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We studied several aspects of the Mott metal-insulator transition in the disordered case. The
model on which we based our analysis is the disordered Hubbard model, which is the simplest
model capable of capturing the Mott metal-insulator transition. We investigated this model through
Statistical Dynamical Mean-Field Theory (statDMFT). This theory is a natural extension of Dy-
namical Mean-Field Theory (DMFT), which has been used with relative success in the last several
years with the purpose of describing the Mott transition in the clean case. As is the case for the
latter theory, statDMFT incorporates the electronic correlation effects only in their local manifesta-
tions. Disorder, on the other hand, is treated in such a way as to incorporate Anderson localization
effects. With this technique, we analyzed the disordered two-dimensional Mott transition, using
Quantum Monte Carlo to solve the associated single-impurity problems. We found spinodal lines at
which the metal and insulator cease to be meta-stable. We also studied spatial fluctuations of local
quantities, such as self-energy and local Green’s function, and showed the appearance of metallic
regions within the insulator and vice-versa. We carried out an analysis of finite-size effects and
showed that, in agreement with the theorems of Imry and Ma, the first-order transition is smeared
in the thermodynamic limit. We analyzed transport properties by means of a mapping to a random
classical resistor network and calculated both the average current and its distribution across the
metal-insulator transition.

I. INTRODUCTION

A phase transition at T = 0 as a function of some ex-
ternal parameter is called a quantum phase transition.
It is characterized by a singular change in the ground
state of the system. Although zero temperature is im-
possible to achieve, the effects of this quantum phase
transition at T = 0 are felt at finite temperatures. Hence
the importance of studying these transitions. A quan-
tum phase transition of great importance is the metal-
insulator transition. The distinction between metallic
and insulating behavior is only well defined at zero tem-
perature: while the resistivity of an insulator diverges
as T → 0, this transport property approaches a con-
stant value in the case of a metal. At finite temper-
atures, the resistivity is finite in both cases. As a re-
sult, one could imagine that the metal-insulator tran-
sition is necessary a quantum phase transition. How-
ever, several systems exhibit an abrupt jump of resistiv-
ity, by several orders of magnitude, at finite tempera-
ture. It is therefore natural to extend the concept of the
metal-insulator transition to the case of finite tempera-
tures. The metal-insulator transition has been observed
in several physical systems such as (i) doped semicon-
ductor systems (e.g. Si:P,B1,2), (ii) two-dimensional elec-
tron systems in MOSFETs (“metal-oxide-semiconductor
field-effect transistors”3) and semiconductor heterostruc-
tures (GaAs/AlGaAs)4,5, (iii) transition metal com-
pounds (V2O3,VO2,NiSSe,Nb)6,7, and (iv) organic con-
ductors, e.g. κ− (BETD TTF)2Cu[(N(CN)2]Cl)8. Many
of these systems are not pure, displaying intrinsic or ex-

trinsic disorder.
State-of-the-art imaging techniques have enabled re-

searchers to investigate systems undergoing metal-
insulator transitions with nanoscale resolution9. This
has opened a new window into the transport properties
of disordered strongly correlated systems. Thus, it has
become clear that beneath the total resistance of a sam-
ple, the usual indicator of the metal-insulator transition,
lurks in fact an intricate inhomogeneous landscape. In-
deed, in many cases, the insulating behavior appears as
poorly conducting puddles nucleate and grow within the
metallic host and vice-versa. The first observation of this
phenomenon was made in VO2 films on sapphire sub-
strate by means of scattering near-field infrared scanning
spectroscopy10,11. Stripy puddles were also observed in
microcrystals of the same system O’Callahan et al. 12 as
well as in films13 with a unidirectional substrate induced
strain, revealing that the electronic degrees of freedom
are strongly coupled to the lattice ones. These studies
reveal that such non-uniform state is induced by various
inhomogeneities such as defects, strains, surfaces, cracks,
etc. It is clear that a theoretical descriptions incorporat-
ing these features in a strongly correlated setting is called
for. This is what we propose to do in the present work.

There are some known mechanisms capable of trans-
forming a metal into an insulator. In the absence of in-
teractions, a sufficiently large level of disorder leads to
the localization of the wave functions of a particle, the
so-called Anderson localization14. A great deal is known
about this mechanism. In particular, a successful scal-
ing theory15 has shown that all states of a particle are
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localized in the presence of any level of disorder in dimen-
sions d ≤ 2 (considering only the case of potential scat-
tering, ignoring the cases of potentials with spin-orbit
interaction). When d > 2, you must add a minimal
amount of disorder for the metal to become an insula-
tor. This transition is known as the Anderson metal-
insulator transition. Alternatively, Mott proposed that,
even in the absence of disorder, the electron-electron in-
teractions may in some circumstances induce a metal-
insulator transition16. Although the original Mott mech-
anism was essentially based on the long-term character
of the Coulomb interaction, a model with interactions of
short range proposed by Hubbard17–19 can also exhibit
a metal-insulator transition for sufficiently strong elec-
tronic interactions when there is one electron per site
of the crystal lattice. Because of these initial propos-
als, this transition induced by the interactions is known
as the Mott or Mott-Hubbard transition. The prob-
lem of understanding the conjunction of disorder and
interactions20–23, despite some progress, is still an essen-
tially open problem.

