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It has been well established that for symmetry-protected topological systems, the nontrivial topology prevents
a real space representation using exponentially localized Wannier wave functions (WFs) in all directions, unless
the protecting symmetry is sacrificed as an on-site transformation. This makes it challenging to determine the
symmetry of various physical observables represented using such WFs. In this work, we propose a practical
method for overcoming such challenges using the Kane-Mele model as a concrete example. We present a
systematic procedure for diagnosing the symmetry of any observables, as well as a method for constructing
symmetric operators up to arbitrary truncation accuracy.
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I. INTRODUCTION

Tight-binding models are commonly used to study in-
teracting electron systems in the presence of a periodic
lattice potential. At the heart of such models are Wan-
nier functions (WFs)—wave functions that form a com-
plete basis for representing single-electron states [1,2].
When the WFs are exponentially localized in all direc-
tions, the tight-binding Hamitonians can be truncated such
that terms below a certain energy threshold are neglected.
As a result, they have much simpler structures than their
ab initio counterparts, which typically contain other inactive
bands and are much easier to study both analytically and
numerically.

It is well known that nontrivial topology can prevent a
simple real space representation using exponentially localized
WFs. For example, an isolated band (or a band composite)
with a finite Chern number—such as a Landau level—cannot
be represented by a complete and orthonormal basis com-
prised of exponentially localized WFs in all directions [3,4].
On the other hand, topologically nontrivial isolated bands
with zero Chern number are Wannier representable, but the
protecting symmetry cannot be represented as a simple site-
local operation. For example, in a Z2 topological insulator
protected by time-reversal symmetry, the two valence bands
can be represented using exponentially localized WFs. How-
ever, within a unit cell, the two WFs cannot be chosen to
be time-reversed partners of each other [5–7]. Similarly, in
the twisted bilayer graphene, if the intervalley scattering is
neglected, the low-energy continuum model is invariant under
a twofold rotation about the z axis (C2z) followed by time
reversal (T ). The C2zT symmetry protects the Dirac cones in
the mini-Brillouin zone which have the same chirality, leading
to the so-called “fragile topology” [8–11]. Such a symmetry
is encoded nonlocally for a tight-binding construction of the
active bands [12,13].

The nonlocality of the protecting symmetry poses prac-
tical challenges when working with tight-binding models
for symmetry-protected topological systems. Truncating the
model not only introduces errors to the energetics, but also
breaks the protecting symmetry explicitly; albeit we expect
the degree of symmetry breaking to decrease as we in-
crease the length scale beyond which the tight-binding model
is truncated. This has led to some recent studies on “trivializ-
ing” the topology by adding additional electronic bands [10].

In addition, we are interested in understanding the symme-
try of any “local” operators when they are represented using
such WFs. Examples of such operators include the kinetic
energy, the local density-density interactions, and so on. Since
any truncated representation inevitably breaks the protecting
symmetry, it is desired to develop a systematic procedure
for differentiating between intrinsically symmetric operators
from those which are explicitly symmetry breaking. Further-
more, given any operator, we need to be able to construct its
symmetric counterparts up to a prespecified accuracy. These
symmetric operators can then be used for, say, variational
mean-field analysis.

To formalize our discussion, for any local operator Ô
projected onto exponentially localized WFs in all directions,
we use the notation σÔ to represent the degree of symme-
try breaking when the operator is truncated, and δÔ as a
measure of the absolute error due to truncation. These can
be defined, for example, as the matrix norms of the differ-
ence between operators. On general grounds, since the WFs
are exponentially localized, all the local operators will also
have exponentially small matrix elements when represented
using the WFs. As a result, σÔ induced by truncating a
symmetric operator should also be exponentially small with
the truncation length, and comparable to δÔ. On the other
hand, if the operator is not invariant under the protecting
symmetry, then σÔ should saturate at large truncation length,
while δÔ falls off exponentially.
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In this paper, we first present a detailed study of the above
issues using the Kane-Mele model as a concrete example.
Here the topological phase is characterized by a Z2 index,
and protected by the time-reversal symmetry. This paper is
organized as follows. In Sec. II we briefly discuss the Kane-
Mele model and the projection procedure for constructing
WFs, following Ref. [7]. In Secs. III and IV, we present a
detailed analysis on the symmetry properties of truncated op-
erators, as well as constructing symmetric operators directly
in the projected Hilbert space. In Sec. V, we demonstrate the
generality of our discussions by using the one-dimensional
Su-Schrieffer-Heeger (SSH) model as another example.

