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Purpose: To develop a method for fast chemical exchange saturation transfer 
(CEST) imaging.
Methods: The periodically rotated overlapping parallel lines enhanced reconstruc-
tion (PROPELLER) sampling scheme was introduced to shorten the acquisition time. 
Deep neural network was employed to reconstruct CEST contrast images. Numerical 
simulation and experiments on a creatine phantom, hen egg, and in vivo tumor rat 
brain were performed to test the feasibility of this method.
Results: The results from numerical simulation and experiments show that there is 
no significant difference between reference images and CEST-PROPELLER recon-
structed images under an acceleration factor of 8.
Conclusion: Although the deep neural network is trained entirely on synthesized 
data, it works well on reconstructing experimental data. The proof of concept study 
demonstrates that the combination of the PROPELLER sampling scheme and the 
deep neural network enables considerable acceleration of saturated image acquisition 
and may find applications in CEST MRI.
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1  |   INTRODUCTION

Chemical exchange saturation transfer (CEST) provides a 
highly sensitive detection mechanism for MRI.1-5 CEST MRI 
can reveal physiological and pathological characteristics of 
organism tissues indirectly by quantitatively characterizing 
chemical exchange between selectively saturated labile pro-
tons of low-concentration (in millimolar to nanomolar range) 
solutes and water.6,7 Its sensitivity has been successfully 

demonstrated both in vitro8,9 and in vivo.10,11 On account of 
its unique mechanism, CEST MRI plays an increasingly im-
portant role in the field of medical imaging. For example, 
some diseases can be diagnosed through detecting patho-
logical and chemical changes by CEST MRI, such as cra-
nial nervous system diseases,12,13 cerebral ischemia,14-16 and 
cancer.17-19

However, the application of CEST MRI is evidently lim-
ited by the long saturation duration to maintain the process 
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of saturation labeling, and the special sampling requirement 
of multiple saturated images at different saturation frequency 
offsets.20,21 For example, the saturation duration should 
be longer than the T1 of the bulk water protons to prevent 
loss of saturation.22 Additionally, it is necessary to acquire 
enough saturated images in a wide range of saturation fre-
quency offsets to accurately capture various effects in the 
Z-spectrum.23,24 Usually, CEST MRI sequences are com-
posed of a long-duration off-resonance RF irradiation module 
and a fast image readout module such as fast spin echo (FSE) 
or echo planar imaging (EPI).25-28 Compared with FSE, EPI 
can significantly reduce scan time, but it is vulnerable to field 
inhomogeneity and chemical shift effects, and generates sig-
nal voids or distortion at the tissue-air interface, which might 
disturb the accuracy of the measured results.29

In this study, we introduce a sampling pattern based on pe-
riodically rotated overlapping parallel lines enhanced recon-
struction (PROPELLER)30 into CEST MRI to dramatically 
accelerate CEST imaging (dubbed as CEST-PROPELLER). 
Similar to the compressed sensing method in CEST imaging 
that can reduce the scan time by randomly undersampling 
k-space data,31 the CEST-PROPELLER sampling scheme 
is used to acquire only several lines from the k-space center 
per saturated image. Deep neural network is used to achieve 

quantification of the CEST effect directly32 from the under-
sampled saturated images. The usability of the new method 
is tested through numerical simulation and experiments on a 
creatine phantom, hen egg, and in vivo tumor rat brain.

2  |   METHODS

The flow chart of CEST-PROPELLER sampling and network 
reconstruction is shown in Figure 1. The process of network 
reconstruction has three steps: (a) undersample the k-space 
of synthesized data with CEST-PROPELLER, (b) train the 
network with undersampled synthesized data, and (c) recon-
struct CEST contrast images with experimental data.

2.1  |  CEST-PROPELLER sampling

Generally, PROPELLER MRI continuously collects several 
lines from the k-space center to form a ”blade,” and these 
lines correspond to several lowest frequency phase encoded 
lines.30 The number of collected lines of a blade is equal to 
the length of echo chain, namely the number of phases col-
lected at one time.33-35 In this study, different from traditional 

F I G U R E  1   Flow chart of CEST-PROPELLER sampling and network reconstruction. The θ denotes the angle between the sampling blade and 
the horizontal direction, and N is the number of saturated frequency offsets
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PROPELLER oversampling, only one blade of k-space is 
sampled for each saturated image and for different saturated 
images the sampling blade is successively rotated counter-
clockwise in the k-space by an increment of angle φ = π/N 
(N is the number of saturated frequency offsets), so that the 
dataset spans a circle in the k-space. In the experiments, we 
collected images at 26 saturated frequency offsets, so φ was 
about 6.9°. Therefore, the angle of each sampling blade rela-
tive to the horizontal direction was from 0° to 173.1° with an 
increment of 6.9°, leading to a unique trajectory for saturated 
images (see Figure 1). Note that, in our work, only 16 lines 
were acquired for each blade per saturated image with a ma-
trix size of 128 × 128, resulting in an acceleration factor of 8.

