary manipulation, consider Fig. 9(c). As
shown in the figure, we can insert (remove) a pair of
swaps into (from) a pulse sequence because the effect
of two consecutive swaps is the same as applying the
identity. Note that when the number of pulses changes
due to a manipulation step [as in Figs. 9(b) and (c)] we
enclose the involved pulses inside an oval.

As an example of using some of the above manip-
ulations, consider the three pulse sequences shown in
Fig. 9(d). The leftmost sequence consists of three
nearest-neighbor swaps (enclosed by a blue oval) with
the first and the last acting on the upper two spins, and
the central swap acting on the lower two spins. In the
first step we move the rightmost swap, shown in red,
past the central pulse, yielding the second sequence in
Fig. 9(d). Due to this move, the now rightmost pulse,
shown in blue, is a next-nearest neighbor swap that acts
on the uppermost spin and the lowermost spin. Finally,
since after this move the leftmost swap and the red swap
are located directly next to each other we are allowed to
remove this pair of pulses from the sequence.

With these basic manipulation steps in hand we are
now ready to convert the two-qubit gate sequence shown
on the LHS of Fig. 2, which was derived in Ref. [33],
into the originally published Fong-Wandzura sequence
[30] shown on the RHS of the same figure. Figure 10
contains the transformation that shows this equivalence,
where we apply the two-qubit gate sequences on five of
the six spins that are used to encode two qubits.

Beginning with the sequence shown on the LHS of
Fig. 2, in Fig. 10(a) we move the four swaps shown in
red to the left; their original and final positions are given
on the LHS and RHS of the figure, respectively. Similar
to the example of Fig. 9(a), the pulses that are shown
in blue have been altered by these moves. Furthermore,
similar to Fig. 9(b), the rightmost inverse

√
swap in the

sequence on the LHS of Fig. 10(a) has been replaced with
a swap and a

√
swap (as indicated by the red ovals). The

next step begins with the sequence shown on the LHS of
Fig. 10(b), which is the result of taking the previous se-
quence [i.e. that shown on the RHS of Fig. 10(a)] and,
similar to the example in Fig. 9(c), inserting two pairs of
swaps, which are enclosed in dashed circles. The three
red swaps on the LHS of Fig. 10(b) are then moved to-
wards the left with their final positions given in the se-
quence on the RHS of the figure.

When turning to the sequence on the LHS of Fig. 10(c),
the
√
swap and its neighboring swap enclosed by an oval

in the sequence on the RHS of Fig. 10(b) are replaced
with an inverse

√
swap. Furthermore, the two individu-

ally circled
√
swaps on the RHS of Fig. 10(b) have each

been replaced by a pair of pulses in Fig. 10(c). In the
transition to the RHS of this figure, we use the identity
shown in Fig. 9(d) to replace each of the three swaps
encircled by a blue dashed oval by a single next-nearest
neighbor swap.

The remaining task is to remove these two next-nearest
neighbor swaps by placing them directly next to each
other. For clarity, this is done in several steps shown in
Figs. 10(d)-(f). First, in (d) we move both of these red
swaps towards the center of the sequence where, as usual,
pulses that have been altered are shown in blue. Rather
than moving the same pulses further towards each other,
in (e) we take the four red nearest-neighbor swaps and
move each of them one step towards the outside of the
sequence, thus altering the next-nearest neighbor swaps.
Finally, in (f) we take the swap shown in red and move
it towards the left where it is combined with its equiv-
alent swap, and thus removed. Note that in this last
manipulation only a single exchange pulse is altered.

In the resulting sequence of nearest-neighbor pulses,
which is shown on the RHS of Fig. 10(f), we use a dashed
line to separate out a swap, which can be absorbed by a
single-qubit rotation. This final sequence is thus locally
equivalent to the that given on the RHS of Fig. 2.
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FIG. 10. (Color online) Series of elementary manipulations used to turn the core Fong-Wandzura sequence analytically derived
in Ref. [33] into its equivalent form published originally in Ref. [30], thus proving the equality stated in Fig. 2. In part (f) a
swap, which can be absorbed into a single-qubit rotation, is separated from the original Fong-Wandzura sequence.

Appendix B: Explicit Pulse Sequences for the T and
S Operations

In Sec. III, a set of two-qubit gate sequences is con-
structed using the operations T and S defined in Eqs. (8)

and (9), respectively. In this appendix we design exam-
ple pulse sequences that can be used to carry out these
operations, and which are the ones used for the explicit
sequences presented in Sec. V.
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FIG. 11. Construction of a pulse sequence for the T operation.
(a) Schematic pulse sequence for T applied to four spins la-
beled 1 through 4, where s = 2− t. (b) Matrix representation
of the operation due to the central t-pulses in the indicated ba-
sis with state ordering bb′d = {000, 110|011, 101, 111}; in the
matrix solid lines separate different total-spin sectors from one
another. (c) Crucial constraint placed on the operation V . (d)
Explicit pulse sequence for V . The dashed line separates the
optimal V -sequence satisfying (c), V0 = U23( 3

2
)U12( 1

2
), from

the additional pulses used to satisfy the condition imposed by
Eq. (8).