Theoretically, several techniques have been developed
to describe the Mott transition. One of the first was
made by Hubbard himself in a series of works17–19. His
approach consists essentially in starting with the limit
in which the electron-electron interaction is much larger
than the kinetic energy of the system (the insulator),
and gradually reducing the value of this interaction. The
characteristic gap of the Mott insulator, separating two
bands of excitations called Hubbard bands, finally closes
at a critical value of the interaction U = UcHubb and the
system is metalized. An opposite point of view is due to
Brinkman and Rice24. Using a variational wave function
proposed by Gutzwiller25–27, they analyzed how the cor-
related metal is destroyed by the increase of electronic
interactions. In this case, at a certain critical value of
the interaction U = UcBR, the strongly correlated quasi-
particles of the Fermi liquid disappear and the system
becomes an insulator. While Hubbard’s description does
not adequately describe the quasi-particles of the corre-
lated metal, the Brinkman and Rice approach cannot cor-
rectly predict the presence of the Hubbard bands. Both
characteristics can be observed, for example, in optical
conductivity measurements, which indicate the incom-
pleteness of these two approaches.

The advent of the Dynamical Mean-Field Theory
(DMFT)28,29 enabled a description of the Mott transition
that unifies the views of Hubbard and Brinkman-Rice.
DMFT is able to incorporate, for intermediate values of
the interaction U , both the quasi-particles of the Fermi
liquid at low energies and the incoherent Hubbard bands
at high energies. In this description, the Mott transi-
tion is a first order transition, characterized by the dis-
appearance of the quasi-particles and leaving behind only
the finite energy excitations of the Hubbard bands. The
transition is characterized by the existence of a region
of coexistence between the metallic and the insulating
phases, as in the case of supercooling and superheating

in the liquid-gas transition. Also as in the case of that
transition, the first-order phase transition line in the tem-
perature T versus the interaction U phase diagram ends
at a second-order critical point at (Tc, Uc). Below Tc, the
resistivity exhibits a jump as a function of U . This jump
decreases with increasing temperature and disappears at
the critical point.

The disordered Hubbard model was studied previ-
ously with several methods: exact diagonalization30,
finite-31–33 and zero-temperature34,35 quantum Monte
Carlo techniques, Hartree-Fock36–38, variational wave
functions39, DMFT40–43 and typical medium theory44–49.
We should mention also the related problem of the disor-
dered Coulomb liquid50,51. All of these approaches, with
their strengths and weaknesses, focus on different aspects
and shed some light on this difficult problem, yet no final
picture has emerged.

In the present work, we employ an extension of the
DMFT picture of the Mott transition that is able to in-
corporate non-trivial disorder effects, the so-called Statis-
tical Dynamical Mean Field Theory (statDMFT)52. The
most important features of this method are (i) the in-
corporation of all Anderson localization effects (in fact,
the method is exact in the non-interacting limit), which
affects the properties of single-particle states and (ii) the
incorporation of local interaction effects, such as in the
original DMFT. Non-local interaction effects are absent
in this approach. We therefore used this method to study
the effects of disorder on the Mott transition in a two-
dimensional lattice model with randomness. As in the
DMFT, a method is required for the solution of the auxil-
iary single-impurity problems. We used Quantum Monte
Carlo (the Hirsch-Fye algorithm53) to solve this single-
impurity problems. Related DMFT approaches to other
types of non-homogeneous systems have been also used
in diverse contexts54–64.

Our results show that adding disorder to the system
keeps the first-order character of the transition for finite-
sized systems, including the coexistence of both metal-
lic and insulating solutions, although the position of the
transition fluctuates spatially. The average hysteresis
loops, however, are shifted to larger values of the inter-
action. Furthermore, for a given disorder realization, we
observe how increasing (reducing) the electron-electron
interaction in a metallic (insulating) system induces the
the nucleation and growth of insulating (metallic) “bub-
bles”, in striking similarity to the near-field imaging re-
sults on VO2. As expected for a two-dimensional system,
however, as the system size increases, there is a prolifer-
ation of both metallic and insulating “bubbles”, signaling
the smearing of the first-order transition in the thermo-
dynamic limit. Finally, we show how we can employ a
classical random-resistor model to describe the transport
on a microscopic level, thus offering a means to analyze
these highly complex inhomogeneous states.
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II. THE MODEL

We focus on the site-disordered Hubbard model in
a two-dimensional square lattice with first and second
nearest-neighbor hopping, as defined by the Hamiltonian:

H = H0 +HW +HU , (1)

where

H0 = −
∑
〈i,j〉σ

t
(
c†iσcjσ + h.c.

)
−
∑
〈〈i,j〉〉σ

(
t∗c†iσcjσ + h.c.