2.2  |  Generation of synthesized data

Normally, biological tissues contain many complex com-
pounds, such as protein molecules and amino acid molecules. 
The application of a saturation pulse may cause many effects 
in addition to the CEST effect, such as magnetization trans-
fer (MT) effect, direct saturation (DS) effect, and nuclear 
Overhauser enhancement (NOE) effect.36-40 When the power 
of saturation pulse is low, the process of chemical exchange 
between the CEST pool and the water pool is best described 
by the weak-saturation-pulse (WSP) approximation; whereas 
when the power of saturation pulse is high, the processes of 
interaction of direct saturation and CEST pool saturation are 
best predicted by the strong-saturation-pulse (SSP) approxi-
mation.23 Our experiments satisfied the WSP approximation. 
Under this condition, each of the effects mentioned above 
in Z-spectrum can be modeled by the Lorentzian line shape 
model.4,23,41 Therefore, the CEST spectrum (Z-spectrum) 
can be approximately decomposed into some Lorentzian 
curves42,43: 

where c is a constant, P indicates the number of exchanging 
proton components in the Z-spectrum, and Lk is a Lorentzian 
function defined by

where Ak is the amplitude, Γk is the full-width at half- 
maximum, ω is the frequency offset of saturation pulse, δ is 
the frequency shift caused by magnetic field inhomogeneity, 
and ωk is the frequency offset of the proton pool k relative to 
the water proton pool.

According to Equation (1), we can synthesize a variety 
of Z-spectra. The Z-spectrum is modeled by multiple peaks 

at different frequency offsets. Based on previous work44-47 
and our experimental data, ωk is fixed at 0, 2, 3.5, -2, and  
-4 ppm for the DS, amine, amide, MT, and NOE peaks, re-
spectively. The amplitude (Ak) corresponding to different 
effect is proportional to the concentration of protons that 
produce the effect. There is a large amount of water and rel-
atively small amounts of protein, polypeptide, and lipid in in 
vivo cases. Therefore, in the CEST experiments, the DS ef-
fect is strong, while the CEST, NOE, and MT effects are rela-
tively weak. So, we set Ak to comply to a uniform distribution 
in the range of [0.6, 1], [0, 0.5], [0, 0.5], [0, 0.5], and [0, 
0.5] for DS, amine, amide, MT, and NOE peaks, respectively. 
Usually, the NOE and MT peaks are wide, while the DS and 
CEST peaks are relatively narrow; hence, we set Γk to comply 
to a uniform distribution in the range of [0.5 ppm, 2 ppm], 
[0.3 ppm, 2 ppm], [0.3 ppm, 2 ppm], [5 ppm, 20 ppm], and 
[1 ppm, 10 ppm] for DS, amine, amide, MT, and NOE peaks, 
respectively. The distribution ranges of these parameters are 
large enough to cover the experimental situations.

Based on the principle of Z-spectrum generation, we can 
synthesize samples for neural network training. We synthe-
sized training data with a CEST spectrum model (Equation 1)  
that was the summation of Lorentzian curves. The synthe-
sized Z-spectrum includes five peaks, namely DS, amine, 
amide, MT, and NOE peaks (see the Results section for some 
representative synthesized Z-spectra). Therefore, 16 parame-
ter maps in total (5 amplitudes Ak, 5 widths Γk, 5 peak posi-
tions ωk (k = 1-5) and the frequency shift caused by magnetic 
field inhomogeneity δ) were needed to generate a saturated 
image. The δ parameter map was synthesized by a second- 
order surface to simulate the distribution of inhomogeneous 
magnetic field.

In order to add weak textures to the parameter maps, we 
used images containing rich textures to modulate the param-
eter maps Ak by element-wise multiplication. Then we took 
a series of values for saturation frequency offset ω and the 
16 parameter maps into Equation 1 to achieve synthesized 
saturated images with textures. Each parameter map was 
composed of many random patterns with geometric textures. 
Therefore, the synthesized saturated images contained struc-
tural information.