As shown in Fig. 4(c), the operations T and S are
applied to four spin- 1

2 particles, three of which, initialized

with total spin 1
2 , are represented by the symbol F. In

order to design explicit pulse sequences, we first abandon
the notation F by effectively reversing Eq. (3), so that
the Hilbert space of • and F is now spanned by four
states

(•F)d → (•(•(••)b)c=1/2)d (B1)

with b = 0 or 1 for both d = 0 and 1. Since an ex-
change pulse acting on the two leftmost spins on the
RHS of Eq. (B1) does not conserve the total spin of the
rightmost three spins, denoted by c, we need to consider
a five-dimensional Hilbert space spanned by the states
(•(•(••)b)c)d with bc = 0 1

2 and 11
2 for d = 0 and bc = 0 1

2 ,

1 1
2 and 1 3

2 for d = 1. Recall, however, that in Sec. III we
imposed the condition that applying the full sequence of
T or S conserve this quantum number c.

Figure 11 contains the essence of our derivation of a
pulse sequence that realizes T . Figure 11(a) shows the
sequence used for T as it is applied to four spins labeled
1 through 4, that is,

T = U34(2s)V −1U12(t)U34(t)V. (B2)

Here Uij , as introduced in Eq. (1), represents an exchange
pulse acting on individual spins i and j, and V represents
a pulse sequence yet to be determined. The sequence
(B2) can then be understood as a similarity transforma-
tion of the two central t-pulses U12(t)U34(t) carried out
by V , which is followed by the operation U34(2s).

To find the matrix representation of this T operation,
first note that using Eq. (1) it is straightforward to find
the matrix associated with the two central pulses of du-
ration t in the basis ((••)b′(••)b)d. The resulting matrix,

for simplicity given up to an overall phase factor, is shown
in Fig. 11(b). We now examine the effect of the remain-
ing operations in Eq. (B2) on this central operation in
each of the total-spin d = 0 and 1 sectors.

First considering the total-spin d = 1 subspace, we
place the constraint shown in Fig. 11(c) on the operation
V . This constraint implies that after applying V to the
state (•(•••)c=3/2)1, the outcome has no overlap with the
state ((••)b′=1(••)b=1)1, and accordingly lies completely
in the ((••)b′(••)b)1 sector with bb′ = 01 and 10. Note
that in this subspace the operation U12(t)U34(t) is pro-
portional to the identity [cf. Fig. 11(b)] and thus leaves
the state unchanged, so that the operation V −1 maps this
state back to the original state, (•(• • •)3/2)1. Since the

operation V −1U12(t)U34(t)V thus maps this c = 3
2 state

back onto itself, and further the final pulse in Eq. (B2),
U34(2s), merely applies a phase factor to this state, it fol-
lows that the T operation also maps the two-dimensional
c = 1

2 sector onto itself.
In the derivation of the Fong-Wandzura sequence in

Ref. [33] an argument similar to that just made is used
to find a pulse sequence for the R-operation of Fig. 3(a).
In doing this, the optimal sequence for such a V opera-
tion satisfying the constraint in Fig. 11(c) is analytically
determined to be V0 = U23( 3

2 )U12( 1
2 ).

Figure 11(d) shows the V sequence used in our con-
struction, which is V = U23( 3

2 )U12( 1
2 )U34( 3

2 )U23( 1
2 ) =

V0U34( 3
2 )U23( 1

2 ). We use this longer sequence for V in
order to obtain the matrix representation of T given in
Eq. (8) (see Note [46]). Given that V0 satisfies the con-
straint in Fig. 11(c), it is straightforward to see that our
longer V sequence also satisfies that constraint. This is
most easily seen by replacing the V sequence in Fig. 11(c)
with its single-pulse representation shown in Fig. 11(d).
The two pulses to the left of the dashed line can then be
absorbed by the state (•(• • •)3/2)1 at the cost of apply-
ing simple overall phase factors (since any pair of spins
within the oval with total spin 3

2 has total spin 1), which
do not alter the fact that this overlap vanishes.

The matrix representation of T in the d = 1 sector is
determined in Appendix D 2. This is done by finding the
matrix of each pulse in an appropriate eigenbasis using
Eq. (1), and then carrying out the required basis changes
to the b-basis (B1) for d = 1; these basis changes are
summarized in Appendix D 1. In this b-basis with the
state ordering b = {0, 1} we take from Eq. (D36) that

M = e−iπt/2eiπ(2−t)ẑ·σe−iπtn̂1·σ/2, (B3)

where n̂1 = (
√

3/4,−
√

3/2, 1/4).
To determine the unitary operation of T on the d = 0

Hilbert space, note that here the two four-spin states in
the basis shown in Fig. 11(b) are given by ((••)b′(••)b)0

with bb′ = 00 or 11, and thus b′ = b. A direct result of
this is that

U12(t) = U34(t), (d = 0), (B4)

so that the two central pulses within V , U12( 1
2 ) and

U34( 3
2 ), cancel one another. Since the outer two pulses
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FIG. 12. Construction of a pulse sequence for the elevated
swap operation S. (a) Schematic sequence for S applied to
four spins labeled 1 through 4. (b) Matrix representation of
the operation due to the central swap pulses in the indicated
basis with state ordering bb′d = {000, 110|011, 101, 111}; sim-
ilar to Fig. 11, solid lines separate different total-spin sectors
from one another. (c) Constraints placed on W for both b = 0
and 1. (d) Explicit sequence for W with pulse durations t1
and t̄1 given in Fig. 8.

are inverses of each other as well, we conclude that V = 1
(d = 0). Equation (B4) further implies that the remain-
ing three pulses within the T sequence [shown explicitly
in Fig. 11(a)] cancel, so that T = 1 for d = 0 as required
by Eq. (8).