)
, (2)

HW =
∑
iσ

εiniσ, (3)

and

HU = U
∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
. (4)

Here, c†iσ creates an electron with spin projection σ at
site i and niσ = c†iσciσ is the number operator. The lat-
tice parameter is set to a = 1 and a purely imaginary
second nearest-neighbor hopping t∗ is introduced in or-
der to move the van Hove singularity away from middle
of the clean non-interacting band while at the same time
maintaining particle-hole symmetry. We will fix it to
be t∗ = 0.5it. The particle-hole symmetric Hubbard U
term accounts for a local Coulomb repulsion. Particle-
hole symmetry is destroyed only by the diagonal dis-
order term εj which is distributed according to a uni-
form probability distribution of total width W centered
at zero, which can be taken as a measure of disorder
strength. The clean non-interacting dispersion relation
is εk = −2t (cos kx + cos ky + sin kx sin ky) and the corre-
sponding density of state is shown in Fig. 1. The half
band width is D =

√
2+1
2 t ≈ 1.207t, which we will take

as our energy unit.

Figure 1. The clean non-interacting density of states of our
model. Note that the van Hove singularities occur away from
the band center.

III. THE STATISTICAL DYNAMICAL MEAN
FIELD THEORY (STATDMFT)

The spirit of single-site dynamical mean field theory
and its descendants is to treat exactly on-site corre-
lations. This is achieved by assuming a local albeit
frequency-dependent self-energy. In the context of a dis-
ordered lattice, this amounts to the following approxima-
tion to the full self-energy

Σij(iωn)→ δijΣi(iωn), (5)

here written in its Matsubara version. Note that, al-
though local, the self-energy Σi(iωn) varies from site to
site. The self-energy is calculated within a self-consistent
scheme as follows. Under the assumption of Eq. (5), the
local dynamics of a generic site i is governed by the ef-
fective action

S
(i)
eff = −

∑
σ

∫∫
c†iσ(τ)g

(i)−1
0 (τ − τ ′)ciσ(τ ′)dτdτ ′

+ U
∫ [
ni↑(τ)− 1

2

] [
ni↓(τ)− 1

2

]
dτ,

(6)

where

g
(i)−1
0 (iωn) = iωn − εi −4i(iωn), (7)

and ∆i(iωn) is the “cavity” function describing single-
particle hopping to and from site i. The local interacting
Green’s function, obtained by solving the effective action
in Eq. (6) and defined by

Gi(τ − τ ′) = −
〈
T
[
ciσ(τ)c†iσ(τ ′)

]〉
, (8)

is related to the self-energy through

G−1
i (iωn) = g

(i)−1
0 (iωn)−Σi(iωn). (9)

From the set of equations Eq.(6)-Eq.(9) an iterative
calculational scheme can be devised. Given a finite L×L
realization of the disordered lattice, we start from an ini-
tial guess for the L2 “cavity” functions ∆i(iωn), which
define L2 effective actions as given by Eq.(6) and Eq.(7).
We then use some standard impurity solver to calculate
the L2 local interacting Green’s functions from Eq.(8)
and then find the L2 local self-energies from Eq.(9). This
ensemble of local self-energies now has to be used to gen-
erate updated “cavity” functions. This is achieved by
focusing on the single-particle lattice Green’s function,
which can be easily written as a resolvent in the lattice
site basis (matrices in this basis are denoted by a hat)

Ĝlat(iωn) =
1

iωn1̂− Ĥ0 − ĤW − Σ̂(iωn)
, (10)
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where 1̂ is the unitary matrix and Σ̂(iωn) is the diag-
onal matrix with elements Σi(iωn)δi,j . Physically, the
renormalization introduced by interactions are encoded
in a “shift” of the site energies by a frequency-dependent
self-energy

εi → εi + Σi(iωn). (11)

As usual in single-site DMFT-based approaches, this
renormalization only describes local, single-particle pro-
cesses. The lattice Green’s function Ĝlat(iωn) of Eq. (10)
is obtained by a frequency-by-frequency numerical inver-
sion of the non-Hermitian operator in the denominator.
The latter can be efficiently implemented in the site ba-
sis and the numerical inversion performed with standard
linear algebra routines. In the site basis, the diagonal el-
ements of Ĝlat(iωn) are the updated local Green’s func-
tions G(new)

i (iωn) of Eq. (9). Therefore, the updated
“cavity” functions can be obtained from

∆
(new)
i (iωn) = iω− εi −G(new)−1

i (iωn)−Σi(iωn), (12)

which is then used to generate a new set of L2 effective
actions, thus closing self-consistency loop. The full self-
consistent scheme has been dubbed statistical dynami-
cal mean field theory (statDMFT). The great advantage
of the method lies in its ability to track full distribu-
tions (typically numerically) of local quantities, instead
of focusing on average, either algebraic (as in the infinite-
dimensional DFMT limit) or geometric (as in the “typical
medium theory”) 44–49. Evidently, when interactions are
turned off, the method represents the exact diagonaliza-
tion of the non-interacting disordered problem.