Our previous work has shown that the synthesized train-
ing dataset can provide diverse structural information through 
random structural production, so that the structural informa-
tion in the training dataset can cover various structural in-
formation of in vivo experiments as much as possible in the 
relatively small receptive field of ResNet (only 17 × 17 in 
this work).48 The flow chart of synthesized sample genera-
tion under a series of saturation frequency offset is shown in 
Supporting Information Figure S1, which is available online.

In this work, the saturation frequency offset ω was set 
from -6 ppm to 6 ppm with an increment of 0.5 ppm for 
25 saturated images, together with a saturation frequency 
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offset of 100 ppm for unsaturated image for intensity nor-
malization. Thus, a training sample contained 25 saturated 
images and 1 unsaturated image. In total, 3000 training 
samples with a size of 128 × 128 each were generated 
by MATLAB 8.3.0.532 (R2014a) software (Mathworks, 
Natick, MA, USA). Each sample corresponds to two 
ground-truth CEST contrast images at 2 ppm and 3.5 ppm. 
Therefore, the synthesized training dataset can be applied 
for different target neural network reconstruction provided 
that CEST effect appears at 2 ppm or 3.5 ppm. The source 
code used for sample synthesis is available on reasonable 
request.

2.3  |  Network training

The classical U-Net49 was used to reconstruct CEST 
contrast images. The k-space data of synthesized satu-
rated images were retrospectively undersampled by our 
PROPELLER scheme and processed by Fourier transform 
to obtain images X as the input of network. The label Y 
was the CEST contrast image of the interested exchanged 
protons. The pixel-wise mean squared error (MSE) was 
calculated as

where M is the batch size, f(·) is the deep neural network, W 
and b are network parameters needed to be trained. MSE is 
widely used as the loss function for image super-resolution 
reconstruction.50 However, the use of MSE as loss function 
may produce blurry images, so we used an image gradient 
difference loss (GDL) function51 as a compensation to keep 
the regions with strong gradients and better model the nonlin-
ear mapping from source to target. It is defined as

where Y and Ŷ  denote the ground-truth target image and the 
estimated target image respectively, and the subscripts x and 
y denote the dimension direction of images. The use of this 
loss function can minimize the difference of the gradient 
magnitudes between the ground-truth target image and the 
estimated target image. The final loss function is then ex-
pressed as

where λ is a weight (λ = 0.8 in this work). To train the deep 
neural network, we used 3000 synthesized samples men-
tioned above. These samples were randomly split into training 

and validation sets: 80% for training and 20% for validation. 
All these samples were randomly cropped into 64 × 64, and 
the batch size was 16. Considering the presence of noise in 
practical experiments, we added Gaussian noise with a mean 
value of 0 and an SD of 1% to the samples before training. 
The initial learning rate was set to 0.0001 and then decreased 
by a factor of 5 after 50 000 times of iteration. It took nearly 
12 hours for training to complete 500 000 iterations on a ma-
chine with one GTX1080Ti GPU.

2.4  |  Sample preparation

Amine protons in creatine lead to an obvious CEST effect 
with a frequency offset of 2 ppm from water. Therefore, a 
phantom containing four tubes of creatine in normal saline 
with different concentrations was used. Different shapes of 
plastic sheets were immersed in creatine solution to increase 
image details to better confirm the feasibility of CEST-
PROPELLER MRI. The four tubes were immersed in a large 
tube filled with normal saline, which facilitated shimming to 
get a uniform magnetic field. The concentrations of creatine 
solution were 20, 40, 60 and 80 mM, respectively (pH = 7.2). 
Fresh hen egg contains many complex compounds, such as 
fat, cholesterol, and proteins with amino acids. It was used 
as simple biological tissues to demonstrate the amide pro-
ton transfer (APT) effect. A Sprague-Dawley rat was anes-
thetized by a continuous flow of 2%-3% isoflurane. Using 
Bregma as a reference, a 1 mm burr hole was made 2 mm 
anterior and 2.5 mm lateral. 100 000 rat 9L glioma cells in  
10 μL of sterile phosphate buffer saline (PBS) were injected 
at a depth of 3.5 mm from the skull. MRI experiment of the 
in vivo tumor rat was performed 11 days after the tumor cells 
were implanted. All of the operations throughout the experi-
mental procedures were handled in accordance with proto-
cols approved by the ethical committee of the Florida State 
University (FSU) Animal Care and Use Committee.52

