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Tunable spin-polarized correlated states in 
twisted double bilayer graphene
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Danial Haei Najafabadi1, Kenji Watanabe2, Takashi Taniguchi2, Ashvin Vishwanath1 &  
Philip Kim1 ✉

Reducing the energy bandwidth of electrons in a lattice below the long-range 
Coulomb interaction energy promotes correlation effects. Moiré superlattices—
which are created by stacking van der Waals heterostructures with a controlled twist 
angle1–3—enable the engineering of electron band structure. Exotic quantum phases 
can emerge in an engineered moiré flat band. The recent discovery of correlated 
insulator states, superconductivity and the quantum anomalous Hall effect in the flat 
band of magic-angle twisted bilayer graphene4–8 has sparked the exploration of 
correlated electron states in other moiré systems9–11. The electronic properties of 
van der Waals moiré superlattices can further be tuned by adjusting the interlayer 
coupling6 or the band structure of constituent layers9. Here, using van der Waals 
heterostructures of twisted double bilayer graphene (TDBG), we demonstrate a flat 
electron band that is tunable by perpendicular electric fields in a range of twist angles. 
Similarly to magic-angle twisted bilayer graphene, TDBG shows energy gaps at the 
half- and quarter-filled flat bands, indicating the emergence of correlated insulator 
states. We find that the gaps of these insulator states increase with in-plane magnetic 
field, suggesting a ferromagnetic order. On doping the half-filled insulator, a sudden 
drop in resistivity is observed with decreasing temperature. This critical behaviour is 
confined to a small area in the density–electric-field plane, and is attributed to a phase 
transition from a normal metal to a spin-polarized correlated state. The discovery of 
spin-polarized correlated states in electric-field-tunable TDBG provides a new route 
to engineering interaction-driven quantum phases.

Moiré superlattices of two-dimensional (2D) van der Waals (vdW) mate-
rials provide a new scheme for creating correlated electronic states. By 
controlling the twist angle θ between atomically thin vdW layers, the 
size of the moiré unit cell can be tuned1–3. In particular, in twisted bilayer 
graphene (TBG), the weak interlayer coupling can open up energy gaps 
at the boundary of the mini-Brillouin zone, which modifies the energy 
bands of the coupled system. Theoretically, it has been predicted that 
around θ ≈ 1.1° (the so-called magic angle, MA), the interlayer hybridiza-
tion induces isolated flat bands with drastically reduced bandwidth and 
enhanced density of states12. The combination of flat bands and moiré 
periodic potential fosters an environment where strongly correlated 
states can emerge. Recent experiments performed in MA-TBG indeed 
confirmed the appearance of correlated insulator states associated 
with the flat bands4. Intriguingly, on doping the half-filled insulator, 
superconductivity was discovered. The phase diagram of MA-TBG thus 
phenomenologically resembles that of high-temperature supercon-
ductors, whose undoped parent compounds are Mott insulators13.  
As a result, there is hope that MA-TBG could be a gateway to understand-
ing the long-lasting puzzle of high-temperature superconductivity.  

Yet, in recent studies, the connection between superconductivity and 
the correlated insulator state has been debated14–19.

One method to study the MA-TBG system is to tune the band structure 
through the flat-band condition and observe how the correlated physics 
changes. So far, such experimental control has largely been achieved 
by fabricating samples with different twist angles. However, different 
samples—owing to differences in uncontrollable factors such as the 
alignment with hexagonal boron nitride (hBN), strain and dielectric 
thickness—often yield contradicting results regarding where the cor-
related insulator and superconductivity appear. Only limited tunability 
has been demonstrated in TBG by the application of hydrostatic pres-
sure6. In ABC trilayer graphene/hBN superlattices, the electric field 
has been shown to modulate the correlated insulator gap9, opening 
up the possibility of continuous tuning of the moiré flat band with 
electric field. However, the difficulty in identifying and preserving the 
unstable ABC trilayer graphene, together with the precise alignment 
required between the graphene and hBN layers, makes it a less acces-
sible platform. Here we demonstrate a wide range of electric field tun-
ability in the moiré flat band of twisted double bilayer graphene (TDBG), 
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consisting of two Bernal-stacked bilayer graphene sheets misaligned 
with a twist angle θ (Fig. 1a).

In twisted systems, the twist angle for achieving a flat band is deter-
mined by the band structure of the individual layer and the interlayer 
coupling strength. Unlike monolayer graphene, the band structure of 
Bernal-stacked bilayer graphene can be tuned by a perpendicular dis-
placement field D (ref. 20). As |D| increases, the parabolic band touching 
at charge neutrality of bilayer graphene opens up a gap and the bottom 
(top) of the conduction (valence) band lifts up (down) into a shallow 
Mexican-hat-shaped energy dispersion distorted by trigonal warping21. 
The gap in bilayer graphene can be as large as 200 meV for large |D| 
before the gate dielectric breaks down22. In TDBG, where two bilayers 
are stacked, the displacement field affects the energy dispersion of 
each constituent bilayer graphene, allowing a new experimental ‘knob’ 
to tune the flat-band condition (Fig. 1c). Figure 1b shows moiré band 
structures calculated at finite D using the single-particle continuum 
model approximation12,23–27. We find that a well-isolated narrow conduc-
tion band can appear for a range of twist angles θ, where the interband 
energy gaps and bandwidth can be controlled by the displacement field 
(see Methods for details).

We fabricated TDBG devices by tearing and stacking Bernal-stacked 
bilayer graphene28,29. We measured in total seven devices with twist 
angle θ = 1.26, 1.32, 1.33, 1.41, 1.48, 1.53 and 2.00°, with the first six 
devices showing signatures of correlation effects. All of the devices 
measured are encapsulated by hBN. Top gates are made from graphite 
or metal, and bottom gates are made from graphite or silicon (details 
for each device structure are shown in Extended Data Fig. 9). We focus 

our study on the two representative devices θ = 1.33° and θ = 1.26°, and 
summarize the behaviour of the other devices in Methods and Extended 
Data Table 1. The top and bottom gates with voltages VTG and VBG are 
used to control the density of electrons, n, and displacement field,  
D, independently: n = (CTGVTG + CBGVBG)/e and D = (CTGVTG − CBGVBG)/2, 
where CTG (CBG) is the capacitance between the TDBG and the top (bot-
tom) gate and e is the elementary charge.