Before we turn our attention to finding a sequence for
the S operation, we make a comment on the T sequence
of Fig. 11(a), which, upon unpacking V using Fig. 11(d),
can be written as

T = U34(2s)U23( 3
2 )U34( 1

2 )×
[U12( 3

2 )U23( 1
2 )U12(t)U34(t)U12( 1

2 )U23( 3
2 )]×

U34( 3
2 )U23( 1

2 ). (B5)

Recall that T is the central operation in the two-qubit
gate sequence shown in Fig. 4(c). As shown in the top
panel of Fig. 8, all five pulses outside the square brackets
in Eq. (B5), i.e., U34(2s)U23( 3

2 )U34( 1
2 ) and U34( 3

2 )U23( 1
2 ),

have been pulled out of the two-qubit sequence (thus
playing the role of single-qubit rotations). The reason
we are allowed to do this is that each of these five pulses
commutes with S, since they exclusively act on the in-
ternal Hilbert space of the lower logical qubit with state
label b [cf. top panel of Fig. 8], and the surrounding S
operations act on this lower-qubit space as the identity
[cf. Eq. (9)].

Figure 12(a) shows a four-spin pulse sequence that re-
alizes the S operation, which, again labeling the spins 1
though 4, can be written as

S = W−1U12(1)U34(1)W. (B6)

Similar to the schematic sequence V in the sequence (B2)
for the T operation, here S is formulated using an oper-
ation W whose pulse sequence is yet to be determined.
Note that W carries out a similarity transformation on
the central two swaps.

We evaluate the S-sequence by first noting the matrix
representation of the central swaps in Fig. 12(b) in the
indicated bb′-basis ((••)b′(••)b)d, which is obtained easily
using Eq. (1). Comparing this matrix with that in Eq. (9)
[given in the basis (B1)], we find agreement not only for
d = 0, but also for d = 1 upon focusing on the bb′ = 01,
10 matrix sector in Fig. 12(b). Since these matrices are
given in different bases, the operation W in Eq. (B6)
needs to map the b-basis (B1) to the bb′ = 01, 10 sector
of the bb′ basis for both d = 0 and 1.

Note that since for d = 0 the central swaps in Eq. (B6)
carry out the identity operation [see Fig. 12(b)], here this
change of bases is trivially accomplished by any sequence
W . In case of d = 1, however, we need to ensure that
applying W to the states (•(•(••)b)1/2)1 with b = 0 or
1, which span the b-basis (B1) for d = 1, yield states
orthogonal to ((••)1(••)1)1. As shown in Fig. 12(c), we
place this very constraint on W . Note that since the
operation due to the central swaps in Eq. (B6) is pro-
portional to the identity in the bb′ = 10, 01 sector [again,
see Fig. 12(b)], the precise form of the basis change car-
ried out by W is irrelevant [i.e., the condition shown in
Fig. 12(c) is sufficient]. The pulse sequence for W shown
in Fig. 12(d) has been designed in Ref. [34] to carry out
such a basis change.

Appendix C: Computation of Pseudospin Rotations

In Sec. IV, two-qubit gate sequences are constructed
using the operations U3, U3 and U4. The explicit se-
quences for these operations are given in Fig. 5 where U3

and U3 are applied to three spin- 1
2 particles while U4 is

applied to four spin- 1
2 particles. In Fig. 6 these opera-

tions act on the five spins

((••)a(•(••)b)c)f , (C1)

where a, b = 0 or 1 and c, f = 1
2 or 3

2 .
As described in Sec. IV, we effectively reduce the

Hilbert space dimensionality by setting a, b → 1. Upon
introducing an effective spin-1 particle, N = (••)1, as in
Eqs. (20) and (21), this Hilbert space is spanned by the
states

(N(•N)c)f (C2)

with cf = 1
2

1
2 , 3

2
1
2 , 1

2
3
2 and 3

2
3
2 , and so breaks into two

two-dimensional sectors with total spin f = 1
2 and 3

2 .
In what follows, we discuss in C 1 why we are allowed

to simplify the Hilbert space basis (C1) to (C2), and what
needs to be taken into account when doing so. C 2 then
contains derivations of the matrix representations of the
operations U3, U3 and U4.

1. Effective Hilbert Space

As discussed in Sec. IV, the operations U3, U3, and U4

as arranged in Fig. 6 conserve the quantum numbers a
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and b. It is thus natural to divide the Hilbert space into
four different sectors with ab = 00, 01, 10 and 11, which
can be considered independently. We now explain why
each of these three operations acts trivially on the states
(C1) with a = 0 or b = 0, a fact that allows us to focus
on the effective Hilbert space spanned by the states (C2).