2.5  |  Data acquisition

Experiments of creatine phantom and egg were performed 
on a 7.0T Varian MRI system with a horizontal Magnex 
magnet, equipped with 100 mm bore imaging gradients  
(40 G/cm). Experiment of tumor rat was performed on a 
21.1T Bruker system with a horizontal Magnex magnet, 
equipped with 105 mm bore imaging gradients (60 G/cm). 
In the rat brain experiment, a custom-built quadrature dou-
ble-saddle surface coil was used to transmit and receive the 
signal. This coil was equipped with a bite-bar that together 
with hook-and-loop straps to suspend and secure the animal 
in the magnet. The bite-bar also supplied the rat with continu-
ous flow of anesthesia. Prior to in vivo imaging, the animal 
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|
||
||∇Yx

||−
|
||
∇Ŷx
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was anesthetized with 5% isoflurane; and then lowered to 2% 
and adjusted to maintain a respiratory rate between 30 and 40 
breaths/min as monitored with a pneumatic pillow situated 
under the animal (SA Instruments Inc., Stony Brook, NY). 
CEST-FSE experiments were performed for references and 
CEST-PROPELLER undersampling.

Experiments were performed at 25°C. Experimental pa-
rameters for acquisition were set as follows: acquisition ma-
trix = 128 × 128, slice thickness of creatine phantom and 
egg = 1 mm, slice thickness of rat = 2 mm. According to 
previous reports,53,54 the RF saturation power was set to  
1.8 μT/1.2 μT/1.5 μT and the saturation time was set to 2 s/3 
s/4 s for creatine/egg/rat respectively. Repetition time = 6 s 
was selected to provide sufficient time for the longitudinal 
magnetization of water to fully recover for the successive 
acquisition. The saturation pulse frequency was swept from 
−6 to 6 ppm with an increment of 0.5 ppm, and an image 
with saturation pulse frequency applied at 100 ppm was also 
acquired as unsaturated image for signal normalization. The 
echo train length (ETL) was 8 and the single-slice scan time 
for creatine/egg/rat was 55.4 min/62.4 min/69.4 min. The 
water saturation shift-referencing (WASSR) method45 (a sin-
gle 200 ms saturation pulse with 0.5 μT amplitude) was used 

to correct the water frequency shifts for these experiments. 
The k-space data of saturated images from CEST-FSE were 
retrospectively undersampled using CEST-PROPELLER 
scheme with an undersampling rate of 8. Theoretically, this 
means the scan time of our method for creatine/egg/rat can 
be reduced to 6.9 min/7.8 min/8.7 min. For comparison, the 
full Lorentzian fitting with multiple pools55 was applied 
to the fully sampled images of CEST-FSE to obtain CEST 
contrast images as references, and the threshold value of the 
Lorentzian fitting was set as half of the minimum normalized 
signal intensity of the model area to rule out the background 
noises. The boundary conditions for the full Lorentzian fit-
ting were the same as those used in synthesizing training 
samples.

3  |   RESULTS

3.1  |  Numerical simulations

A synthesized saturated image and the corresponding CEST 
contrast image obtained using different methods are shown 
in Figure 2. As can be seen from Figure 2E, the difference 

F I G U R E  2   The results of numerical 
simulation. Field of view = 60 mm ×  
60 mm. Each image matrix was 128 × 128. 
A, Synthesized saturated image at 2 ppm. 
B, Saturated image undersampled from 
(A) using CEST-PROPELLER. C, CEST 
contrast image (at 2 ppm) reconstructed 
from synthesized saturated images as 
the reference. D, CEST contrast image 
(at 2 ppm) reconstructed from CEST-
PROPELLER images. E, Difference map 
between (C) and (D). F, Mean CEST values 
and standard deviations (shown as vertical 
bars) for the four regions of interest (ROIs) 
marked in (A) from the reference and the 
result of CEST-PROPELLER
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between Figure 2C,D is small. The Pearson’s correlation co-
efficient between Figure 2C,D is 0.9901. These indicate that 
reliable result can be obtained using CEST-PROPELLER 
with an undersampling rate of 8. The texture features of the 
CEST-PROPELLER result are slightly lost, which may be 
caused by the high undersampling rate. Four ROIs were se-
lected to calculate the mean CEST values and the SDs. The 
numerical differences between the CEST-PROPELLER re-
sult and the reference can be found in Figure 2F. The relative 
CEST signal intensities of CEST-PROPELLER are almost 
equal to the reference ones in all four ROIs, which reveals the 
accuracy of reconstructed CEST values.