Figure 1f shows the four-probe resistivity ρ measured in the TDBG 
with θ = 1.33° as a function of VTG and VBG at temperature T = 1.6 K. CNP 
represents the charge neutral point of the TDBG and ns denotes the 
full filling of the flat band, corresponding to four electrons per moiré 
unit cell, originating from the spin and valley degeneracy. For a linecut 
along a constant displacement field D D D≈ ( + )/21 2

−  (the positions of D1 
and D2

± are labelled in Fig. 1f), ρ shows several insulating states where 
the corresponding conductance σ = ρ−1 vanishes as the temperature T 
decreases (Fig. 2a), suggesting a gap opening at the Fermi level of the 
system. Some insulating regions identified in Fig. 1f can be well 
explained by the single-particle band structure presented in Fig. 1b. 
For example, we find that the CNP is gapless at D = 0 but develops a gap 
for |D| > D1 ≠ 0. Similarly, at full moiré band filling n = ±ns, energy gaps 
Δ n± s

 are present within displacement field ranges |D| < D2
±. Consequently, 

for D D D< | | <1 2
+ (D D D< | | <1 2

−), there is an isolated conduction (valence) 
band. Note that D2

± is different in the conduction band (+) and valence 
band (−), owing to the lack of electron–hole symmetry in TDBG. All 
these single-particle bandgaps are nicely captured by our calculation 
based on a continuum model (Extended Data Fig. 1). The calculation 
also captures the cross-like feature in Fig. 1f, which matches with the 
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Fig. 1 | Band structure and insulating states in the θ = 1.33° sample.  
a, Schematic of TDBG with a twist angle θ. b, Calculated band structure for 
θ = 1.33° TDBG at an optimal displacement field. kx  and ky  are wave vectors in 
the x and y direction. c, Brillouin zone and band structure of the two individual 
bilayer graphene layers under a perpendicular displacement field. The dashed 
hexagons represent the mini-Brillouin zone of the moiré superlattice. K1 and 
K′1 (K2 and K′2) are the two valleys of the top (bottom) bilayer graphene. d, Device 

schematic with graphite top and bottom gates. The arrows represent 
displacement fields generated by the top gate. e, Optical microscope image of 
the 1.33° device. f, Resistivity as a function of top and bottom gate voltages. 
CNP, full-filled gaps (±ns) and half-filled gaps (ns/2) are marked. The 
displacement field where the CNP starts to open up a gap is labelled with D1 and 
D2

± labels where the gap at the full electron (hole) band filling closes.
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van Hove singularities of the bands (details in Methods). Lastly, the 
calculated band structure (Fig. 1b) indeed demonstrates the existence 
of an isolated flat band at θ = 1.33° under finite displacement field with 
a bandwidth around 10–15 meV.

In this single-particle band structure, we expect a narrow but uninter-
rupted spectrum within the lowest moiré conduction band (c1), sepa-
rated by bandgaps from both the valence band (v1) and higher 
conduction band (c2) for D1 < |D| < D2

−. However, we observe the develop-
ment of a well-defined insulating behaviour at half-filling n = ns/2 
(Figs. 1f, 2a). The onset displacement field of this insulating state coin-
cides with D1. However, it ends well before D reaches D2

+, suggesting 
both the isolation and the flatness of the band are required for creating 
the observed correlated gap (Fig. 1f). Along the same linecut shown in 
Fig. 2a (D ≈ (D1 + D2

−)/2), we measure the effective cyclotron mass m* 
from the temperature-dependent magnetoresistance oscillations 
(Extended Data Fig. 8). Figure 2b shows that m* ≈ 0.2me for the first 
valence band (v1) and m* ≈ 0.3me for the first conduction band (c1), 
where me is the bare electron mass. Considering the effective mass of 
Bernal-stacked bilayer graphene is about 0.04me (ref. 30), the experi-
mentally observed large m* indicates an order of magnitude narrower 
bandwidth than that of bilayer graphene bands folded in the moiré 
superlattice Brillouin zone, especially for the c1 band. We then use the 
conduction band effective mass m* = 0.3me to estimate the bandwidth 
of the c1 band to be about 10 meV. This bandwidth matches with the 
continuum model calculation of TDBG23, confirming the existence of 
the flat band experimentally. The absence of correlated insulating 
behaviour in the hole-doped regime under similar experimental 

conditions can be explained by the larger bandwidth of the moiré 
valence band v1 than that of c1 (Methods).

We measure the size of the insulating gaps from the activating behav-
iour of ρ (Fig. 2a, inset). For θ = 1.33° TDBG, the half-filled insulator is 
robust with an energy gap of Δn /2s

 = 3 meV and persists up to a perpen-
dicular magnetic field B⊥ ≈ 7 T (Extended Data Fig. 7). As the c1 band is 
spin and valley degenerate in a single-particle picture, the half-filled 
insulator is probably polarized in the fourfold spin–valley space. The 
in-plane magnetic field B|| can be used to probe the spin structure of 
the state without substantially coupling to the valley degrees of free-
dom in the regime where in-plane orbital effect is negligible. In MA-TBG, 
it has been shown that B|| reduces Δn /2s

. Figure 2a inset and Fig. 2c show 
the change of ρ as a function of B|| in our TDBG sample. We find that the 
half-filled insulator becomes more insulating as B|| increases (Fig. 2a, 
inset) and the displacement field range spanned by the half-filled insu-
lator expands (Fig. 2c). More quantitatively, we find that the growth of 
Δn /2s

 roughly follows the Zeeman energy scale gμBB||, where μB is the 
Bohr magneton and the effective g-factor g = 2 (dashed black line in 
Fig. 2d). This observation is consistent with a picture where the occu-
pied states (half of the states in c1) are spin polarized along the direction 
of the external magnetic field. The unoccupied excited states then 
carry the opposite spin, separated by a ferromagnetic gap due to spon-
taneous symmetry breaking at half-filling. For spin-1/2, the Zeeman 
term lowers the energy of the filled states ΔE↓ = −gμBB/2, while boosting 
the energy of the empty states with opposite spins by ΔE↑ = gμBB/2, 
pushing the two bands further apart and enhancing the gap (as illus-
trated by Fig.  2d, insets). Calculations from the Hartree–Fock 

