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ABSTRACT: Structural, electrical, and thermal properties of CdSnAs2, with
analyses from temperature-dependent transport properties over a large
temperature range, are reported. Phase-pure microcrystalline powders were
synthesized that were subsequently densified to a high-density homogeneous
polycrystalline specimen for this study. Temperature-dependent transport
indicates n-type semiconducting behavior with a very high and nearly
temperature independent mobility over the entire measured temperature
range, attributed to the very small electron effective mass of this material. The
Debye model was successfully applied to model the thermal conductivity and
specific heat. This work contributes to the fundamental understanding of this
material, providing further insight and allowing for investigations into altering
this and related physical properties of these materials for technological
applications.

■ INTRODUCTION

Tetragonal chalcopyrites with a general formula of II−IV−V2
continue to be of interest for a variety of applications, including
optoelectronics and photovoltaics,1−8 nonlinear optics,9−12

topological insulators,13 and spintronics.14,15 Tetragonal
ternary arsenides with lower-mass cations, i.e., II = Zn and
IV = Si or Ge, have been the primary focus in the search for
materials with specific properties of interest for these
applications.16−21 Moreover, these materials have been
reported to possess low phonon group velocities and large
Gruneisen parameters, which would indicate relatively low
lattice thermal conductivities for this material system.22 Most
recently, the thermoelectric properties of antimony-based
materials have also begun to be investigated.23,24 Nevertheless,
these materials have been investigated far less than
chalcogenide compositions.
The crystal structure of II−IV−V2 two-cation tetragonal

ternary compositions can be considered a superstructure
formed by the combination of the unit cells of two zinc-
blende II−V and IV−V binaries thereby doubling the unit cell
in the c direction resulting in a tetragonal unit cell. There are
specific structural characteristics when comparing the binary
cubic and ternary tetragonal structure types that reveal specific
bonding and symmetry in these ternary compositions25 and
indicate similarities in their electronic structures. In both
structure types, each cation shows a tetrahedral coordination
by four anions; however, the two different cation types that are
bonded to each of the anions cause the anions to shift to an
equilibrium position creating a difference in bond lengths often
reflected in the lattice parameter ratio c/2a being <1.0.26

In this work, we report on the synthesis, structure, electrical,
and thermal properties of n-type CdSnAs2, a material that
possesses a high electron mobility due to the very low electron
effective mass and nonparabolic conduction band that is best
described by Kane’s model.27 High-mobility materials are best
for thermoelectrics as they permit optimization of the
electronic properties, i.e., simultaneous optimization of the
Seebeck coefficient and electrical conductivity, at lower doping
levels than for low-mobility materials. This II−IV−V2
composition may therefore be of particular interest for
thermoelectric applications. Furthermore, our data extend to
a wide temperature range for several of the properties reported
herein, allowing for analyses of the intrinsic, low-temperature,
physical properties as well as higher-temperature properties in
the range of interest for thermoelectrics applications. Our
fundamental investigation of CdSnAs2 not only is of
fundamental interest but may be of greatest interest in
presenting the intrinsic properties of this material for further
investigations aimed at doping, alloying, or composites
targeting the desired properties for specific applications.

■ EXPERIMENTAL SECTION
Phase-pure CdSnAs2 was synthesized by reaction of Cd chunks
(99.99%, Alfa Aesar), Sn powder (99.99%, Alfa Aesar), and As
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powder (99.9%, Alfa Aesar) with a 1:1:2 compositional ratio. The
elements were sealed in an evacuated silica ampule and subjected to
specific temperature treatment, modified from a previous report,28