3.2  |  Phantom validation

Figure 3 shows the comparison of the synthesized and actu-
ally measured Z-spectra of creatine phantom. The frequency 
offset of the amine protons of creatine is about 2 ppm on 
the Z-spectrum. A significant CEST effect appears at 2 ppm 
on the Z-spectrum. The Z-spectrum of creatine can be fitted 
out easily. We can see that the synthesized and the measured 
Z-spectra are almost the same. Figure 4 shows an originally 
acquired saturated image and CEST contrast image under a 
homogenous field using the CEST-FSE and the correspond-
ing results from CEST-PROPELLER undersampling. It can 
be seen from Figure 4A that the four tubes of creatine solu-
tion contain some details. Due to high undersampling rate, 
the information of the tube edges and details of the saturated 
image obtained from CEST-PROPELLER is severely lost 
(Figure 4B). However, the CEST contrast image obtained 
with CEST-PROPELLER agrees well with the CEST contrast 
image obtained with CEST-FSE (Figure 4E). The structural 
and texture features are well reconstructed. The Pearson’s 
correlation coefficient between Figure 4C,D is 0.9924. The 
mean CEST values and the SDs for the four ROIs marked in 
Figure 4A are calculated and the results are given in Figure 

4F, indicating the great consistency between these two CEST 
results.

3.3  |  Hen egg study

Fresh eggs contain rich compounds such as polypeptides, li-
pids, and other macromolecules. Therefore, the Z-spectrum 
of egg contains MT, CEST, NOE, and DS effects. Egg white 
is a kind of gelatinous, translucent liquid mixture that con-
tains about 11% protein, so it can be used to prove the APT 
effect. Figure 5 shows the comparison of the synthesized 
and the actually measured Z-spectra of egg white. Although 
the Z-spectrum of egg white is relatively complex, we can 
still synthesize a very similar Z-spectrum. The APT imag-
ing results of fresh hen egg are shown in Figure 6. From  
Figure 6C,D, we can see that both of the APT images ob-
tained using CEST-FSE and CEST-PROPELLER remain 
good shapes. The results from these two methods agree well 
with each other (Figure 6E). The Pearson’s correlation coef-
ficient between Figure 6C,D is 0.9791. The mean APT val-
ues and the SDs for the five ROIs marked in Figure 6A are 
calculated, and the results are given in Figure 6F. Comparing 
the reconstructed results of creatine phantom and hen egg 
from CEST-PROPELLER, we can see that the result of cre-
atine phantom is better than that of egg. Perhaps it is because 
the egg contains more substances, and these substances may 
cause other effects when the saturated pulse is applied, which 
makes the situation more complicated and the reconstruction 
more difficult.

3.4  |  In vivo tumor rat imaging

The Z-spectra generated by our simulation and obtained from 
the in vivo tumor rat experiment are displayed in Figure 7. 
We took the regions indicated by blue dots in the rat brain for 

F I G U R E  3   Comparison of the synthesized and actual measured Z-spectra of creatine phantom. A, A synthesized Z-spectrum. The water pool 
and amine pool are respectively indicated by dashed lines of different colors. The two pools are superimposed to get the final Z-spectrum, which is 
indicated by a solid red line. B, A Z-spectrum acquired from the creatine phantom
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Z-spectra comparison. Regions 1 and 2 are in the tumor area 
and regions 3 and 4 are outside the tumor area (Figure 7A).  
The Z-spectra of regions 1-4 are displayed in Figures 7D-G, 
respectively. Comparing Figures 7B,C with Figures 7D-G, 
we can see that the synthesized Z-spectra are more similar 
to the acquired Z-spectra in the tumor area than the acquired 
Z-spectra outside the tumor area. The imaging results of a 
tumor rat brain are displayed in Figure 8. From Figure 8C,D, 

we can see that both of the APT images obtained using  
CEST-FSE and CEST-PROPELLER show high signal in-
tensity in the tumor area (the approximate region invaded 
by the glioma is indicated by the red contour in Figure 8A). 
Compared with Figure 8A, both Figure 8C,D well show the 
tumor area. The difference between Figure 8C,D is rela-
tively small in tumor area (Figure 8E). This indicates that our 
method can detect the tumor area in the rat brain.