0

0.2

0.4

0.6
m

*/
m

e
 (m

S
)

-5

n (×1012 cm–2)

0

1

2

3

4

0 5

ns/2

ns–ns

 = 1.33°

T = 2 K

T = 15 K

0 0.1 0.2 0.3 0.4

10

(k
Ω

)

5

100

ns/2

= 26 meVΔ

B|| = 0 T

B|| = 6 T

B|| = 13 T

ns

b

a

c d

= 1.33˚  n = nS/2

= 1.33˚  n = nS/4

= 1.26˚  n = nS/2

= 1.26˚  n = nS

EF

DOS

E

CNP

E

CNP

EF

DOS

0 1 2 3 4
4n/ns

0.2

0.5

D
 (V

 n
m

–1
)

0.2

0.5

D
 (V

 n
m

–1
)

0

10

0 5 10
B|| (T)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(m
eV

)
Δ

B|| = 0

B|| = 13 T

T = 1.5 K g BB||

–g BB||

B
|| 

(T
)

 (kΩ –1)

1/T (K–1)

Fig. 2 | Spin polarization of the correlated insulator states. a, Temperature 
dependence of conductivity (σ) as a function of carrier density at a constant 
displacement field that passes through the half-filled insulator (D ≈ (D1 + D2

−)/2). 
Inset: Arrhenius plot for the full-filled insulating state (ns) and the half-filled 
insulating state (ns/2) under different in-plane magnetic fields. b, Effective 
mass measured by temperature-dependent quantum oscillations 
corresponding to a. c, Development of the correlated insulating states with 
in-plane magnetic fields. Top and bottom panels compare resistivity as a 
function of n and D under in-plane magnetic fields of B|| = 0 T (bottom) and 
B|| = 13 T (top). The middle panel shows the continuous evolution of the 
correlated states by taking a linecut along the dashed lines in the top and 

bottom panels. All three panels are measured at a temperature of T = 1.5 K.  
d, Half-filled insulating gap Δn /2s

, quarter-filled insulating gap Δn /4s
 and 

full-filled gap Δns
 as a function of in-plane magnetic field. The black dashed line 

indicates Zeeman energy with g = 2. Δn /2s
 of both devices increases with 

in-plane magnetic field, indicating spin polarization of the half-filled insulator. 
We also note that the single-particle gap Δns

 between c1 and c2 (purple curve) 
decreases linearly with Zeeman energy with a g-factor of 2 (purple dashed line). 
Insets: schematic of the half-filled insulating state at zero (left) and large (right) 
in-plane fields. The x axis is density of state (DOS) and the y axis is energy (EF is 
the Fermi energy). Grey represents the inert valance band while orange (red) 
represents the lower (upper) half of the first conduction band.
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approximation also support the existence of a spin-polarized correlated 
insulating state at half-filling in TDBG23,24.

In the θ = 1.33° device, applying B|| also induces additional correlated 
insulating states at quarter-filling (n n= 1

4 s) and three-quarter-filling 
(n n= 3

4 s) (Fig. 2c). The quarter-filled insulating gap opens at B|| ≈ 4 T 
and increases as B|| increases (Fig. 2d). According to the hierarchy of 
the symmetry-broken states within mean-field theory23, the 
quarter-filled gaps separate the ground state and the excited state of 
the same spin and opposite valleys, and thus should be relatively insen-
sitive to in-plane magnetic fields. However, the enhancement of 
quarter-filled gaps with B|| and the positions where quarter-filled insu-
lating states appear in the n–D plane (Extended Data Fig. 2) suggest 
that these gaps probably separate states of opposite spin, hinting that 
the origin of these strongly correlated states goes beyond a simple 
mean-field approach.

In the θ = 1.26° sample, a similar spin-polarized half-filled insulating 
state is observed (Fig.  3a), with a much smaller correlated gap 
Δn /2s

 = 0.3 meV (red line in Fig. 2d). On doping the half-filled insulator, 
we identify the appearance of a ‘halo’ (marked with a dashed circle in 
Fig. 3a) surrounding the half-filled insulating state in the VTG–VBG plane. 
On the halo, the resistivity is slightly higher than that of the nearby 
region. Such a halo-like feature commonly appears around the cor-
related insulating states in different samples with varying twist angles 
(Fig. 4a–d, Extended Data Fig. 9). The half-filled insulting state divides 
the halo-like region into two. For the samples with a strong half-filled 
insulating gap, Hall measurements performed at low magnetic fields 
(Extended Data Fig. 2) show a sign change of the Hall signal across the 
boundary of the halo and also across the correlated insulator. A similar 
observation has been noted in a recent related study31. The sign of the 
Hall signal inside the halo complies with the carrier concentration 
counted from half-filling. This suggests the metallic state in the halo 
is obtained by adding carriers to the spin-polarized band at half-filling 
while retaining the spin-splitting of the band (Fig. 2d, inset), and there-
fore is probably a ferromagnetic metal. As the Hall signal outside the 
halo matches the expectation for a moiré band without correlation, 
the halo marks the border between the spin-polarized and the 
spin-unpolarized metallic states (Extended Data Fig. 2c).

Studying the temperature dependence of the resistivity, ρ(T), inside 
the halo, we identify a critical transition with a sudden drop in resistivity 
as the temperature decreases. Figure 3b shows the resistivity meas-
ured at different gate configurations marked by matching symbols in 
Fig. 3a. We note that the critical transition behaviour, namely the sud-
den drop in resistivity, occurs only inside the halo. In contrast, resistivity 
outside the halo increases linearly with temperature. The resistivity 

behaviour outside the halo is most likely due to ballistic transport at low 
temperatures and enhanced phonon scattering at elevated tempera-
tures. The critical transition behaviour of ρ(T) inside the halo, however, 
appears non-trivial. The ρ(T) curve of the 1.26° device (black curve in 
Fig. 3b) in particular strongly resembles that of a superconductor, with 
near-zero resistivity below 3.5 K. The current–voltage (I–V) curve also 
shows superconducting-like nonlinear behaviours: dV/dI vanishes for 
bias current smaller than the critical current, I < Ic, and increases to a 
near-constant value that is close to the normal resistivity above the 
critical transition for I > Ic (Fig. 3c, bottom right inset). This nonlinear 
I–V characteristic is distinct from that of a heating effect (see Methods 
for a more detailed analysis) and seemingly follows that of the Berez-
inskii–Kosterlitz–Thouless (BKT) transition (Extended Data Fig. 4e).