which resulted in a high-quality phase-pure microcrystalline product.
The ampule was heated to 873 K at a rate of 20 K/h and held for 2 h.
The temperature was then increased to 948 K at a rate of 20 K/h and
held for 15 h. A multistep cooling process was employed where the
temperature was initially decreased to 923 K at a rate of 20 K/h
before being decreased to 823 K at a rate of 2 K/h. Finally, the
specimen was cooled to 473 K at a rate of 10 K/h before the furnace
was turned off. The resulting product was in the form of a
polycrystalline ingot and was subsequently ground and sieved (325
mesh) prior to hot press densification. A custom-designed graphite
die and molybdenum alloy punch assembly was used for hot pressing
at 673 K and 150 MPa for 3 h under a continuous flow of ultra-high-
purity N2, resulting in a dense pellet of 98% theoretical density. The
phase purity and structure were investigated from powder X-ray
diffraction (XRD) data collected by a Bruker D8 Focus diffractometer
in Bragg−Brentano geometry with Cu Kα radiation and a graphite
monochromator. The stoichiometry and homogeneity were analyzed
by Rietveld refinement using Jana2006.29 Differential thermal analysis
(DTA) and thermogravimetric analysis (TGA) were performed with a
TA Instruments Q600 apparatus.
The densified specimen was cut into a 2 mm × 2 mm × 5 mm

parallelepiped by a wire saw to determine the low-temperature (12−
300 K) Seebeck coefficient, S, four-probe resistivity, ρ, and steady
state thermal conductivity, κ, measurements on a custom-built
radiation-shielded vacuum probe.30,31 Electrical contacts were made
by direct soldering onto nickel-plated surfaces, while Stycast epoxy
was used for the thermal contacts. The maximum experimental
uncertainties for S, ρ, and κ are 6%, 7%, and 8%, respectively. A
second 2 mm × 1 mm × 10 mm parallelepiped was used for high-
temperature (300−700 K) four-probe S and ρ measurements under
−0.05 MPa static He in a ULVAC ZEM-3 system with the
experimental uncertainty between 5% and 8% for the entire
temperature range. A 0.6 mm thick disc was used for high-
temperature (300−700 K) laser flash diffusivity measurements
under flowing Ar in a NETZSCH LFA475 system with an
experimental uncertainty of 5%. The relationship κ = DdCv was
used to calculate κ, where D is the measured density, d is the
measured thermal diffusivity, and the Dulong−Petit limit was used to
estimate the specific heat, Cv, as these temperatures were well above
the Debye temperature, as described below. The Hall coefficient was
measured in the temperature range of 8−300 K using a custom system
equipped with a He closed cycle cryostat and electromagnet in
magnetic fields from −0.25 to 0.25 T. The Hall voltage showed a
linear response to field at all temperatures, with an experimental
uncertainty in the measured values of approximately 10%. The
isobaric heat capacity, Cp, was measured from 1.8 to 250 K using a
commercial Quantum Design physical property measurement system.

■ RESULTS AND DISCUSSION
Experimental, calculated, and difference diffraction patterns,
produced by Rietveld refinement of the structure of CdSnAs2,
are shown in Figure 1, with results of the refinement listed in
Tables 1 and 2. The structure was refined using the I42d (No.
122) space group, and the ratio of the lattice parameters c/2a
gives a value of 0.98, reflecting a shift in the position of the
anions due to the presence of two different cations compared
to the ratio of 1.0 expected for the binary counterpart.26,32 The
refined x parameter for the As atoms at Wyckoff position 8d (x,
1/4,

1/8) is slightly shifted from the ideal chalcopyrite position
of 1/4

33 to 0.2422(1). Compositional stability analysis by DTA
and TGA measurements, as shown in Figure 2, indicates that
CdSnAs2 is stable up to 873 K.
Figure 3 shows the temperature-dependent S values. The

good agreement between the low- and high-temperature data,
measured on separate specimens cut from the same pellet,

reflects the homogeneity of our polycrystalline specimen as
well as the accuracy of the measurements. The S values are
negative over the entire measured temperature range,
indicating n-type conduction. Furthermore, the temperature
dependence is typical of a semiconductor with S values that

Figure 1. Powder XRD data for CdSnAs2, including the profile fit and
profile difference from Rietveld refinement.