It should be mentioned that originally the DMFT of
clean systems was introduced by invoking its exactness in
the infinite-dimensional limit Metzner and Vollhardt 28 .
Indeed, the infinite coordination suppresses fluctuations
in the same way as in the mean-field treatment of
spin systems. DMFT’s subsequent popularization and
widespread use in finite-dimensional systems, however,
has come from the realization that many strongly cor-
related systems are well described within a local treat-
ment of correlations. In this sense, DMFT and its de-
scendants represent the optimal implementation of this
local program. This has become especially clear in the de-
scription of the clean Mott-Hubbard transition end-point
Limelette et al. 8 . Of course, other low-temperature in-
stabilities (like magnetism) are especially sensitive to a
finite, low dimensionality. Thus, our use of the method
in a two-dimensional case can be justified in two ways:
(a) we work close to the second-order end-point of the
clean transition, and (b) most of our focus is on the par-
ticularity of two spatial dimensions, where the Imry-Ma
effect destroys the clean first-order transition line, as will
be explained later.

We have implemented the statDMFT approach to
study the disordered Mott transition in the two-
dimensional Hubbard model at half filling. We have fo-

cused on three different temperatures with the follow-
ing choice of parameters: T = 0.028D , T = 0.024D
and T = 0.02D and the value of disorder was fixed at
W = 0.52D. Since we focus on finite temperatures,
the issue of antiferromagnetic order, which only occurs
at T = 0 in two dimensions is not important here.
In our calculations, we have used the Quantum Monte
Carlo algorithm of Hirsch and Fye53 as impurity solver.
The discretization of the imaginary time axis was set at
4τ=0.55. At each run of the impurity solver, the num-
ber of sweeps used to obtain the converged results was
100, 000. The number of iterations needed to reach the
full self-consistency of the statDMFT equations was less
than 50 for well-defined metallic or insulating solutions,
but increased closer to the critical points, where it could
range from 200 to 500 interactions.

IV. THE MOTT-HUBBARD PHASE
TRANSITION AND THE EFFECTS OF

DISORDER

Theoretical and experimental studies indicate that the
Mott transition belongs to the same universality class
of the liquid-gas phase transition and the Ising model65.
The clean Hubbard model Hamiltonian in the presence
of a chemical potential reads

H = H0 +HU −
∑
iσ

µniσ . (13)

For values of the local interaction U > Uc, the system
displays insulating behavior when the mean occupancy
number 〈n〉 = 1. For values of 〈n〉 6= 1, the system
is metallic. The phase diagram of the transition corre-
sponds to a first order transition at n = 1, culminating
at a second-order critical point at Tc, as shown in Fig. 2.
This figure also shows the dependence of n on the chem-
ical potential µ for T = 0. Note that there is a plateau
at n = 1, since the presence of the Mott gap makes the
system incompressible (dn/dµ = 0). We would like to
emphasize that this phase diagram stands in complete
analogy with the phase diagram of the Ising model in an
external (longitudinal) field h when we make the corre-
spondences (n− 1) → m (where m is the magnetization
density) and µ→ h.

Figure 2. T − n phase diagram for the Mott transition and
occupation number as a function of chemical potential at T =
0 in the Hubbard model.
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Based on the above behavior, it is clear that the di-
agonal disorder HW =

∑
iσ

εiniσ act as a “local” chemical

potential by doping the insulator and making it metal-
lic in a given region for sufficiently large values of |εi|.
By analogous reasoning to the Ising model with random
fields66, if the fluctuations of |εi| are sufficiently large in
a certain region, the insulator is unstable with respect to
the formation of a metallic region . If N is the number
of sites within the region, then the fluctuations are such
that

4ε =

√√√√ ∑
ε2i
i

N − 1

{
. 4εc Remains Insulating,
& 4εc Local Metallization,

(14)

where 4εc ∼ U when T = 0. Therefore, the region
remains insulating if the size of fluctuations is less than
a critical value, above which we have local metallization.
This is analogous to the effect of the random field on the
Ising model. We should mention that a careful scaling
analysis of the near-field imaging results of 10 gave strong
support to a picture of the metal-insulator transition in
VO2 based on the random field Ising model universality
class66,67.

There is a crucial dimension dependence to this phe-
nomenon, however. Indeed, the same considerations as
used by Imry and Ma68 in their analysis of the random
field Ising model lead us to conclude that disorder de-
stroys the two-dimensional Metal-Insulator transition in
the thermodynamic limit. This is because below and at
two dimensions the interface energy between metal and
insulator is not able to hinder the proliferation of metallic
regions in the insulator or insulating regions in the metal.
Therefore, the system breaks into various metal and in-
sulating regions and the phase transition is smeared. The
first-order phase transition line on the left-hand side of
Fig. 2 is destroyed in this two-dimensional case. This is
the generalization of the Imry and Ma theorem68 to the
Mott transition case.