The operation U4 acting on the spins (C1) as shown
in Fig. 6(a) is accompanied on either side by a permu-
tation of one spin- 1

2 particle with two spin- 1
2 particles,

introduced as powt in Sec. IV,

(•(••)b)c ←→ ((••)b•)c. (C3)

Because of this, the sequence of U4 can equivalently be
regarded as directly acting on the leftmost four spins in
the basis

((••)a((••)b•)c)f . (C4)

If a = 0 or b = 0, respectively, these five spins are in the
states

((••)0((••)b•)c)f = (((••)0(••)b)b•)f (C5)

or

((••)a((••)0•)c)f = (((••)a(••)0)a•)f , (C6)

where c, f = 1
2 or 3

2 . Note that for both of these states
as expressed on the RHS of these equations, the leftmost
four spins are given in the natural basis shown on the far
left in Fig. 5(c), in which we introduced the operation
U4. It then follows from Eq. (16) that the action of U4

on the state (C1) with a = 0 [taking into account the
surrounding swaps (C3)] is that of applying a simple
phase factor independent of the value of b. Similarly,
from Eq. (17) we find that the action of U4 on all b = 0
states (C1) is that of the identity.

The operation U3 shown in Fig. 6(b) acts on the lower-
most three spins, and is thus independent of a. If b = 0,
the spins (C1) are in the states

((••)a(•(••)0)1/2)f , (C7)

where a = 0 or 1 and f = 1
2 or 3

2 . The action of U3

on the rightmost three spins is given by Eq. (15) for the
case of a′ = 0, and is that of applying an overall phase
factor to all b = 0 states. Similarly, the operation U3

shown in Fig. 6(c) acts on the uppermost three spins and
is therefore independent of b. Since for a = 0 the spins
(C1) are in the states

((••)0(•(••)b)c)f=c = (((••)0•)1/2(••)b)f=c, (C8)

where b = 0 or 1 and c = 1
2 or 3

2 , the action of U3 on the
leftmost three spins is given in Eq. (13) for the case of
a = 0, and is that of applying an overall phase factor to
all a = 0 states.

In summary, when applying any one of the operations
shown in Fig. 6 to the states (C1) with a = 0 or b = 0,
the result is either the identity operation or the multi-
plication by a phase factor that depends on only one of

the qubit states. These phases are simple to keep track
of, and can be canceled by appropriate single-qubit ro-
tations before or after the two-qubit gate sequence. We
can thus ignore the cases of a = 0 or b = 0, and work in
the effective Hilbert space spanned by the states (C2).

2. Matrix Representations in Pseudospin Space

To describe the action of the operations U3, U3, and
U4 in the basis (C2), we introduce a corresponding pseu-
dospin for both the f = 1

2 and 3
2 sectors. Each pseu-

dospin space is spanned by the states

↑f= (N(•N)c=1/2)f , ↓f= (N(•N)c=3/2)f . (C9)

For simplicity, below we refer to these spaces as ↑f .
The operation U4 is shown in Fig. 6(a). Its matrix

representation is given most easily in its natural basis,

((NN)d•)f , (C10)

which is related to the pseudospins ↑f further below. If
f = 1

2 , we find from Eq. (17) for the case of b = 1 with
basis ordering d = {0, 1},

U
f=1/2
4,d (φ) = diag(1, e−iφ) = e−iφ/2eiφẑ·σ/2. (C11)

Here the subscript in the notation U
f=1/2
4,d indicates the

basis. If f = 3
2 , we similarly find with d = {1, 2},

U
f=3/2
4,d (φ) = diag(e−iφ, e−iφ) = e−iφ1. (C12)

We perform the basis change from the d-basis (C10)
to the pseudospin ↑f basis given in Eq. (24) in two
steps. First, we introduce another two pseudospin spaces
spanned by the states

↑′f= (N(N•)c=1/2)f , ↓′f= (N(N•)c=3/2)f (C13)

with f = 1
2 or 3

2 , which below we referred to as ↑′f , and
give the action of U4 on this pseudospin. Note that the
↑′f basis is related to the d-basis (C10) by a basis change
that consists of shifting ovals. In the second step, we
use the powt operation [see Eq. (C3) for b = 1], which
interchanges the particles N = (••)1 and •, to relate the
pseudospin bases ↑′f and ↑f to one another. The action
of powt, as discussed in Appendix D 3, is to apply a
relative phase factor of −1 between the states with c = 1

2

and 3
2 . This action can thus be interpreted as a π rotation

about the z axis when relating ↑′f to ↑f , i.e.,

U4,↑f = eiπẑ·σ/2U4,↑′f e
iπẑ·σ/2 (C14)

for both the f = 1
2 and 3

2 sectors.