Table 1. Rietveld Refinement Parameters

nominal composition CdSnAs2
refined composition CdSnAs2
space group I42d (No. 122)
a = b (Å) 6.0988(6)
c (Å) 11.9257(2)
V (Å3) 443.5(9)
radiation graphite monochromator Cu Kα (1.54056 Å)
Dcalc (g/cm

3) 5.70
2θ range (deg) 20−100
step width (deg) 0.02
wRp, Rp 0.0323, 0.0271
reduced χ2 1.9

Table 2. Atomic Coordinates and Displacement Parameters

atom x y z Uiso (Å
2) occupancy

Cd 0 0 0 0.023(3) 1.0
Sn 0 0 0.5 0.013(3) 1.0
As 0.2422(1) 0.25 0.125 0.010(5) 1.0

Figure 2. DTA (green) and TGA (blue) data for CdSnAs2.
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increase with an increase in temperature until a maximum in S
is reached at 550 K. From the data shown in Figure 3, the band
gap, Eg, is estimated to be 0.20 eV employing the equation Smax
= Eg/2eTmax, where Smax is the maximum value of S, e is the
charge of an electron, and Tmax is the temperature at which Smax
occurs.34 The temperature-dependent ρ values are shown in
Figure 4, where ln(ρ) versus 1/T is plotted so that the solid

line fit to the highest-temperature data is of the form ρ = ρ0
exp(Eg/2kBT), where kB is the Boltzmann constant and Eg =
0.22 eV from the fit. The values for Eg from our S and ρ data
are in very good agreement with not only each other but also
the previously reported value of 0.23 eV from infrared
absorption data.35

The measured Hall coefficient, RH, between 8 and 300 K is
found to be relatively temperature independent at a value of
−6.7 cm3/C. The negative sign of RH is in agreement with
electrons as the majority charge carriers. The sign, magnitude,
and temperature dependence of RH suggest a low concen-
tration of very shallow donors presumably from intrinsic
compositional defects. Figure 5 shows the temperature-
dependent Hall mobility, μH, deduced from Hall and resistivity
measurements. The room-temperature μH is ∼1600 cm2 V−1

s−1 and is relatively temperature independent down to 8 K.
This high value for μH for our polycrystalline specimen is

within a factor of 3 compared with that reported for single-
crystal CdSnAs2 and other high-mobility crystals27,36 and can
be attributed in part to the low effective mass for electrons in
this material (m* ∼ 0.04m0

37). The high mobility is also
another indication of the high quality and homogeneity of our
polycrystalline specimen. The observation that the mobility is
nearly temperature independent, and increases slightly at
higher temperature, suggests that phonon scattering of the
electrons is not the dominant scattering mechanism in the
investigated temperature range. This may be attributed to the
small electron effective mass in this material; for example, a
small m* tends to result in large and small scattering relaxation
times in the cases of acoustic phonon (deformation potential)
and ionized impurity scattering,38 respectively. Thus, for small
m* values, the latter can dominate over the former even at
relatively high temperatures.
Figure 6 shows Cp values for CdSnAs2 as a function of

temperature. The inset in the figure shows Cp/T versus T2 data
and a fit of the form Cp/T = γ + βT2 for the low-temperature
data, where γ is the Sommerfeld coefficient of the electronic
contribution and β is the coefficient of the lattice
contribution.39 From this fit, we obtain γ = −0.06 mJ mol−1

Figure 3. Temperature-dependent S data for CdSnAs2.

Figure 4. Ln(ρ) vs 1000/T, where the solid line is a fit of the form ρ =
ρ0 exp(Eg/2kBT), resulting in an Eg of 0.22 eV.

Figure 5. Temperature-dependent μH data for CdSnAs2.

Figure 6. Temperature-dependent Cp data for CdSnAs2 with the inset
showing Cp/T vs T2 at low temperatures, where the solid line is a fit of
the form Cp/T = γ + βT2.
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K−2, in effect a null value indicative of the negligible electronic
contribution to Cp at these low temperatures, as expected for a
material with a relatively low density of electrons and a very
low m*. Using the relation39

i
k
jjjjj
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zzzzzθ

π
β

=
Rn12

5D

4
a

1/3

(1)

where R is the molar gas constant, na is the number of atoms
per formula unit, and β = 0.64 mJ mol−1 K4 from our low-
temperature fit (inset to Figure 6), we estimate the effective θD
to be 228 K, in good agreement with the value reported by
Hugon et al.40