Finally, we need to explain how we determine whether
a certain region belongs to an insulating or a metallic
“bubble”. The local density of states (DOS) might be a
good indicator. In a clean system, it can be obtained
through the value of the local Green’s function at a par-
ticular value of the imaginary time69

Gi

[
τ =

1

2kBT

]
. (15)

This approach, however, assumes that the local DOS does
not vary appreciably with the frequency on the scale of
the temperature. This is a reasonable assumption in a
clean Hubbard model, in which the only energy scales are
U and D. In a disordered Hubbard model, however, the
local on-site energies fluctuate in the range [−W/2,W/2],
thus generating a continuum of small energy scales over
which the local DOS varies and invalidating this proce-
dure. Another option would be the local self-energy at

low real frequencies, since

ReΣi (ω)→

{
0 metal,

∞ insulator.
(16)

This indicator would require the analytical continuation
from Matsubara to real frequencies, a notably difficult
task. Since this must be performed at every lattice site,
we tried to create an automated algorithm to do this,
using the usual maximum entropy and Padé techniques.
However, this proved to be very unreliable. In the end,
we opted for the value of the imaginary part of the local
self-energy at the first Matsubara frequency ImΣi (iω1),
since it reflects the same tendency of Eq. (16), being large
in the insulator and small in the metal

ImΣ(iω1) ∼
{

iω1 → 0 as T → 0 metal,
1/iω1 → 0 as T → 0 insulator.

(17)

V. TRANSPORT PROPERTIES

It would be useful to use the data from ImΣi(iω1) as
a means to access the transport properties within stat-
DMFT. This is possible at T = 0 in the non-interacting
case by means of the Landauer formalism70, through
the calculation of the transmission matrix between the
edges of the system. This formalism was later extended
to interacting systems and finite temperatures Meir and
Wingreen 71 enabling a full statDMFT calculation of
transport properties. Nonetheless, when the transport
occurs without quantum coherence at any length scale due
to the strong inelastic scattering, it is possible to make a
classical description of the resistivity. We will show that
at the temperatures and interactions in which we work,
transport is completely incoherent and we will thus use
a network of classical resistors to calculate the relative
resistance values of the system. To our knowledge, this
is the first attempt to calculate transport within stat-
DMFT, albeit in this incoherent regime.

From many-body theory, there is a relation between
the value of self-energy at zero (real) frequency and wave
vector on the Fermi surface and the inelastic half-life of
the particle72

ImΣ(
∣∣∣~k∣∣∣ ∼ kF , ω ' 0) ∼ 1

τin

(
~k
) . (18)

If τin(~k) is approximately isotropic τin(~k) → τin, the
Kubo formula gives us the conductivity and, therefore,
the resistivity as

ρ ∼ 1

τin
∝ ImΣ(

∣∣∣~k∣∣∣ ∼ kF , ω ' 0). (19)

In fact, from the Drude formula,
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ρ =
m

ne²τ
, (20)

in accordance with Eq. (19) if the transport is completely
dominated by inelastic processes. In this case, we define
the free inelastic mean free path as being

lin = vF τin, (21)

where vF is the Fermi velocity. For l & lin the trans-
port is incoherent because inelastic scattering destroys
the “memory” of the quantum phase of the electronic
wave function. At these scales, we can describe the trans-
port classically. We can estimate the Fermi velocity by
vF ∼ EF

kF
where EF is the Fermi energy. In the Hubbard

model, EF can be taken as the half-bandwidth D in the
case of half-filling. Finally, using kF ∼ 1/a where a is
the lattice parameter we have vF ∼ aD. Therefore, from
Eqs. (19) and (21) we obtain

lin = vF τin =
aD

ImΣ
⇒ lin

a
=

D

ImΣ
. (22)

As we will show later, for the temperatures we are fo-
cusing on here, lin . a and the transport is completely
incoherent thus allowing for a classical description.

Supposing now we are in the regime where lin ∼ a,
let us now describe how we can replace the interacting
electron system by a network of classical resistors. First,
each site in the original network gets associated with a
local resistivity value ρi = ImΣi(ω1) ∼ 1/τin (i). The
bond between two nearest neighbors i and j is then re-
placed by a resistor whose value is the average value of
the resistivities of the two sites ρi and ρj

Rij =
1

2
(ρi + ρj), (23)

as shown in Fig. 3.

Figure 3. Square resistor network in which each resistor cou-
ples two neighboring sites.

The various resistors are connected through the geom-
etry of the network. At the ends of the network external
resistors are placed that are connected to external volt-
ages φi. These external resistor values are given by the
resistivities at the edge sites. The external voltages are
fixed as φ0 at the left edge and φ at the right edge. The
network of resistors has the form shown in Fig. 4 for the
particular case of a 3x3 network. The internal voltages

and currents, which pass through each resistor are un-
known and need to be determined using electrical circuit
theory.

Figure 4. Resistors associated to a 3 x 3 square network.