F I G U R E  4   The results of creatine 
phantom experiment. Field of view =  
60 mm × 60 mm. A, Saturated image 
at 2 ppm obtained using CEST-FSE. B, 
Saturated image undersampled from (A) 
using CEST-PROPELLER. C, CEST 
contrast image (at 2 ppm) reconstructed 
from CEST-FSE images as a reference. 
D, CEST contrast image (at 2 ppm) 
reconstructed from CEST-PROPELLER 
images. E, Difference map between (C) and 
(D). F, Mean CEST values and standard 
deviations (shown as vertical bars) for the 
four regions of interest (ROIs) marked 
in (A) from CEST-FSE and CEST-
PROPELLER methods. The creatine 
concentrations for ROI 1 to ROI 4 are 20, 
40, 60 and 80 mM, respectively

F I G U R E  5   Comparison of the synthesized and actual measured Z-spectra of a fresh egg. A, A synthesized Z-spectrum. The water pool, amine 
pool, amide pool, NOE pool, and MT pool are respectively indicated by dashed lines of different colors. These pools are superimposed to get the 
final Z-spectrum, which is indicated by a solid red line. B, A Z-spectrum acquired from the egg white
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4  |   DISCUSSION

CEST-PROPELLER can greatly reduce the acquisition time 
for CEST imaging. A CEST contrast image can be obtained 
directly using the trained reconstruction network within mil-
liseconds, whereas it takes a few minutes to obtain a CEST 
contrast image by using traditional Z-spectra fitting method.

MRI image reconstruction via neural network requires a 
large volume of experimental data for network training. Due 
to the lack of experimental data, we used the mathematical 
model42,43 to synthesize training data. Although it is an ap-
proximation to assume that the CEST spectrum is an addition 
of Lorentzian curves, it is a simple approach with acceptable 
error. A large parameter space is adapted in the generation 
of synthesized data to cover the whole parameter space of 
experimental data as much as possible and make the synthe-
sized data consistent with the experimental data. Our group 
has successfully realized the T2 mapping with synthesized 
data.48,56 To the best of our knowledge, this is the first study 
combining the PROPELLER approach with deep neural net-
work to accelerate CEST imaging.

Simulation and experimental results show that an accel-
eration factor of 8 for CEST-PROPELLER can be achieved 

almost without compromising the quality of reconstructed 
CEST contrast image. Although the saturated image of 
each frequency offset is undersampled, there is redundancy 
between the saturated images. Deep learning can mine the 
redundancy between images to ensure the quality of recon-
struction. In addition, because the influence of magnetic 
field inhomogeneity has been taken into account when train-
ing data are generated, our method can yield accurate CEST 
contrast images without WASSR method. Note that, in our 
experiments, FSE-CEST is used to acquire fully sampled 
saturated images, and FSE has good resistance to inhomo-
geneous magnetic field. Therefore, the acquired signals are 
mainly affected by T2 decay, which may lead to the blurring 
of images, and the signal decay caused by magnetic field in-
homogeneity can be neglected.

For the CEST-PROPELLER method, there are two main 
factors that affect the reconstructed results. The first factor is 
the differences between synthesized data and experimental 
data. Apparently, the training dataset plays a decisive role for 
the network in learning the nonlinear mapping relationship 
from CEST-PROPELLER images to the corresponding CEST 
contrast image. Since there are inherent errors in the mathe-
matical modeling of practical problems, the synthesized data 

F I G U R E  6   The results of fresh hen 
egg experiment. Field of view = 60 mm ×  
60 mm. A, Saturated image at 3.5 ppm 
obtained using CEST-FSE. B, Saturated 
image undersampled from (A) using CEST-
PROPELLER. C, APT image (at 3.5 ppm) 
reconstructed from CEST-FSE images as 
a reference. D, APT image (at 3.5 ppm) 
reconstructed from CEST-PROPELLER 
images. E, Difference map between (C) and 
(D). F, Mean APT values and SDs (shown 
as vertical bars) for the five regions of 
interest (ROI) marked in (A) from CEST-
FSE and CEST-PROPELLER methods
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F I G U R E  7   Comparison of Z-spectra. A, Saturated image at 3.5 ppm obtained using FSE-CEST. The approximate region invaded by the 
glioma is indicated by the red contour. Four regions labeled 1-4 are selected for comparison. B and C, Examples of the synthesized Z-spectra. D, 
The acquired Z-spectrum of region 1. E, The acquired Z-spectrum of region 2. F, The acquired Z-spectrum of region 3. G, The acquired Z-spectrum 
of region 4. Each Z-spectrum is decomposed into several Lorentzian curves and the free water pool, amine proton pool, amide proton pool, NOE 
pool, and MT pool are respectively indicated by dashed lines of different colors
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could not be exactly the same as the experimental data. The 
differences will cause a negative impact on the reconstructed 
results. This may be the reason for the observable differences 
between Figure 8C,D, especially in normal area.