While ρ(T) and the I–V characteristic discussed above for the 1.26° 
device are suggestive of superconductivity, we note that several fac-
tors require careful consideration. First, we have not observed direct 
evidence of superconducting phase coherence, such as the Fraun-
hofer pattern under magnetic fields. Second, ρ(T ≪ Tc) ≈ 0 has been 
observed only for the 1.26° device. Figure 4a–d shows four other devices 
we measured with the twist angle ranging between 1.32° and 1.48°. In 
these devices, similar to the 1.26° device, critical transition behaviours 
in the ρ(T) curves are commonly observed inside the halo region that 
surrounds the half-filled insulator. These critical behaviours are best 
illustrated by the clear peaks in dρ/dT, which are absent outside the 
halo (Fig. 4e, f). The critical temperatures, defined as the temperature 
where dρ/dT is maximum, are similar across all devices (Tc = 6−9 K), 
despite their very different half-filled insulating gap sizes (Extended 
Data Table 1). However, the low-temperature resistivity ρ(T ≪ Tc) does 
not reach zero, unlike in the 1.26° device (Fig. 4e, Extended Data Table 1). 
Strong nonlinear I–V at low temperatures is also absent in these devices.

On the basis of these experimental findings, we propose a few sce-
narios to explain the observed critical transition behaviour. One pos-
sibility is that the critical transition is a result of Cooper-pair formation, 
but superconductivity is developed only in the 1.26° device. In other 
devices, the establishment of phase coherence may be inhibited by an 
inhomogeneous distribution of strains or disorder. Alternatively, the 
critical transition may correspond to a ferromagnetic transition of the 
doped half-filled insulating states. Here we note that the critical transi-
tion behaviours occur only inside the halo region, which we associate 
with ferromagnetic metallic states. As the temperature increases, the 
ferromagnetic metal turns into a normal metal when the correlation 
effect vanishes. Below the critical temperature, carrier scattering pro-
cesses related to spin-flip can potentially be suppressed by the ferro-
magnetic order, resulting in a reduced resistivity. These two scenarios 
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do not necessarily compete with each other, leaving open the possibility 
of a ferromagnetic superconductor (Methods, Extended Data Fig. 5). 
The highly tunable electronic structures of TDBG demonstrated here 
and in related studies31–34 may provide a new route to engineer cor-
related phenomena in a moiré superlattice.
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show the derivative of the resistivity to highlight the critical transition 
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Methods

Band structure of TDBG
The band structure of TDBG with Bernal-stacked bilayers was obtained 
as follows. In TDBG, each bilayer graphene has a tight-binding Bloch 
Hamiltonian at a momentum k given by
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which is labelled in the order of A1, B1, A2 and B2 sites of the top (1) and the  
bottom (2) Bernal stacked bilayer graphene. In function f ( ) ≡ ∑ el

δi ⋅ lk k , 
i is the imaginary unit, index l runs from one to three, δ1 = a(0, 1),  
δ a= ( 3 /2, − 1/2)2  and δ a= ( − 3 /2, − 1/2)3 , with a = 1.42 Å. f*(k) is the 
complex conjugate of f(k). In particular, the electrostatic energy dif-
ference U between the top and bottom layers is an important tuning 
parameter controlled by D. With this Hamiltonian, one can follow  
the continuum model approach in ref. 12 to calculate the moiré band 
structure.

In the numerical simulation, we use phenomenological parameters

γ γ γ γ Δ( , , , , ) = (2,610, 361, 283, 138, − 15) meV (2)0 1 3 4

obtained from ref. 35. Compared with TBG, TDBG has additional param-
eters γ1 and γ3 (trigonal warping), γ4 (particle-hole asymmetry) and Δ, 
in addition to γ0 (nearest-neighbour hopping). Here, γ1 and Δ are the 
interlayer hopping and the on-site energy at A–B stacked sites, where 
the A site of the first layer (A1) sits on top of the B site of the second 
layer (B2), respectively. Although these parameters are much smaller 
than γ0, they are important to understand the experimental data. In 
particular, for vanishing U, a finite value of γ3 yields a larger bandwidth 
and overlap between c1 and v1. This is why the system is metallic at the 
CNP and there is no magic-angle condition at D = 0. Furthermore, γ4 
and Δ give rise to the electron–hole asymmetry. Owing to these terms, 
the bandwidth of v1 is much larger than that of c1, resulting in smaller 
band isolation for v1 (Extended Data Fig. 1). For the moiré hopping 
parameters, (w0, w1) = (0.08, 0.1) eV is used to account for the relaxation 
effect described by ref. 36. The relaxation increases the gap between c1 
and c2 (v1 and v2), stabilizing the insulating states for the range of D at 
n = ±ns fillings. For more details, see ref. 23.

Extended Data Fig. 1c, d shows a direct comparison between exper-
imental resistivity and the calculated density of states at the Fermi 
energy for the θ = 1.33° TDBG. The experimental results are plotted 
against displacement field D while the calculation is plotted against 
onset potential difference between the top-most and bottom-most 
graphene layer U. The conversion between the experimental param-
eter D and the calculation parameter U is not straightforward owing to 
the screening of the electric field by the graphene layers themselves. 
Thus, converting D to U requires a self-consistent calculation of the 
screening effect produced by the TDBG band structure, which in turn 
depends on U. However, in Extended Data Fig. 1, we see a very good 
match between experimental single-particle insulating states and 
theoretical gaps at the Fermi energy when we convert D into U with 
an empirical factor: U = 0.1 nm × eD, where e is the electron charge. 
Besides the single-particle gaps, the calculation also shows regions 
of high density of states. In particular, in experimental data, there are 
two lines with higher resistivity than the surroundings: from (n, D) =  
(−1, −0.2) to (1, 0.6) and from (n, D) = (−1, 0.2) to (1, −0.6). These two 
lines form a cross and pass through the half-filled insulator as well as 
the halo features. By comparing with the calculation, we recognize that 
these experimental features correspond to the regions of high density 
of states shown in Extended Data Fig. 1d.