II. KANE-MELE MODEL AND PROJECTION METHOD

The Kane-Mele Hamiltonian is defined on a two-
dimensional honeycomb lattice, given by [14]:

H = t
∑
〈i j〉

c†
i c j + iλSO

∑
〈〈i j〉〉

νi jc
†
i szc j

+ iλR

∑
〈i j〉

c†
i

(
s × d̂i j

)
zc j + λv

∑
i

ξic
†
i ci. (1)

For simplicity spin index is omitted. λv is a staggered chem-
ical potential that breaks the sublattice symmetry. λSO is
the Haldane spin-orbit coupling term and λR is the Rashba
spin-orbit coupling that breaks mirror symmetry with respect
to z ↔ −z. The local Hilbert space per unit cell is spanned
by four states, representing the sublattice (A, B) and spin
(↑,↓) degrees of freedom. As a result there are four Bloch
bands. Time reversal symmetry has a local representation
given by is2 ⊗ σ0K , where {s, σ } are Pauli matrices acting in
the spin and sublattice space, respectively. K denotes complex
conjugation.

By increasing λSO relative to the other terms, the half-
filled Kane-Mele model can be tuned to a topological phase
protected by time-reversal symmetry, where the two valence
bands are separated from the two conduction bands by a
band gap. The topological phase is characterized by a Z2

invariant, defined by counting the number of pairs of zeros
of the Pfaffian:

P(k) = Pf[〈ui(k)|�|u j (k)〉], (2)

where |ui(k)〉 is the periodic part of the Bloch eigenstate of
the ith occupied band.

If the interaction energy between electrons is smaller than
the band gap separating the conduction and valence bands,
the hybridization can be neglected to leading order approxi-
mation, and as a result one can work within the sub-Hilbert
space spanned by the two valence bands.

Following Ref. [7], it has been shown that a tight-binding
description is possible even for the topological phase with an
odd Z2 invariant. The projection method [2,15] for obtaining
exponentially localized WFs starts by choosing two initial
trial states localized within a unit cell. Such trial states are
linear superpositions of both the conduction and valence
states. Next these trial states are projected onto only the
valence states, followed by an orthonormalization procedure.
If the trial states are chosen properly (i.e., the two trial
states are not time-reversed partners of each other [5,7]), this

FIG. 1. (a),(b) Leading weights of the two WFs on honeycomb
lattice. (c) The weights of the WFs plotted as a function of distance
to their respective Wannier centers. (d) |� jR′,iR| plotted as a function
of the relative distance. The black dashed lines in both (c) and
(d) correspond to 0.03 exp (− r

1.8a ), where a is the lattice constant.

procedure produces exponentially localized WFs. Following
this procedure, the two WFs within a unit cell also do not form
a time-reversed pair.

In Figs. 1(a)–1(c) we discuss the properties of the WFs, fol-
lowing the projection method outlined above. For convenience
we choose the same two trial states as Ref. [7], namely |A,↑x〉
and |B,↓x〉, where the subscript x labels the eigenstates of sx

operator. The calculation is done on a 36 × 36 periodic lattice,
with parameters t = 1, λv = 1, λR = 0, and λSO = 0.6.