In general, for a network with LxL sites, the total num-
ber of nodes is 2L + L2, with L2 internal nodes and 2L
external nodes. The total number of resistors is 2L2. We
need to find the 2L2 currents Iij that cross the resis-
tors and the L2 voltages at each internal node. In all,
therefore, there are 3L2 unknowns. The current at the
inner nodes is conserved (Kirchhoff’s law) providing L2

equations

∑
j

Iij = 0. (24)

For each resistor, we apply Ohm’s law

Iij =
Vi − Vj
Rij

, (25)

which gives us 2L2 equations. We therefore have a to-
tal of 3L2 equations for 3L2 unknowns. We found the
solutions numerically.

VI. RESULTS AND DISCUSSION

To describe the Mott transition in two dimensions
we use the Hubbard Hamiltonian in the two dimen-
sional square lattice given in Eq. (1). Several studies
of the clean case have established the first-order na-
ture of the transition at finite temperatures below Tc,
with the corresponding coexistence region and associ-
ated hysteresis73–76. For a finite-size system, we expect
the hysteresis to survive. Therefore, we have to allow
for the convergence of both stable and meta-stable solu-
tions to the statDMFT equations. We thus start from
initial U values which are safely outside the coexistence
region, either in metallic or in the insulating phase. For
a given interaction value U0 the values of Gi(iωn) are
found once convergence has been achieved. The results
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of Gi(iωn) for U0 are used as an initial guess for Gi(iωn)
at U1 = U0 + ∆U (going from the metal to the insula-
tor) or U1 = U0 − ∆U (going from the insulator to the
metal). The new results for Gi(iωn) are used to generate
the Gi(iωn) corresponding to the next value U2 and thus
consecutively, doing a scan of U values from the metal to
the insulator or from the insulator to the metal.

As U is scanned an abrupt jump is observed in
ImG(ω1). We define Uc1 to be this critical jump value
when going from insulator to metal and Uc2 to represent
the value when going from metal to insulator. These are
the so-called spinodals. The difference of paths traveled
going from metal to insulator and from insulator to metal
defines hysteresis curves, such as shown in Fig 5, for the
clean case. The region that is contained between Uc1
and Uc2 is the coexistence region, in which one of the
solutions is only meta-stable. In the coexistence region,
for a value of U , it is possible to find the two behaviors,
metallic and insulating.

The disordered case is shown in the Fig. 6. Note that,
since Gi(iωn) now fluctuates spatially we have shown all
the L2 curves for −ImGi (iω1). Although there are many
curves, a clear hysteretic behavior is apparent, especially
at the lowest temperatures. Besides, adding disorder
causes a shift in the hysteresis curves to higher inter-
action values and the coexistence region shrinks in size.

Figure 5. Hysteresis curves for different temperature values,
below the critical point of clean Mott transition. As the tem-
perature increases, the hysteresis loops become smaller.

Figure 6. Hysteresis curves for different values of tempera-
ture. Notice how the disorder shifts the hysteresis curve to
higher values of interaction energy, while the coexistence re-
gion shrinks.

Let us now focus on the vicinity of the Mott tran-
sition. For each value of U in a scan of values where
∆U = 0.008D, a map is obtained representing the spatial
behavior of the imaginary part of the Green’s function at
the first Matsubara frequency. Fig 7 shows these results
for T = 0.024D going from the metal to the insulator
(Results for other values of temperature, can be found in
the Supplementary Material77). The color scale is orga-
nized so that the largest value of −ImG(ω1) corresponds
to red and the smallest values to blue. As the value of
the local interaction changes, the spatial configuration
in the lattice changes. The system, which initially was
a metal with significant spatial homogeneity, begins to
show “bubbles” corresponding to insulating regions. Fi-
nally, these coalesce to form a rather homogeneous insu-
lator. Similarly, starting with high local electron-electron
interaction it is observed that, as the value of the local in-
teractions decrease, metallic "bubbles" appear until the
lattice becomes metallic, as shown in Fig 8. Comparing
the same intermediate values of U in the two figures, we
can easily distinguish the two coexisting solutions.

Figure 7. Imaginary part of the Green’s function at the first
Matsubara frequency for each site of the square lattice with
T = 0.024D in the neighborhood of the Mott transition when
going from the metal to the insulator. See video mi.avi at
Supplementary Material77.
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Figure 8. Imaginary part of the Green’s function at the
first Matsubara frequency for each site of the lattice for
T = 0.024D and a scan of values of U in the neighborhood
of the Mott transition going from the insulator to the metal.
See video im.avi at Supplementary Material77.

A. Critical behavior of the Mott transition

We now focus on the correlations between the fluctua-
tions of the bare disorder and the local order parameter
of the Mott transition. Fig. 9 shows the spatial pat-
terns of the local order parameter −ImGi(iω1) for four
different disorder realizations at W = 0.52D, U = 2.27D
and T = 0.024D. The range of variations for each disor-
der realization is between 0.20 < [−ImG(ω1)]D < 0.57.
The red color represents the regions with greater metal-
lic behavior and blue regions represent the insulator. For
convenience, let us define an essentially metallic region
as one in which the condition [−ImG(ω1)]D > 0.45 is
satisfied. Analogously, essentially insulating regions are
defined as those in which [−ImG(ω1)]D < 0.27. In each
of these regions we calculate the relative local fluctua-
tion of the disorder ∆ε/∆εdistr, where we take ε̄ = 0,

∆ε =

√
N∑

i=1
ε2i

N−1 and the standard deviation of the bare dis-

tribution is ∆εdistr =
√

W 2

12 = 0.15D.