Since the action of U4 for f = 3
2 is proportional to the

identity [cf. Eq. (C12)], here the two-step basis change
has no effect,

U4,↑3/2(φ) = U
f=3/2
4,d (φ) = e−iφ1. (C15)
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Changing bases in the f = 1
2 sector is less trivial. The

first step, in which we change from the d-basis (C10) to
the pseudospin ↑′1/2 basis, has been carried out explicitly

in Ref. [34] [see Eqs. (17)-(21) therein] with the result
that U4 performs a pseudospin rotation

U4,↑′
1/2

(φ) = e−iφ/2eiφn̂
′
2·σ/2 (C16)

about an axis n̂′2 = (−2
√

2/3, 0,−1/3) through angle φ.
The second step given in Eq. (C14), which is the trans-
formation from ↑′f to ↑f , has the effect of rotating the

vector n̂′2 about the z axis through angle π onto the vec-

tor n̂2 = (2
√

2/3, 0,−1/3),

U4,↑1/2(φ) = eiπσz/2U4,↑′
1/2

(φ)eiπσz/2

= e−iφ/2eiπσz/2eiφn̂
′
2·σ/2eiπσz/2

= e−iφ/2eiφn̂2·σ/2. (C17)

This f = 1
2 pseudospin rotation is indicated in Fig. 6(a).

Next we determine the action of the two different U3

operations shown in Figs. 6(b) and (c) on the pseudospin
space ↑f given in Eq. (C9). To do this, we write both
matrix representations in the basis (C2). The operation
U3 shown in Fig. 6(b) conserves the quantum number c,
so we can take its matrix in the basis c = { 1

2 ,
3
2} directly

from Eq. (15) for a′ = 1,

U3,c(φ) = diag(1, e−iφ) = e−iφ/2eiφẑ·σ/2, (C18)

which corresponds to a z-axis rotation in each pseudospin
space ↑f .

The matrix representation of the U3 operation in
Fig. 6(c) can be found most easily in the basis
((N•)c′N)1/2. For basis ordering c′ = { 1

2 ,
3
2}, we find

from Eq. (13) for the case of a = 1 that this matrix is the
same as that given in Eq. (C18). Carrying out the basis
change given below in Appendix D [see Eqs. (D7)-(D9),

in particular the definition of the matrix F3 = f̂3 ·σ with
f̂3 = (2

√
2/
√

3, 0,−1/3)], we find the matrix of U3 in the
basis (C2) with c = { 1

2 ,
3
2},

U3,c(φ) = F3diag(1, e−iφ)F3 = e−iφ/2eiφn̂3·σ/2 (C19)

where n̂3 = 2f̂3(f̂3 · ẑ)− ẑ = (−4
√

2/9, 0,−7/9). The op-
eration U3 is thus a rotation about n̂3 in each pseudospin
space ↑f .

Appendix D: Basis Changes and Qubit Rotations

We now present further detailed derivations of matrix
representations of unitary operations due to pulse se-
quences introduced above. All required basis changes are
presented in D 1. In D 2 we consider the T sequence intro-
duced in Sec. III for the case of the explicit pulse sequence
given in Appendix B. Finally, D 3 contains a derivation of
the action of the powt operation introduced in Sec. IV.

1. Basis Changes

We begin by describing a number of required basis
changes. First, consider three spin- 1

2 particles with total

spin 1
2 in the standard qubit basis (•(••)a)1/2 with a = 0

or 1, as also shown in Fig. 1(a). Another basis for this
three-spin Hilbert space is ((••)a′•)1/2 with a′ = 0 or 1,
which can be related to the former basis via

((••)a′•)1/2 =
∑
a=0,1

F1,a′a(•(••)a)1/2 (D1)

with the recoupling coefficients

F1,a′a = 〈(•(••)a)1/2|((••)a′•)1/2〉. (D2)

To fix the phases of these coefficients we must at this
point adopt a phase convention for our total-spin basis
states. Here and in all that follows we use the standard
Condon-Shortley convention [47]. For this choice, the
recoupling coefficients form the transformation matrix

F1 =

(
−1/2

√
3/2√

3/2 1/2

)
= f̂1 · σ (D3)

with f̂1 = (
√

3/2, 0,−1/2) which maps the basis a =

{0, 1} to the basis a′ = {0, 1}. Note that F †1 = F1.
For the next basis change, consider four spin- 1

2 parti-
cles with total spin 1 in the basis ((••)b′(••)b)1, which is
also shown in Fig. 11(b). If we let b → 1 and introduce
an effective spin-1 particle N = (••)1 as in Eq. (20), we
obtain a two-dimensional, effective Hilbert space of two
spin- 1

2 particles and one spin-1 particle with total spin 1.
We can now relate the basis ((••)b′N)1 with b′ = 0 and
1 to an alternate basis (•(•N)c)1 with c = 1

2 or 3
2 ,

(•(•N)c)1 =
∑
b′=0,1

F2,cb′((••)b′N)1, (D4)

where the recoupling coefficients are given by

F2,cb′ = 〈((••)b′N)1/2|(•(•N)c)1/2〉. (D5)

The transformation matrix

F2 =

(
−1/
√

3
√

2/3√
2/3 1/

√
3

)
= f̂2 · σ, (D6)

where f̂2 = (
√

2/3, 0,−1/
√

3) and F †2 = F2, then maps
the basis c = { 1

2 ,
3
2} to b′ = {0, 1}.

Finally, we consider the basis change for the Hilbert
space spanned by one spin- 1

2 and two spin-1 particles.