Figure 7 shows the lattice contribution to the thermal
conductivity, κL, estimated from κ using the Wiedemann−

Franz relation κe = L0T/ρ, where κ = κe + κL and L0 is the
Lorenz number. The solid line represents a theoretical fit to
the data using the Debye−Callaway model:41
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where = ωℏx
k TB

is dimensionless, ω is the phonon frequency, ℏ

is the reduced Planck’s constant, θD is the Debye temperature,
and υ is the velocity of sound. The phonon scattering
relaxation time, τC

−1, is given by42−44

i
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{
zzzτ ν ω ω

θ
= + + −−

L
A B T

T
exp

3C
1 4 2 D

(3)

where L is the grain size, ω0 is the resonance frequency, and
the coefficients A and B are fitting parameters related to the
strength of the phonon scattering processes. The three terms in
eq 3 represent grain boundary scattering, point defect
scattering, and Umklapp scattering, respectively. As similarly
observed in the electrical properties, the excellent agreement
between the low- and high-temperature κL data (i.e., the data
overlap and agree well at room temperature, although two
separate pieces of different sizes and/or dimensions were
measured on two different measurement systems) is another
indication of the excellent homogeneity of our material and the
accuracy of the measurements. Moreover, the Debye model fits

the data very well throughout the entire measured temperature
range.
The value for υ used in the fit was estimated from θD

resulting in a υ of 2380 ms−1 [θD = υ(h/kB)(3naNAd/4πMw)
1/3,

where h is Planck’s constant, NA is Avogadro’s constant, d is
the density, and Mw is the molecular weight]. The following
values were obtained from the fit: L = 6 μm, A = 20.3 × 10−43

s3, and B = 3.4 × 10−18 K−1 s. The κL values show a T3

temperature dependence in the low-temperature region, with a
typical dielectric temperature dependence that peaks at 41 K.
The A parameter is larger than that reported for CoSb3 and
CuInSe2 single crystals,

45−48 as expected for our polycrystalline
specimen; however, the B parameters of all three are relatively
similar, implying similar low anharmonicity for these covalently
bonded materials. The room-temperature κL of 6.0 W/mK is
relatively high and consistent with the covalent nature of this
material. We note the slight deviation in the fit relative to our
experimental data at the highest temperatures suggests
radiative heat loss at these temperatures.

■ CONCLUSION
The synthesis, structure, electrical, and thermal properties of
polycrystalline n-type CdSnAs2 are reported. Temperature-
dependent ρ, S, and κ were measured over a large temperature
range that allows for a thorough analysis of the physical
properties from the obtained data and results. Rietveld
refinement indicates a phase-pure specimen, and the transport
properties indicate a high-quality polycrystalline specimen. The
band gap, estimated from both ρ and S measurements, is
approximately 0.2 eV, and specific heat data indicate θD to be
228 K. The κL values for this covalently bonded semiconductor
are relatively high, in contrast to what has been reported
previously,22 with a typical dielectric temperature dependence.
The electron mobility is very high, particularly for a
polycrystalline specimen, with a relatively flat temperature
dependence down to 1.8 K. This is of particular interest for
thermoelectric applications as polycrystalline materials are
typically used in these devices. Indeed, a relatively high
thermoelectric figure of merit, ZT (=S2/ρκ),49 of 0.3 was
obtained at 600 K for this unoptimized composition. This high
ZT is due to the high power factor (S2/ρ) for this material (see
Figure 8), higher than that of recent quaternary chalcogenides
and on par with those of chalcogenide chalcopyrite compounds

Figure 7. Temperature-dependent κL data for CdSnAs2. The solid
curve is a fit from the Debye−Calloway model.

Figure 8. Temperature-dependent power factor data for CdSnAs2.
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such as AgInSe2,
50−52 and illustrates their potential for

thermoelectric applications. Alloying, doping, and nano-
inclusions can be presumably employed to alter the electrical
and thermal properties of these ternary arsenides and
potentially improve the thermoelectric properties to enable
further investigations for these applications.
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