Figures 1(a) and 1(b) show the weights |clR′,iR| of these
WFs for the first few nearest neighbors to the Wannier center,
defined via |wiR〉 = ∑

l=1...4,R′ clR′,iR|χlR′ 〉, where |χlR′ 〉 de-
notes the four basis states of the original Hilbert space. It is
clear that the WFs span more than one site. Depending on the
parameter regime, the weights on the neighboring sites can be
comparable or even bigger than at the Wannier center. Similar
behavior has also been seen in the Wannier construction for
the low-energy bands of twisted bilayer graphene, where the
dominant weights of the WFs reside away from the Wannier
center, having the shape of a fidget spinner [12,13]. At long
distances, the WFs show exponential localization, as depicted
in Fig. 1(c). This exponential behavior shows that it is possible
to achieve a localized WF representation of the two valence
bands in the topological phase.

We proceed to discuss properties of the time-reversal sym-
metry operator acting on these WFs. Since time-reversal op-
eration does not mix the conduction and valence Bloch states,
the antiunitarity of the operator �2 = −1 is preserved in the
sub-Hilbert space spanned by the two WFs. Furthermore,
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FIG. 2. Truncation accuracy δO (r) (blue circles) and degree of time-reversal symmetry breaking σO (r) (red circles) as a function of
truncation distance. (a) The projected Kane-Mele Hamiltonian K . Black dashed line corresponds to 5 exp (− rc

1.8a ). (b) The total occupation
number on site A of a unit cell. Black dashed line corresponds to 0.1 exp (− rc

1.8a ). (c) sx operator on site A of a unit cell.

the time-reversal operator acts nonlocally in this basis, since
the two WFs within a unit cell are not time-reversed partners
of each other. The matrix elements can be calculated using the
following relation:

〈w jR′ |�|wiR〉 =
∑

lR1,mR1

c∗
lR1, jR′cmR1,iR

×〈χlR1 |is2 ⊗ σ0K|χmR1〉. (3)

At long distances, the matrix elements of � also fall off
exponentially, with the same length scale as that of the WFs.
This is clearly seen in Fig. 1(d). The key message here is that
despite that the time-reversal symmetry is not achievable as
a site-local transformation, there is still a sense of “locality”
from the long distance behavior of the matrix elements.

III. SYMMETRY PROPERTY OF LOCAL OPERATORS

We are interested in understanding how various local
operators are projected onto the WFs discussed above, and
how truncation affects the accuracy of representation as well
as the symmetry properties. Here we focus on fermionic
bilinears of the particle-hole type, though generalizations to
other operators (e.g., a pairing term, four-fermion term, etc.)
are straightforward.

In the full Hilbert space, such a fermionic bilinear is rep-
resented as Ô = ∑

lR1,mR2
OlR1,mR2 |χlR1〉〈χmR2 |, where |R1 −

R2| is restricted to a few unit cells. The Kane-Mele Hamil-
tonian [Eq. (1)] is one example of such an operator, with
hopping terms up to next-nearest-neighbor sites. In addition,
we are also interested in operators where both R1 and R2 are
restricted to a few sites—for example, the local electron num-
ber and spin operators. The matrix elements of the projected
operator can be calculated analogous to Eq. (3):

〈w jR′ |Ô|wiR〉 =
∑

lR1,mR2

c∗
lR1, jR′cmR2,iROlR1,mR2 . (4)

The matrix elements for the time-reversed operator can be
calculated from

O� = �O∗�†. (5)

For convenience, the above symbols denote the operator rep-
resentations in the projected basis. It is straightforward to see
that the long-distance matrix elements of such local operators
and their time-reversed partners are both exponentially small,
governed by the overlap of WFs far apart.

We define a Frobenius norm to characterize the absolute
accuracy of a truncated operator:

δO(rc) ≡ ∥∥Orc − O
∥∥

F. (6)

Here Orc;iR1, jR2 = OiR1, jR2θ (|R1 + ai − R2 − a j | − rc) is the
operator where matrix elements with a distance larger than
rc are truncated. R + ai labels the position of the Wannier
center of the ith WF in the unit cell R. We see that δO(rc) ∝
exp(−rc/ξ ), where ξ is the localization length characteristic
of the WFs.