As we have described in the Methods section, the CEST 
spectrum model (Equations 1 and 2) was used for training 
data generation. This model simplifies the CEST spectrum 
to superposition of Lorentzian curves. It cannot simulate the 
Z-spectra of super-Lorentzian line shape, and the simulated 
Z-spectra only contain a few of known CEST pools, MT pool, 
NOE pool, and DS pool.32 Therefore, the simulated Z-spectra 
may not completely cover various Z-spectra acquired in in 
vivo experiments. Note that for CEST imaging, it is more im-
portant to correctly detect tumor area, and the present CEST 
spectrum model works well at this aspect. The reason that the 
CEST spectrum model works better in the tumor area than in 
the normal area may be because the known CEST effects are 
stronger in the tumor area, leading to relatively smaller influ-
ence of imperfect CEST spectrum model for the tumor area. 
Further improvement, especially for the normal area, may 
be achieved in the future with the knowledge of more CEST 
pools and the consideration of super-Lorentzian line shape.

The second factor is the undersampling rate. Obviously, 
the lower the undersampling rate, the longer the acquisition 
time required. However, if the undersampling rate is too high, 
the original information will be seriously lost, which will 
make the network learning task complicated and the accu-
racy of reconstructed result decreased. In our work, we use 
the CEST-PROPELLER sampling method to extract 16 lines 
from the k-space of 128 × 128 size, so the undersampling rate 
is 8. The resulting CEST contrast images are in good agree-
ment with the references.

To explore the effect of the undersampling rate on recon-
structed results, we constructed four sets of undersampled 

data by extracting 10, 16, 21 and 32 lines from the full 
k-space, which corresponded to undersampling rates of 12.8, 
8, 6.1 and 4, respectively. The reconstructed results are given 
in Figure 9. The higher the undersampling rate, the fuzzier 
the saturated images. When the undersampling rate is 12.8, 
the APT image shows severe signal loss (yellow arrows in 
Figure 9G). As the undersampling rate decreases, this situ-
ation is alleviated and the difference between the result and 
the reference becomes smaller (Figures 9K-N). When the 
undersampling rates are 12.8, 8, 6.1 and 4, the Pearson’s 
correlation coefficients between Figure 9B,G-J are 0.9694, 
0.9791, 0.9798 and 0.9804, respectively. The mean APT 
values and the SDs for the five ROIs marked in Figure 9A  
are calculated and the results are given in Figure 10.  
We can see that the results of CEST-PROPELLER are more 
and more consistent with the results of CEST-FSE with the 
decrease of undersampling rate. However, the accuracy im-
provement of the reconstructed result is at the expense of 
scan time.

Recently, a deep feed-forward neural network, including 
a probabilistic output layer allowing for uncertainty quan-
tification, was set up to take uncorrected CEST-spectra as 
input and predict 3T Lorentzian parameters of a four-pool 
model (water, semisolid MT, amide CEST, and NOE CEST), 
including the B0 inhomogeneity.32 Although the method is 
similar to our method, there are some differences between 
them. In the published work, in vivo Z-spectra were acquired 
at 3T, and then the fully sampled Z-spectra were used to train 
the deep neural network to directly map Lorentzian parame-
ters. In this work, we introduce the PROPELLER sampling 
scheme into CEST imaging to shorten the acquisition time. 
Undersampled synthesized saturated images are used to train 
the U-Net, and the CEST contrast images are obtained di-
rectly using the trained reconstruction network.

F I G U R E  8   The results of a tumor rat 
brain experiment. Field of view = 25 mm ×  
25 mm. A, Saturated image at 3.5 ppm 
obtained using CEST-FSE. B, Saturated 
image undersampled from (A) using CEST-
PROPELLER. C, APT image (at 3.5 ppm) 
reconstructed from CEST-FSE images as 
a reference. D, APT image (at 3.5 ppm) 
reconstructed from CEST-PROPELLER 
images. E, Difference map between  
(C) and (D)
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As mentioned in the above publication, the MSE between 
the inputs and outputs of the trained network cannot be re-
duced for training samples with similar inputs but different 
targets. We found that the combination of MSE loss function 
with gradient difference loss (GDL) function51 give good 
predictions. So, we used this combination (Equation 5) as the 
final loss function of the neural network. For comparison, a 
non-GDL U-Net was also trained to predict CEST contrast 
images. This network was trained by using the MSE as loss 
function but excluding GDL function. The reconstructed re-
sults of three simulated data from the networks with different 
loss functions show better performance of the network with 
GDL function (see Supporting Information Figure S2). The 
Pearson’s correlation coefficients between reference images 
and images reconstructed with GDL are 0.9933, 0.9863, and 
0.9936, respectively, and the Pearson’s correlation coefficients 