We begin from the basis (N(•N)c)f=1/2 with c = 1
2 or

3
2 , which is shown in Fig. 6. Now consider the alternate

basis ((N•)c′N)f=1/2 with c′ = 1
2 and 3

2 , which can be
expressed in terms of the c-basis states by

((N•)c′N)1/2 =
∑
c= 1

2 ,
3
2

F3,c′c(N(•N)c)1/2, (D7)
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where

F3,c′c = 〈(N(•N)c)1/2|((N•)c′N)1/2〉. (D8)

The transformation matrix

F3 =

(
−1/3 2

√
2/3

2
√

2/3 1/3

)
= f̂3 · σ, (D9)

where f̂3 = (2
√

2/3, 0,−1/3) and F †3 = F3, then maps
the basis c = { 1

2 ,
3
2} to c′ = { 1

2 ,
3
2}.

2. T Operation

Figure 4(c) indicates that the T operation is applied to
a spin- 1

2 particle, •, and an effective spin- 1
2 particle, F.

As is clear from Eq. (B1) and the ensuing discussion, the
total-spin 1 Hilbert space that we have to consider (after
unpacking the effective particle F) is three-dimensional,
and it is spanned by the states

(•(•(••)b)c)d=1 (D10)

with bc = 0 1
2 , bc = 1 1

2 and bc = 1 3
2 .

An important condition placed on T is that it conserve
the quantum number c, which, being the total spin of the
three-spin qubit with state label b in Fig. 1(b), is initial-
ized to be 1

2 . We therefore seek the matrix representation
of T in what we here call the T -basis,

(•(•(••)b)c=1/2)d=1, b = {0, 1}, (D11)

with the indicated basis ordering b = {0, 1}. Labeling
these four spins from left to right by 1 through 4 [see
also Fig. 11(a)], the T operation can be written as in
Eq. (B2),

T = U34(2s)V −1U12(t)U34(t)V. (D12)

Here s = 2− t, and the pulse sequence for V is given in
Fig. 11(d).

We first consider the central two pulses within T ,
U12(t)U34(t). According to Fig. 11(b), the matrix rep-
resentation of this operation (up to an overall phase)
in the four-spin basis ((••)b′(••)b)1 with basis ordering
bb′ = {01, 10, 11} is

[U12(t)U34(t)]bb′ = e−i2πtdiag(eiπt, eiπt, 1), (D13)

Here the subscript in the notation [U12(t)U34(t)]bb′ indi-
cates evaluation in the bb′ basis.

The V -sequence for the T -gate can, as indicated by
the dashed line in Fig. 11(d), be formally divided into
two parts,

V = U23( 3
2 )U12( 1

2 )U34( 3
2 )U23( 1

2 ) ≡ V0V1, (D14)

where V0 = U23( 3
2 )U12( 1

2 ) and V1 = U34( 3
2 )U23( 1

2 ). Com-
bining Eqs. (D12) and (D14), we have

T = U34(2s)V −1
1 V −1

0 U12(t)U34(t)V0V1. (D15)

To find the matrix representation of this T -operation
(D15), we now perform a step-by-step evaluation of each
of the operations surrounding the central two pulses
U12(t)U34(t).

Given that the operation V0 satisfies the constraint
shown in Fig. 11(c), it maps a certain normalized super-
position of the c = 1

2 -states (•(•(••)b)c=1/2)1 with b = 0
and 1 to the state

v1 = ((••)b′=1(••)b=1)1. (D16)

Due to unitarity, the perpendicular superposition of the
same c = 1

2 -states is mapped into the bb′ = 01, 10 sector
onto the state

v2 = α((••)1(••)0)1 + β((••)0(••)1)1 (D17)

with α = − 2+i√
6

and β = i√
6

(see also Note [48]). The

action of the similarity transformation carried out by V0

in Eq. (D12) can thus be viewed as a basis change from
the T -basis (D11) to the v-basis {v1, v2},

vi =
∑
b=0,1

F vib0 (•(•(••)b)1/2)1. (D18)

The coefficients F vib0 are given by

F vib0 = 〈vi|V0|(•(•(••)b)1/2)1〉. (D19)

To find the coefficients of F0, we note

〈v1|U23( 3
2 )U12( 1

2 )|(•(•(••)b=0)1/2)1〉 = − 1
2 , (D20)

〈v1|U23( 3
2 )U12( 1

2 )|(•(•(••)b=1)1/2)1〉 =
√

3i
2 . (D21)

These overlaps can be computed straightforwardly by
evaluating U12 in the basis ((••)b′(••)b)1 and U23 in the
basis (•((••)b′′•)c)1 using Eq. (1) (with an appropriate
choice for the overall phase), together with Eqs. (D3) and
(D6). Accordingly, the matrix

F0 =

(
−1/2

√
3i/2

−
√

3i/2 1/2

)
= f̂0 · σ (D22)

with f̂0 = (0,−
√

3/2,−1/2) maps the T -basis (D11) to
the v-basis {v1, v2}. [We note that this choice of v-basis

ordering corresponds to F0 = F †0 .]
Notice that U12(t)U34(t) as given in Eq. (D13) mul-

tiplies each state (D16) and (D17) by a certain phase
factor; it is thus diagonal in the v-basis,

[U12(t)U34(t)]vi = e−i2πtdiag(1, eiπt)