To characterize the degree of time-reversal symmetry
breaking, we define a second Frobenius norm:

σO(rc) ≡ ∥∥Orc − O�
rc

∥∥
F
. (7)

The long distance behavior of σÔ can be used to differ-
entiate between intrinsically symmetric local operators from
those that are symmetry breaking. In the former case, when
the truncation length is progressively increased, the symmetry
breaking is bounded above by the absolute truncation accu-
racy σO(rc) � AσO(rc) ∝ exp(−rc/ξ ), where A is a nonuni-
versal constant [16]. However, in the latter case it saturates to
a finite constant.

In Figs. 2(a) and 2(b) we show the behavior of δO(rc) and
σO(rc) for the projected Kane-Mele Hamiltonian K and a local
electron number operator on site A in unit cell R, both of
which are time-reversal symmetric. This is contrasted to the
behavior of a local electron spin operator on site A in unit
cell R [Fig. 2(c)], which is time-reversal symmetry breaking.
Physically, the exponential smallness of σ shows that time-
reversal symmetry is broken only below an exponentially
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FIG. 3. Single-fermion energy gap at the 
 point �
 as a
function of truncation length. Black dashed line corresponds to
exp (− rc

1.8a ).

small energy scale. Here this energy scale can be defined as
the single-fermion energy gap at either 
 or M point of the
Brillouin zone. If an exact time-reversal symmetry is present,
the two single-fermion states at these high symmetry points
are degenerate. We illustrate the dependence of the energy gap
on the truncation length in Fig. 3. As long as the interesting
physics due to interactions occur at a higher energy scale, such
explicit symmetry-breaking effects are irrelevant.

IV. CONSTRUCTING SYMMETRIC OPERATORS

For a set of isolated bands with nontrivial topology, it
is desirable to construct symmetric operators directly in the
projected Hilbert space, without referencing to the full Hilbert
space. These operators can be used for, say, variational mean-
field analysis. Here we show that, given an operator defined
locally in the projected Hilbert space, the usual symmetriza-
tion procedure followed by a truncation produces a symmetric
operator with exponential accuracy.

We demonstrate the above statement in the context of the
Kane-Mele model. Starting with an operator A that is defined
locally in the projected Hilbert space, we construct a time-
reversal invariant operator as

B = 1
2 (A + �A∗�†). (8)

It is easy to see that B = B�. The symmetrization generates
nonlocal terms that are exponentially small. As a result, both
δB(rc) and σB(rc) are exponentially small at long distances.
This is illustrated in Fig. 4 for a local operator A defined with
random matrix elements up to two unit cells.

V. WANNIER REPRESENTATION OF SSH MODEL

In previous sections we discussed the Wannier represen-
tation of the topological bands of the Kane-Mele model, with
time-reversal symmetry as the protecting symmetry. However,
the same physics hold generally for other symmetry-protected
topological phases as well. Here, as a second example, we
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FIG. 4. (a) δ(r) and σ (r) versus truncation distance for (a) a
random local operator A defined up to two lattice constants and
(b) the symmetrized operator B. Black dashed line corresponds to
10 exp (− rc

1.8a ).

present a similar analysis in the context of the SSH model,
which is one of the simplest Hamiltonians displaying nontriv-
ial topology. The single-electron Hamiltonian is given by

H = 1

2π

∫ π

−π

dk(c†
A,k c†

B,k )Hk

(
cA,k

cB,k

)
,

H(k) ≡
(

0 t1 + t2eika

t1 + t2e−ika 0

)
, (9)

where {A, B} are two nonequivalent sites in a unit cell, a
is the lattice constant, and {t1, t2} are real nearest-neighbor
hopping parameters. The model has both a chiral symmetry
[{σz,H(k)} = 0] and an inversion symmetry [σxH(k)σx =
H(−k)]. As discussed in Ref. [17], the SSH model describes
a topological crystalline insulator protected by the inversion
symmetry. When t1 < t2, it is in a topological state, character-
ized by a nontrivial winding number.