Hall effect and ferromagnetism phase boundary
In Extended Data Fig. 2, we show the Hall effect measured in the sample 
with the most robust half-filled insulating states (θ  =  1.41°, 
Δn /2s

 = 4.2 meV). There is a clear change in Hall resistance behaviour 
across the halo boundary, which is identifiable in the longitudinal resist-
ance measurement (Extended Data Fig. 2a). Inside the halo, the Hall 
resistance changes sign across the half-filled insulating state, with a 
positive value above half-filling and a negative value below half-filling. 
This Hall measurement demonstrates that the metallic states inside 
the halo are closely related to the half-filled insulator, probably by a 
change of Fermi level from half-filling to the inside of the subband 
(Extended Data Fig. 2c). Given that the half-filled insulator is spin polar-
ized, the metallic states are probably a ferromagnetic metal, which 
contains two spin-polarized bands that are shifted in energy by the 
ferromagnetic exchange coupling ((2) in Extended Data Fig. 2c). Outside 
the halo, the Hall effect follows the expectation of a single-particle 
moiré band without correlation effects such as in large-angle TBG, 
indicating that the system recovers to a normal metallic state.

In Extended Data Fig. 2a, we also notice that a three-quarter-filled 
insulating state appears on the border of the halo. The simplest possible 
candidate of this state is a spin- and valley-polarized state. However, 
within a simple mean-field picture, we expect the lowest-lying excita-
tions in this state to be associated with valley-flip rather than spin-flip 
as the spin exchange coupling is expected to be larger than the valley 
exchange splitting23. This naive picture appears to be inconsistent with 
the enhancement of the gap by the in-plane magnetic field shown in 
Fig. 2d in the main text. In addition, the appearance of the quarter-filling 
state right at the edge of the halo suggests that a mean-field picture 
may fail to capture the relevant physics. We leave this question regard-
ing the nature of the quarter-filling state to future theoretical works.

Magnetic-field-induced Chern insulator state in the 1.26° 
sample
In the θ = 1.26° sample, we observed distinctly different behaviour of 
the Hall resistance. Under a small perpendicular magnetic field, the Hall 
resistance is always positive inside the halo (Extended Data Fig. 3b), 
rather than changing signs across half-filling. The absent sign change 
of the Hall signal across half-filling may be due to thermal excited car-
riers of both types as a result of the small insulating gap. It could also 
be due to the Chern insulator behaviour discussed below. Measuring 
the Hall resistance with changing magnetic field and density at a fixed 
displacement field (Extended Data Fig. 3d) reveals a single line of large 
Hall signal tracing to half-filling with a slope corresponding to ν = 4. At 
the same time, longitudinal resistance develops a minimum along the 
same line (Extended Data Fig. 3c). Following the ν = 4 line (black guid-
ing lines in Extended Data Fig. 3c, d), Extended Data Fig. 3e shows the 
Hall resistance reaches close to a quantized value of h/4e2 when the 
perpendicular magnetic field B⊥ > 3 T.

The fact that a single Hall plateau emerges from half-filling strongly 
suggests that this is not a normal quantum Hall state. Instead, the data 
highly resemble the Chern insulator shown in MA-TBG17. Indeed, our 
theory predicts that in TDBG, the first conduction band has a Chern 
number C = 2 in one valley and an opposite Chern number C = −2 in the 
other valley23. As shown in the main text, without a perpendicular mag-
netic field, the half-filled state is spin polarized and valley unpolarized, 
giving a total Chern number of 0. However, a perpendicular magnetic 
field couples to the valley degree of freedom through the orbital val-
ley Zeeman effect. When the spin-polarized gap is small such as in the 
1.26° device, the valley Zeeman energy can overcome the spontaneous 
spin-polarized gap and converts the spin-polarized half-filled insulating 
state into a valley-polarized Chern insulator. Using the valley Zeeman 
factor from an scanning tunnelling microscopy study and calculation23, 
we estimate that valley Zeeman energy surpasses the 0.3 meV gap at a 
perpendicular field of 0.2 T. This valley-polarized half-filled state fills 



two moiré bands (of spin up and spin down) in one valley, adding up 
to a total Chern number of four.

Critical transition behaviours in the θ = 1.26° sample
In Extended Data Fig. 4c, the dome of the superconducting-like state, 
similar to MA-TBG, can be seen next to the half-filled insulator. In addi-
tion, cutting through a constant density line, a similar dome structure 
is visible over the displacement field axis (Extended Data Fig. 4b). 
The dome in the displacement field terminates on the boundary of 
the halo. It may first appear that the low-resistance state outside the 
halo boundary resembles a superconductor as well. However, as we 
discussed in the main text, there is no critical transition outside the 
halo. In addition, the I–V characteristic outside the halo is very differ-
ent from that inside the halo. Within the halo, differential resistance 
shows a critical current that reduces to zero when approaching the 
halo boundary (Extended Data Fig. 4f). Outside the halo, in contrast, 
the I–V characteristic does not fit that of a superconductor (Extended 
Data Fig. 4g). We believe the low resistance outside the halo is purely 
caused by ballistic transport. Extended Data Fig. 4d shows that the 
superconducting-like state has a critical perpendicular magnetic field 
of about 0.1 T.

In a recent study31, He et al. observed a sudden drop of resistance 
with a residue resistance of about 1 kΩ, similar to our 1.32° device. They 
also reported a nonlinear I–V curve, where dV/dI(I) gradually increases 
with current in a parabolic manner up to a factor of two without signs 
of critical current. This observation is in stark contrast to the data from 
our superconducting-like sample, where dV/dI reaches zero at zero bias 
and saturates to a finite value above the critical current. In their paper, 
He et al. explain this nonlinear I–V as an effect from the temperature 
increase due to bias current heating. While this argument can explain 
the nonlinear I–V observed in their sample with large residue resist-
ance, we demonstrate that our superconductor-like nonlinear I–V is 
unlikely caused by heating.