= e−i3πt/2e−iπtẑ·σ/2. (D23)

To examine the effect of the innermost similarity trans-
formation due to V0 in Eq. (D15), we let

T0 = V −1
0 U12(t)U34(t)V0. (D24)

We evaluate this operation T0 by carrying out the basis
change (D18) to the T -basis,

T0,b = e−i3πt/2 F0e
−iπtẑ·σ/2F0

= e−i3πt/2e−iπtn̂0·σ/2, (D25)
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where

n̂0 = 2(f̂0 · ẑ)f̂0 − ẑ = (0,
√

3/2,−1/2). (D26)

We note that the T0-sequence (D24) for t = 1 equals
the R sequence shown in Fig. 3(a), which has been used
in deriving the Fong-Wandzura sequence [33]. Accord-
ing to the matrix representation (7) of R in the basis
(•(•(••)b)1/2)d = (•F)d, we have R = M for d = 1. In
this basis, which corresponds to the T -basis (D11), the
matrix M is then

M = T0,b

∣∣
t=1

(D25)
= e−i3π/2e−iπn̂0·σ/2 = n̂0 · σ. (D27)

We now determine the matrix representations of each
of the remaining pulses of the T -sequence (D15) in the
T -basis (D11). The operation U34(t) can be evaluated
directly in this basis using Eq. (2),

U34,b(t) = e−iπt/2eiπtẑ·σ/2. (D28)

The action of U23(t) can be found directly in the basis
(•((••)b′′•)1/2)0 with b′′ = {0, 1} using Eq. (2),

U23,b′′(t) = e−iπt/2eiπtẑ·σ/2. (D29)

To find the matrix of this pulse in the T -basis, we carry
out the basis change (D1) to find

U23,b(t) = F1U23,b′′(t)F1. (D30)

Having determined every operation of the T -sequence
in the T -basis (D11), we from now on work exclusively
in this basis and drop the additional subscripts indi-
cating the current basis. To determine the effect of
the outer similarity transformation in Eq. (D15) due to
V1 = U34( 3

2 )U23( 1
2 ), we first simplify V1 as follows,

V1 = U34( 3
2 )U23( 1

2 )

(D28),(D30)
= e−i(π/2)ẑ·σ/2[F1e

i(π/2)ẑ·σ/2F1]

= [e−i(π/2)ẑ·σ/2F1e
i(π/2)ẑ·σ/2]F1

≡ F4F1, (D31)

so that

V −1
1 T0V1 = F1F4T0F4F1. (D32)

Here, the matrix F4 = e−i(π/2)ẑ·σ/2F1e
i(π/2)ẑ·σ/2 is the

result of carrying out a similarity transformation on F1,

F4 = f̂4 · σ =

(
−1/2 −i

√
3/2

i
√

3/2 1/2

)
= F †4 , (D33)

where f̂4 = (0,
√

3/2,−1/2) is the result of rotating f̂1 =

(
√

3/2, 0,−1/2) through an angle of −π/2 about the z

axis. Note that f̂4 = n̂0, because of which the F4 matrix
in Eq. (D32) commutes with T0 ∼ e−iπtn̂0·σ/2 and thus
has no effect, allowing us to simplify

V −1
1 T0V1 = e−i3πt/2[F1e

−iπtn̂0·σ/2F1]

= e−i3πt/2e−iπtn̂1·σ/2 (D34)

with n̂1 = 2(n̂0 · f̂1)f̂1 − n̂0 = (
√

3/4,−
√

3/2, 1/4). The
matrix representation of the operation due to the last
pulse, U34(2s), is given in Eq. (D28), so that

T = U34(2s)V −1
1 T0V1

= [e−i2πs/2ei2πsẑ·σ/2][e−i3πt/2e−iπtn̂1·σ/2]

= e−iπt/2eiπ(2−t)ẑ·σe−iπtn̂1·σ/2 (D35)

where we used s = 2− t.
Finally, associating this result (D35) given in the T -

basis, that is (•(•(••)b)1/2)d=1 = (•F)d=1, with the ma-
trix M in Eq. (8), we conclude

M = e−iπt/2eiπ(2−t)ẑ·σe−iπtn̂1·σ/2

≡ eiπt/2eiφ(t)n̂(t)·σ/2 (D36)

with the effective rotation angle φ(t) =
2 arccos((5 cos(πt/2)+3 cos(3πt/2))/8) and a unit vector

n̂(t). Since φ(0) = 0 and φ(t1 ≡ 4 arctan(
√

2−
√

3)) =
2π the pulse sequence constructed in Sec. III can thus
be used to carry out arbitrary controlled-rotation gates
using values of t ∈ [0, t1].

3. Pseudospin Transformation

In Appendix C we use a transformation from one pseu-
dospin space, which is spanned by the states

↑1/2= (N(•N)c=1/2)1/2, ↓1/2= (N(•N)c=3/2)1/2, (D37)

to another pseudospin space spanned by

↑′1/2= (N(N•)c=1/2)1/2, ↓′1/2= (N(N•)c=3/2)1/2. (D38)

This change of bases is realized by interchanging the
rightmost effective spin-1, N, and the spin-1

2 , •. In the
present section we denote the corresponding operation,
which is introduced in Sec. IV as powt, by U .