Figure 9. For four different realizations of disorder, we show
ImGi(ω1) via a color scale. The red color represents the lattice
sites that have metallic behavior. Insulating behavior corre-
sponds to blue regions. We used W = 0.52D, U = 2.27D and
T = 0.024D.

Table I shows the results for the ∆ε/∆εdistr for each
one of the regions. In the insulating regions, where
0.20 ≤ [−ImG(ω1)]D ≤ 0.27, the values of ∆ε/∆εdistr

are always smaller than 1. The values ∆ε/∆εdistr in the
metallic regions, where 0.45 < [−ImG(ω1)]D < 0.57, on
the other hand are all larger than 1. There is a strong cor-
relation between small (large) values of ∆ε and insulating
behavior (metallic). In the regions with intermediate be-
havior ∆ε ' ∆εdistr. These results are in qualitative
agreement with the analysis of reference 67 of the insu-
lating and metallic puddles of VO2, which showed that
the observed scaling behavior is best described by the
critical random field Ising model. Unfortunately, we can-
not access very large lattice sizes in order to be able to
do a full scaling analysis of the puddle sizes.

Insulator Intermediate regime Metal

Intervals A B C

Number 1∆ε/∆εdistr 0.79 0.88 1.28

Number of sites 7 273 120

Number 2 ∆ε/∆εdistr 0.75 0.93 1.36

Number of sites 75 262 63

Number 3 ∆ε/∆εdistr 0.81 0.90 1.33

Number of sites 74 264 62

Number 4 ∆ε/∆εdistr 0.73 0.93 1.30

Number of sites 76 264 60

Table I. Fluctuations of ∆ε for the insulating, metallic and
intermediate regions, corresponding to the different disorder
realizations of Fig. 9. Here A = 0.20 ≤ [−ImG(ω1)]D ≤
0.27, B = 0.27 < [−ImG(ω1)]D < 0.45 and C = 0.45 ≤
[−ImG(ω1)]D ≤ 0.57

B. Finite-size effects

The Mott transition is smeared in the thermodynamic
limit in d = 2, since there is a proliferation of metallic
and insulating regions when L → ∞. Let us now study
how our results change as we increase L.

Fig 10 shows a set of hysteresis curves for different
lattices sizes, at T = 0.024D and W = 0.52D. It is
observed that the U/D values at which the Mott transi-
tion occurs are the same independently of the lattice size,
while the values of [−ImG(ω1)]D remain between 0.2 and
0.8. Note that in the case where we have a square lat-
tice of 10 × 10 sites, the size of the coexistence region
is larger than for larger lattice sizes. Furthermore, the
first-order Mott transition becomes a “rounded” transi-
tion as L→∞, in accordance with the generalized Imry
and Ma theorem for the disordered Hubbard model. Un-
fortunately, it is computationally very difficult to obtain
results for L > 20.



9

Figure 10. Hysteresis loops for different lattice sizes, below
the critical point of Mott transition. As the temperature in-
creases, the hysteresis loops become smaller.

Now we focus on a particular Coulomb interaction
value U = 2.27D and we analyze the spatial pattern of
ImGi (iω1), as shown in Fig.11 for T = 0.024D, in the up-
per branch of the hysteresis loop (for other temperature
values see the Supplementary Material77). Notice how as
the size of the lattice increases, metallic regions persist
at the same positions, but also note the appearance of
insulating bubbles. In the thermodynamic limit we have
the proliferation of metallic and insulating regions and
the complete smearing of the transition. Again, we note
that both the inhomogeneous state with coexisting bub-
bles and the accordance with the Imry-Ma theorem are
in agreement with the picture of the transition in VO2 as
being in the same universality class as the random field
Ising model67.

Figure 11. Finite-size effects: Spatial pattern of ImGi (iω1)
for different sizes of the square lattice. Metallic and insulating
bubbles proliferate as the lattice increases at U = 2.27D in
the upper branch of the hysteresis loop.

At this point, let us make some remarks regarding the
difference between the clean and disordered cases. In
the clean Hubbard model close to the Mott transition,
thermal fluctuations also generate metallic and insulating
bubbles78–80. Their frequency and size are determined
by a Boltzmann factor. In the disordered case, however,
the bubbles are nucleated by the interplay of both tem-
perature and local fluctuations of the disorder potential,
with the latter playing a dominant role. That can be
roughly gleaned from the persistence of the bubble land-
scape as the temperature is varied with a fixed disorder
realization (see Fig. 1 of the Supplemental Material77).
Furthermore, the correlation between the size of the site-
energy fluctuations and the nature of the bubbles (Table
I) corroborates this conclusion. Finally, in the 2D case
we focus on here, the first-order transition is destroyed
by disorder. We conclude that the nature and features
of the bubbles are very different in the clean and the
disordered cases.