At 2 K, the zero-bias resistivity of the sample is close to zero. If we 
assume the sample is metallic, we can translate resistivity to thermal 
conductivity. Taking the upper bound of resistivity to be 50 Ω, it con-
verts to 1 nW K−1 in heat conductivity according to the Wiedemann–
Franz law at 2 K. From the I–V curve shown in Fig. 3c, we can extract 
the heating power to be about 13 pW at the critical current of about 
300 nA. As a result, the temperature increase is about 13 mK. In contrast, 
it requires a 5 K temperature increase to bring the sample resistance 
to the normal value (Fig. 3b). This provides additional confirmation 
that our observed nonlinear I–V is probably an intrinsic property of 
the device rather than a heating effect.

Enhancement of the transition temperature with B||

If the superconducting-like behaviour in the 1.26° sample is indeed 
from superconductivity, the parallel field dependence shown below 
suggests that it might be an exotic spin-polarized superconductor. 
Here we investigate the behaviour of ρ(T) as a function of B||. Extended 
Data Fig. 5a shows a superconducting dome in the (n, B||) plane with a 
maximum critical parallel magnetic field Bc ≈ 1 T. The salient experi-
mental feature is the B|| dependence of the superconducting state below 
the critical field Bc. Extended Data Fig. 5b shows ρ at optimal density 
and displacement field (nm, Dm) as a function of T and B||. In this optimal 
superconducting state, ρ vanishes critically as T and B|| decreases. We 
use a phenomenological definition of the critical temperature T50% 
defined as the 50% transition point. Interestingly, T50%(B||) follows a 
non-monotonic behaviour. In particular, T50% increases as B|| increases 
from 0 to about 0.3 T before it decreases for B|| > 0.3 T. We also per-
formed I–V characterization at the optimal gate configuration (nm, Dm) 
as a function of B|| and T to obtain TBKT (Extended Data Fig. 4e). Similar 
to T50% above, TBKT(B||) also shows a non-monotonic behaviour as shown 
in Extended Data Fig. 5b (black circles). These sets of evidence suggest 
that a small B|| can strengthen the superconductivity.

The increase of critical temperature with B|| suggests that the Cooper 
pairs responsible for the superconductivity here, if confirmed, are 
likely to be spin polarized. One possible scenario for such a state is illus-
trated in Extended Data Fig. 5d, where the Cooper pairs form between 
Fermi surfaces with the same spin (spin-triplet) and opposite valleys.  
This model is consistent with our previous discussion of a ferromag-
netic metal parent state inside the halo next to the half-filled insulator, 
where the Fermi surfaces of two different spins have different filling 
status. In this spin-polarized pairing scheme, a parallel magnetic field 
enlarges the majority spin Fermi surface, and strengthens the supercon-
ductivity, inducing the change in the critical temperature ΔTc ∝ B (ref. 23). 
The eventual destruction of superconductivity at high magnetic fields 
can result from the following mechanism. Magnetic flux in between 
layers leads to a momentum shift, which has an opposite sign in the two 
valleys, thereby bringing the two pairing Fermi surfaces out of align-
ment. The latter effect is expected to reduce the critical temperature, 
ΔTc ∝ −B2 (ref. 23). Alternatively, if the ferromagnetic pairing is caused 
by spin fluctuations, as suggested in the heavy fermion metals37–39, a 
strong parallel magnetic field can suppress the superconductivity by 
suppressing spin fluctuations40.

Meanwhile, in the measurement shown in Extended Data Fig. 5c, we 
notice that the 0 T resistivity goes slightly negative (about −30 Ω) at the 
lowest temperature for this specific thermal cycle. In general, we find 
that the four-terminal resistivity we measure in the 1.26° device some-
times shows a small residue (−50–50 Ω) that varies between different 
thermal cycles. The residual resistance is not present in the measure-
ment shown in Fig. 3b. This residual resistance (when it is present in a 
specific thermal cycle) is sensitive to the measurement configuration. 
Extended Data Fig. 6 shows two different four-terminal resistance meas-
urement configurations. Between the two configurations (blue curve 
and red curve), we essentially flip the direction of the current. As we use 
a low-frequency a.c. (about 17 Hz) for the current source and a lock-in 
amplifier for the voltage probe, in an ideal condition, we expect to 
obtain the same signal with opposite polarity. However, we find that the 
measured signals deviate from this expectation when there is residual 
resistance at low temperature. Specifically, when flowing current from 
top to bottom (blue curve in Extended Data Fig. 6), four-terminal resist-
ance is positive, and a positive residual resistance of about 50 Ω remains 
at the lowest temperature, 2 K. However, when the current is flowing 
from the bottom to the top (red curve), the four-terminal resistance at 
higher temperature is negative as expected, but the residual resistance 
at lower temperature is still positive and is nearly identical to that in 
the blue curve (see inset).

We believe that the observed anomaly in the residual resistance origi-
nates from bias-induced gating in combination with thermoelectric 
voltages present in our cryostat wiring. Owing to the temperature gra-
dient in the cryostat, a d.c. thermoelectric voltage is always present 
between different pairs of wires. This d.c. voltage is simply added to 
the voltage probes on top of the a.c. voltage induced by bias current. 
In such cases, the a.c. bias voltage on the sample (about half of the bias 
voltage on the source lead, as the drain is grounded) can modulate the 
d.c. thermoelectric voltage through a bias-induced gating effect (see 
ref. 41 for a similar effect observed in a drag experiment), resulting in a 
voltage signal synchronizing with the applied a.c. bias current. We can 
eliminate this bias-induced a.c. gating effect of thermoelectric voltage 
by subtracting the blue curve from the red curve, where we obtain a 
near-zero residual resistance within the noise level. During the thermal 
cycle in obtaining the data in Extended Data Fig. 5c, we did not collect 
the data in two different configurations, and thus such correction was 
not possible. Note that this a.c. gating effect becomes appreciable only 
when the device resistivity is really small (<50 Ω).