Taking into account that the total spin of these two
particles, c, is conserved, and ignoring the leftmost N in
the above pseudospin states (which remains unchanged
by this transformation), we write

U |(•N)c〉 = Fc|(N•)c〉. (D39)

The basis change from (•N)c to (N•)c with c =
{ 1

2 ,
3
2} is thus characterized by a diagonal matrix F =

diag(Fc=1/2, Fc=3/2).
Figure 13 shows the basic information required to un-

derstand the basis change (D39). As shown in Fig. 13(a),
we replace the spin-1 particle by two spin- 1

2 particles with
total spin 1,

(•N)c → (•(••)a=1)c. (D40)

The full Hilbert space of three spin- 1
2 particles is spanned

by the states (•(••)a)c with ac = 0 1
2 , ac = 1 1

2 and ac =

1 3
2 . Again referring to Fig. 13(a), this basis change is

then carried out by

U = U23(1)U12(1), (D41)
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(a) (b) 

1
1=

cc

a =1 a F1 = f̂1 ⋅σ 3/2π

z

x
f̂1

3/2π

a '
1 2 1 2 1n̂

FIG. 13. powt operation (D39) consisting of, (a), two regular
swaps followed by, (b), basis change carried out by F1. In (a),
the effective spin-1, N, is replaced with two spin- 1

2
particles,

•, with total spin a = 1.

where we labeled the spins 1 through 3 from left to
right (or top to bottom in Fig. 13). The action of these
swaps can be computed straightforwardly using simple
spin wave functions; however, in the spirit of this work,
we commit, as we have throughout, to using only to-
tal spin quantum numbers and recoupling coefficients,
adopting the Condon-Shortley phase convention.

The transformation (D39) now reads

U |(•(••)a=1)c〉 = Fc|((••)a′=1•)c〉, (D42)

where the coefficients are determined by

Fc = 〈((••)1•)c|U |(•(••)1)c〉. (D43)

Note that the states on either side of this equation are
given in different bases. In the case of total spin c = 3

2
the transformation between these bases is trivial,

〈((••)1•)3/2| = 〈(•(••)1)3/2|, (D44)

so that here a swap acting on the two leftmost spins
has the same effect as a swap acting on the two right-
most spins. From Eq. (1) for the case of a = 1 we find

U
c=3/2
12 (1) = U

c=3/2
23 (1) = e−iπ = −1. Using Eq. (D41)

we obtain for c = 3
2 that U c=3/2 = (−1)2 = 1, so that

Fc=3/2 = 〈(•(••)1)3/2|U c=3/2|(•(••)1)3/2〉 = 1. (D45)

For the two-dimensional c = 1
2 sector using the matrix

F1 given in Eq. (D3), the c = 1/2 equivalent of Eq. (D44)
is

〈((••)1•)1/2| =
∑
a=0,1

F1,1a〈(•(••)a)1/2|, (D46)

where we have used F †1 = F1.

Combining Eqs. (D43) for c = 1
2 and (D46) we obtain

Fc=1/2 =
∑
a=0,1

F1,1a〈(•(••)a)1/2|U c=1/2|(•(••)1)1/2〉.

(D47)
To find this matrix element, let us first determine the
matrix representations of the two swaps making up U
for total spin c = 1

2 . The matrix of U23(1) in the ba-
sis (•(••)a)1/2 with state ordering a = {0, 1} is given

by Eq. (2) for t = 1, U
c=1/2
23 (1) = e−iπ/2eiπẑ·σ/2. Simi-

larly, in the alternate basis ((••)a′•)1/2 with a′ = {0, 1}
the matrix of U12(1) is also given by Eq. (2) for t = 1.
Changing from this a′ basis to the a basis given above,

we have U
c=1/2
12 (1) = F1e

−iπ/2eiπẑ·σ/2F1.

In the basis a = {0, 1}, the operator F1U
c=1/2 is then

F1U
c=1/2 = F1e

−iπ/2eiπẑ·σ/2(F1e
−iπ/2eiπẑ·σ/2F1)

≡ F1F
′
1F1, (D48)

where F ′1 = (e−iπ/2eiπẑ·σ/2)F1(e−iπ/2eiπẑ·σ/2) = f̂ ′1 · σ.

The vector f̂ ′1 = (−
√

3/2, 0,−1/2) is the result of rotat-

ing f̂1 through π about the z axis. With reference to
Fig. 13(b), we evaluate F1F

′
1F1 noting that rotating the

vector f̂ ′1 through π about f̂1 results in the vector ẑ, im-
plying that F1U

c=1/2 = e−iπ/2eiπσz/2 = diag(1,−1) in
the usual basis ordering a = {0, 1}. Equation (D47) thus
yields

Fc=1/2 =
∑
a=0,1

F1,1a〈(•(••)a)1/2|U c=1/2|(•(••)1)1/2〉 = −1.

(D49)
We conclude that the basis change (D39) is carried out
by the matrix

F = diag(Fc=1/2, Fc=3/2) = diag(−1, 1). (D50)

This operation can be interpreted as a z-axis rotation
through π when performating the pseudpospin transfor-
mation from Eq. (D37) to (D38) via the powt operation.
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