The low-energy state is Wannier representable. Following
the procedure outlined in Ref. [7], it is straightforward to
show that

|w−,R〉 = a

2π

∫ π/a

−π/a
dk e−ikR 1√

2
(|A, k〉 + |B, k〉eiθk ) (10)

is an exponentially localized Wannier wave function centered
at the unit cell R. Here eiθk ≡ (t1 + t2eika)/|t1 + t2eika|. Equa-
tion (10) can be rewritten as

|w−,R〉 = 1√
2

(
|A, R〉 +

∑
R′

cR′,R|B, R′〉
)

, (11)

where the coefficients

cR′,R = 1

2π

∫ π

−π

dk e−ik(R−R′ )eiθk . (12)

In the limit of t2 → 0 (trivial phase), exp(iθk ) = 1 and cR′,R =
δR′,R. The Wannier state describes an intra-unit-cell dimer. In
the opposite limit of t1 → 0 (topological phase), exp(iθk ) =
exp(ika) and cR′,R = δR′+a,R. The Wannier state represents an
inter-unit-cell dimer. For arbitrary t1/t2 �= 1, the exponential
localization of |w−,R〉 is manifested in the exponential small-
ness of cR′,R at large separation |R′ − R|.
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(a)

(b) (c)

FIG. 5. (a) |IR′,R| as a function of the relative distance: |R′ −
(−R)|. (b),(c) δ(rc ) and σ (rc ) as a function of truncation length
for the inverse-symmetric operator N and antisymmetric operator n,
respectively. The numerics are performed for t2/t1 = 1.6.

In the Wannier basis, the inversion symmetry becomes a
nonlocal operator. We write I|w−,R〉 = ∑

R′ IR′,R|w−,R′ 〉 and
plot the coefficients as a function of separation |R′ − (−R)|
in Fig. 5(a).

In Figs. 5(b) and 5(c), we compute {δO(rc), σO(rc)} for
both an inversion symmetric and an antisymmetric opera-
tor. Here σO(rc) is computed according to Eq. (7), with

inversion symmetry taking the place of the time-reversal
symmetry. The inversion-symmetric operator is chosen to be
N = c†

A,R=0cA,R=0 + c†
B,R=0cB,R=0 and the antisymmetric op-

erator is chosen to be n = c†
A,R=0cA,R=0 − c†

B,R=0cB,R=0. It is
clear that σN (rc) becomes exponentially small at large trunca-
tion length, whereas σn(rc) saturates to a constant.

VI. CONCLUSION

For a set of isolated electron bands with nontrivial topol-
ogy, it is possible to achieve a real space representation
using exponentially localized WFs in all directions, provided
that the protecting symmetry is sacrificed as a site-local
transformation. As a result, under any scheme of trunca-
tion, the representation of any local and symmetric operator
using these WFs inevitably breaks the protecting symmetry
explicitly. This has led to debates on the validity of tight-
binding implementations for symmetry-protected topological
systems [8–10].

Using the Kane-Mele model and the SSH model as ex-
amples, we presented a quantitative discussion of the sever-
ity of the degree of symmetry breaking. We showed that
the exponential localization of the WFs guarantees that the
symmetry properties for an intrinsically symmetric operator
are retained with exponential accuracy. More precisely, the
accuracy of symmetry is bounded by the absolute accuracy
of the truncation up to a nonuniversal constant. As a result,
a tight-binding implementation should not lead to significant
issues, as long as the interesting physics occur on an energy
scale larger than the exponentially small energy scale where
symmetry breaking effects are important.
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