Landau fan diagram
In the 1.33° device under a perpendicular magnetic field, clear fans can be 
identified coming from the CNP, full fillings ±ns (about ±4.1 × 1012 cm−2) 
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as well as half-filling ns/2 on the electron-doped side (Extended Data 
Fig. 7a). The Landau fan from the CNP shows a well-developed quan-
tum Hall sequence with fourfold degeneracy on the valence band 
side under low magnetic fields, and subsequently develops the full 
degeneracy-lifted quantum Hall states under higher magnetic fields. 
The Landau fans on the conduction band side (n > 0) are highly unusual. 
The fan from the CNP shows a sequence of only odd filling fractions ν = 3 
and 5. Although the fan coming from the correlated insulating state at 
half-filling shows a degeneracy of two, consistent with the picture of 
a spin-polarized half-filled band, the sequence is also of odd numbers 
ν = 3, 5 and 7. The odd-integer sequenced quantum Hall effect from the 
half-filling gap may relate to a Berry phase effect on the Landau level, 
similar to the quantum Hall effect in monolayer graphene. Theory23 
predicts that the isolated flat conduction band (c1) in TDBG carries 
non-trivial Berry curvature and a non-zero Chern number. It is then pos-
sible that the Berry curvature accumulates to a π or 3π phase on certain 
Landau orbits, resulting in a quantum Hall filling fraction sequence of 
2(N − 1/2) or 2(N − 3/2), with integer N.

There is also a single quantum Hall state ν = 3 projected down 
to the quarter-filled conduction band. This state could be a 
magnetic-field-induced Chern insulator, similar to the ν = 4 Chern 
insulator in 1.26° device discussed above. As this fan projects down 
to quarter-filling, it is likely that both spin and valley are polarized. 
We note that the valley Chern number corresponding to this spe-
cific state is C = 3, although C = 2 is generally expected23. Further 
study is required to clarify these experimental observations. Above 
a perpendicular magnetic field of 7 T, the half-filled insulator dis-
appears, presumably due to the orbital effect of the perpendicular 
magnetic field.

The fan diagram of the 1.26° device is also intriguing. Besides the 
Landau fans, we point out there is an obvious oscillation of longitu-
dinal resistance around n = −ns/2 that does not sensitively depend on 
doping (horizontal features marked in Extended Data Fig. 7b). These 
oscillations are not from quantum Hall states, but from Hofstadter’s 
butterfly. They are a result of the interplay between two different perio-
dicities in the system: moiré superlattice and magnetic length. When 
one moiré superlattice contains 1/N magnetic flux (N is an integer), the 
two length scales become commensurate and produces a minimum in 
resistivity. These features are indicative of a highly uniform twisting 
angle distribution in the sample. We use these features to determine 
the twist angle in this device.

Effective mass of the θ = 1.33° and θ = 1.26° samples
We calculate the effective cyclotron mass from temperature-dependent 
magnetoresistance (Shubnikov–de Haas (SdH)) oscillations. The cyclo-
tron mass is a measure of the density of states and thus directly related 
to the Landau-level separation (cyclotron gap) under a given mag-
netic field. As temperature increases, the SdH oscillation amplitude 
is reduced following ΔR ∝ χ/sinh(χ), where χ = π km

e
T
B

2 2

ℏ

∗
.

For the θ = 1.33° sample, we measured SdH oscillations at all densi-
ties between filling factor n/ns = −1 and 1, at T = 0.3, 2, 3, 4, 6, 9 and 14 K 
(example: Extended Data Fig. 8a–c). We then extracted the oscillation 
amplitudes and plotted them as a function of T/B. Fitting ΔR(T/B) with 
the above formula with m* being the only fitting parameter, we obtained 
the effective cyclotron mass shown in the main text. Similarly, we meas-
ured SdH oscillations for the θ = 1.26° sample and extracted an effective 
mass m* = 0.23me, as shown in Extended Data Fig. 8e, f.

Device fabrication and characterization
All the devices presented in this study were prepared using the dry 
transfer method42, using stamps consisting of polypropylene carbon-
ate film and polydimethylsiloxane. Half of a bilayer graphene flake was 
torn and picked up by a stack of graphite/hBN on the transfer stamp. 
Then the remaining bilayer graphene flake on the substrate was rotated 
by the desired angle and picked up. The stacks were deposited on a 

300-nm SiO2/Si substrate after picking up the rest of hBN and graphite 
layers. Part of the bilayer graphene flakes was extended outside the 
hBN area onto polypropylene carbonate to prevent the graphene from 
freely rotating on the hBN. The resulting stacks were fabricated into 
1–2-μm-wide devices to ensure a uniform twist angle in the relatively 
narrow channel. The temperature of the stack was always kept below 
180 °C during the stacking and fabrication processes.

We measured a total of seven devices with different twist angles in 
this study. All samples were encapsulated by the hBN layers. In the 1.32°, 
1.33°, 1.41°, 1.53° and 2.00° devices, both the top and bottom gates were 
made from graphite. The 1.26° device utilized a graphite top gate and a 
heavily doped silicon bottom gate below the hBN substrate and 300-nm 
SiO2 dielectric. The 1.48° device used a silicon bottom gate and a metal 
top gate. Most of the devices were fabricated into Hall bars with the 
exception of the 1.26° and 1.41° samples, which were fabricated into 
a Van der Pauw geometry. The gate configurations and device images 
are shown in Extended Data Fig. 9.

The resistivity presented here was measured at 17.7 Hz using the 
standard lock-in technique, with a 0.5–1.0 mV voltage bias and a 
current-limiting-resistor of 100 kΩ connected in series with the 
sample, which limits the current in the sample to an upper bound of 
5−10 nA. This bias scheme is to ensure neither the voltage nor the cur-
rent becomes too large when sweeping across states with drastically 
different resistance (insulators or superconducting-like states). The 
four-terminal voltage and the source–drain current are measured 
simultaneously with two lock-in amplifiers to obtain the four-terminal 
resistance. Resistivity is then obtained by multiplying the resistance 
by a geometric factor (about 4.5 for Van der Pauw devices).

Figure 1f and Extended Data Fig. 9a, c–g show large-scale gate scans 
of the longitudinal resistivity in all samples. These samples show insu-
lating states at full filling under the zero displacement field and at the 
CNP under a large displacement field. Moreover, in particular, the 
1.32°, 1.48°, 1.53° and 2.00° devices show a CNP gap under the zero 
displacement field, which closes and reopens with increasing dis-
placement field. For the 1.32° device, we note that the gate scan dia-
gram shows a wide insulating region at full filling and double peaks at 
half-filling, suggesting that there is additional moiré periodicity in the  
channel other than 1.32°. The CNP gap in the 1.32° device under zero 
displacement field probably originated from the larger twist angle 
region of the sample, as none of the neighbouring angle devices (1.26, 
1.33, 1.41°) has a gap at the CNP under zero displacement field. We 
remark that theory23 predicts a gap at the CNP opens up even at zero  
displacement field when θ > 1.5°, qualitatively agreeing with our experi-
mental observation.