C. Transport in the lattice

To study the transport properties we analyzed the
quantity lin = D

ImΣ as described in Eq. (22) through
statDMFT. The lowest frequency that can be used in
this case is the first Matsubara frequency. Thus, we use
Σi(iω1) as an estimate of Σi(ω → 0). Fig. 12, depicts
the value ImΣ(iω1)

D , for T = 0.024D and W = 0.52D,
for each site of the lattice and value of interaction U ,
in the vicinity of the Mott transition. Notice that
0.98 ≤ ImΣ(iω1)

D ≤ 5.09, or 0.2 . D
ImΣ(iω1) . 1. Ac-

cording to Eq. (22) from Section V, this corresponds to
lin . a. Therefore, we can describe transport classically
at all scales.

Figure 12. Imaginary part of self-energy for the first Matsub-
ara frequency for T = 0.024D.

Using Eq (23) to find the values of the equivalent re-
sistors in the square lattice and Eq. (25) to calculate Iij
between the nodes, it is possible to find the mean value of
the current in each node I(i) =

Σj |Iij |
Ns

, where Ns is the
number of resistors that are connected to a given node.
In Fig. 13 we present the results of the spatial map-
ping of the current at T = 0.024D and W = 0.52D, in
the vicinity of the Mott transition (The Supplementary
Material77 shows solutions for other temperatures). The
red color represents regions in which the current presents
higher values. Low values of the current are represented
by the blue color and are associated with insulating be-
havior. We note that the current is not uniform in the
system and has spatial fluctuations. However, its vari-
ations are mild and the values decrease with increasing
U .
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Figure 13. Spatial mapping of the current in the vicinity of
the Mott transition for T = 0.024D.

After calculating the value of the average current for
each of lattice site, we can find the average value over
the complete network for each interaction value U in the
vicinity of Mott transition. The variation of the mean
current is large for the case of T = 0.02D (see Supple-
mentary Material77, for more details). As the temper-
ature increases the current in the transition region still
presents a noticeable change, but it is much milder than
in the case of T = 0.02D. Since the external potentials
used in the calculations are fixed, the average current is a
measure of the conductance G = I

(Φ−Φ0) . We note that,
although the conductance has a strong dependence on
temperature in the metallic regime, it is almost indepen-
dent of T in the insulating regime. This is a consequence
of the fact that ImGi (iω1) cannot capture the exponen-
tial dependence with the temperature that comes from
the presence of the Mott gap.

Figure 14. Average current as a function of Coulomb poten-
tial in the transition region of Mott for different temperature
values.

VII. CONCLUSIONS

Using DMFT, in the clean case, and statDMFT, in
the disordered case, it was possible to analyze the Mott

transition in Hubbard model in a square lattice. In finite-
sized lattices, disorder does not destroy the first-order
character of the transition with the accompanying hys-
teresis loop and coexisting metallic and insulating solu-
tions. Since the local Green’s function now has spatial
fluctuations, however, there is a different hysteresis loop
on each site. The bundle of loops shows an overall shift
towards higher values of interactions when compared
with the clean case. The spatial pattern found shows
clearly the coexistence in each solution of metallic as
well as insulating “bubbles”. As the system size increases,
these different “bubbles” proliferate and point to a com-
plete smearing of the first-order transition in the thermo-
dynamic limit, in complete agreement with the Imry-Ma
theorem. The statistics of local bare disorder fluctua-
tions correlate also reasonably well with metallic or insu-
lating nature of the inhomogeneities, which strengthens
the link between the metal-insulator transition in the dis-
ordered Hubbard model and the one of the random field
Ising model. Such a link had been previously empha-
sized in a scaling analysis of the experimental results on
the metal-insulator transition in VO2.67 Finally, we per-
formed the first calculation of transport properties within
the statDMFT. This was possible only because the ana-
lyzed system is a highly incoherent one, where kF lin ∼ a,
and the calculation could be done through a mapping of
the system onto a random network of classical resistors.
After this mapping, the global resistance could be calcu-
lated and the temperature dependence in the metal is in
agreement with expectations. The same description fails
in the insulating case, however, where we expect to see
an activated temperature dependence.

Our work offers a powerful theoretical perspective on
spatial inhomogeneities of disordered strongly correlated
systems. In this sense, it is a welcome contribution to the
description of the detailed experimental results coming
from recent nano-imaging techniques. Besides the inter-
play of disorder and Mott physics explored in this work,
we envisage important directions for future work. In the
particularly well-studied example of VO2

13,81 as well as in
other compounds82 the coupling between electronic and
structural degrees of freedom is probably important and
could be incorporated. The inhomogeneous nanoscale
patterns of systems with competing orders, such as high-
Tc cuprates83 and iron-based superconductors84 would
also benefit from the kinds of insights gained from our
approach. As these experimental techniques mature, we
expect more examples will be found where our approach
may prove useful.
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