F I G U R E  9   Images of fresh hen egg obtained with different methods. Field of view = 60 mm × 60 mm. A, Saturated image at 3.5 ppm 
obtained using CEST-FSE. B, APT image (at 3.5 ppm) reconstructed from CEST-FSE images as a reference. C-F, Saturated images obtained from 
(B) using CEST-PROPELLER with undersampling rates of 12.8, 8, 6.1, and 4, respectively. G-J, APT images (at 3.5 ppm) reconstructed from 
CEST-PROPELLER images with undersampling rates of 12.8, 8, 6.1, and 4, respectively. K-N, Difference maps between (G-J) and the reference 
(B). The five regions of interest in (A) indicated with blue circles were used to calculate the APT values

F I G U R E  1 0   Comparison of the mean CEST values and SDs 
(shown as vertical bars) for the five regions of interest (ROIs) marked 
in (Figure 9A) between CEST-PROPELLER with 12.8, 8, 6.1, and 4 
undersampling rates and CEST-FSE methods
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between reference images and images reconstructed without 
GDL are 0.9887, 0.9782, and 0.9829, respectively.

In this proof of concept study, fully sampled CEST-FSE 
data were used for CEST-PROPELLER acquisition to ver-
ify the feasibility and advantage of the CEST-PTOPELLER 
sampling strategy. Similar method has been taken to ver-
ify the feasibility of CS-SENSE approach for accelerating 
APT imaging.31 The PROPELLER undersampling strategy 
is relatively easy to implement and can considerably accel-
erate CEST imaging. When we generated the synthesized 
PROPELLER data for training and testing the neural net-
work, we have considered the influence of magnetic field 
inhomogeneity and noise so as to reduce the difference be-
tween our synthesized data and the real data acquired from 
PROPRLLER pulse sequence. However, there are still some 
factors existing in practical experiments that we did not con-
sider, such as the eddy current effect and turbo spin echo 
(TSE) order. The difference between the synthesis and actual 
acquisition may decrease the performance of our method, 
but it would not alter our conclusion. Direct application of 
CEST-PROPELLER pulse sequence, including consideration 
of more influence factors in training data synthesis, deserves 
further study.

The CEST-PROPELLER acquisition for scan time 
saving is similar to the snapshot-CEST approaches like 
snapshot-CEST approach57 and snapshot 3D-EPI CEST ap-
proach,25 namely one saturation block per offset and only one 
readout for one offset image. The snapshot 3D-EPI CEST 
approach acquires the whole-brain imaging volume after a 
single saturation block within a very short scan time. We can 
translate present CEST-PROPELLER to 3D CEST imaging 
by replacing its readout module with the 3D EPI readout 
module used in the snapshot 3D-EPI CEST approach. This 
would unleash the power of CEST-PROPELLER. However, 
due to the vulnerability of EPI to inhomogeneous fields, its 
implementation should be in relatively homogeneous fields 
to yield good results.

5  |   CONCLUSIONS

CEST provides a unique MRI contrast approach that breaks 
the inherent sensitivity limitation of traditional MRI methods 
and has great potential in disease diagnosis. In this study, we 
introduce a fast CEST MRI method based on PROPELLER 
undersampling and deep neural network reconstruction. This 
method offers a significant scan time reduction. The feasi-
bility of CEST-PROPELLER MRI is demonstrated through 
creatine phantom, fresh hen egg, and in vivo tumor rat brain 
experiments. The experimental results show that CEST-
PROPELLER can provide good CEST contrast images. With 
further improvement, this technique may find applications in 
clinical diagnosis.
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FIGURE S1 Flow chart of synthesized sample generation 
under a series of saturation frequency offsets
FIGURE S2 Results reconstructed from the networks with 
different loss functions. A, F, K, Reference images. B, G, L, 
Results reconstructed from the network with GDL term in 
the loss function. E, H, M, Results reconstructed from the 
network without GDL term in the loss function. D, I, N, 
Different maps between (A, F, K) and (B, G, L). E, J, O, 
Different maps between (A, F, K) and (C, H, M)
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