The twist angles are estimated from two independent methods. For 
the first method, we measure the gate voltages of full-filling gaps and 
convert these voltages to full-filling density ns using the gate capaci-
tance. The gate capacitance used for this conversion is calibrated by 
Landau fan diagrams. We then calculate the twist angle from the fact 
that full filling corresponds to four electrons per moiré unit cell so the 
moiré unit cell area A = 4/ns. The main source of errors for this method 
is in locating the exact position of full filling in the gate voltage. We 
also use the radiating Landau fan coming from full filling to help locate 
its exact position. Typically, we can identify the position of full filling 
to an accuracy of δns ≈ 1011 cm−2, corresponding to a twist angle error 
of ±0.02°. The second method exploits Hofstadter’s butterfly features 
under magnetic fields. Here we find carrier-density-independent oscil-
lations of the longitudinal resistance Rxx under perpendicular magnetic 
fields, with the minimum of Rxx appearing when the magnetic flux in a 
moiré unit cell is a fraction of the flux quantum, BA = ϕ0/N (Extended 
Data Fig. 7b), where B is magnetic field, ϕ0 is the flux quantum and N 
is an integer. These features are used to calculate the twist angle with 
even better accuracy (±0.01°).

In Extended Data Fig. 9a, we observe negative resistivity in a part 
of the 2D gate scan. These anomalous signals can be attributed to 



non-transparent contacts in these gate regions. Comparing with 
the 2D map of the two-terminal resistance measured in this device 
(Extended Data Fig. 9b), we find that the gate regions where negative 
resistivity were observed in Extended Data Fig. 9a in general correspond 
to the gate regions where a large contact resistance is demonstrated 
by the two-terminal measurement. This strong correlation between 
the apparent ‘negative’ four-terminal resistivity and high contact  
resistance suggests that the negative four-terminal resistivity originates 
from inefficient contact equilibration in these gate regimes. Indeed, 
the contact transparency can be hindered by the unintended p–n junc-
tion formation near the metal contacts when the applied gate voltages 
conspire with the work function mismatch between graphene and 
metal to cause an accumulation of the opposite polarity of charges near 
the contact and in the channel. However, near the half-filled insulator 
region, where most of our research is focused, the two-terminal resist-
ance stays less than 10 kΩ, demonstrating excellent contact transpar-
ency. Thus, we conclude that the contact anomaly can be excluded as 
a possible cause of our experimental observation near the correlated 
insulator regime. We also notice that the correlated insulating state 
in the positive displacement field side (VTG < 0 and VBG > 0) shows a 
much weaker signature than the negative displacement field side. The 
absence of a clear signature of correlated insulator on the opposite 
side of the displacement field is also likely due to the inefficient con-
tact equilibration in these particular gate configurations, as shown in 
Extended Data Fig. 9b.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Theoretical band structure of TDBG. a, Calculated 
band structure of TDBG at zero displacement field and optimal displacement 
field D0 for the isolated flat band. b, Calculated parameter space for isolated 
conduction band (x axis is onsite potential difference U = Vt − Vb between the 
top and bottom graphene layer, y axis is twist angle). Colour represents the 
bandwidth of the first conduction band c1 (meV). In the coloured parameter 
space, c1 is isolated from the second conduction band and the first valence 
bands. The two dotted lines represent cuts at θ = 1.26 and θ = 1.33°. c, Resistivity 

as a function of filling fraction and displacement field in the θ = 1.33° sample.  
A cross-like feature of high resistivity is formed along two lines from  
(n, D) = (1, −0.2) to (1, 0.6) and (−1, 0.2) to (1, −0.6), passing through the half-filled 
insulating states. d, Density of states at the Fermi energy calculated by the 
continuum model. The single-particle insulators (n/ns = 0, ±1) in experiment 
match well with the gaps shown in the calculation and the van Hove singularity 
captures the cross-like pattern in experiment.



Extended Data Fig. 2 | Hall effect in a device with robust half-filled 
insulators. a, b, Longitudinal resistivity (a) and Hall resistance (b) of the 
θ = 1.41° device around half-filling at T = 1.5 K and under perpendicular magnetic 
field B⊥ = 1 T. Data are symmetrized between positive and negative fields to 
eliminate mixing. The halo structure is apparent around the half-filled insulator 
and a three-quarter-filled insulating state resides on the border of the halo.  

The Hall resistance changes sign across the half-filled insulator inside the halo.  
c, Illustration of electron orders for different regimes. The left half (right half) 
of the cartoon represents the band of spin down (up) electrons. For half-filling, 
only one species of spin is filled. Inside the halo, one spin species is populated 
more than the other. Outside the halo, both spins are equally populated.
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Extended Data Fig. 3 | Field-induced Chern insulator in the θ = 1.26° device. 
a, b, Longitudinal resistivity at B = 0 (a) and Hall resistance at B⊥ = 0.5 T (b) in the 
θ = 1.26° sample at T = 1.5 K. The Hall resistance here is symmetrized with both 
directions of the magnetic field. c, d, Fan diagram of longitudinal resistivity (c) 

and Hall resistance (d) at T = 1.5 K at a constant displacement field. The black 
line marks the expected position for ν = 4 Chern insulator state originating 
from half-filling. e, Longitudinal resistivity and Hall resistance along the black 
line shown in c and d.



Extended Data Fig. 4 | Critical behaviours in the θ = 1.26° device.  
a, Resistivity in 1.26° device plotted against filling factor and displacement 
field. b, Resistivity as a function of displacement field and temperature along 
the constant density line shown in a. c, Resistivity as a function of filling and 
temperature along the tilted line in a. The dome of the low resistance state can 
be seen next to the half-filled insulator. d, Resistivity on a log scale as a function 

of filling and perpendicular magnetic field. e, The power α in V ∝ Iα as a function 
of temperature from fitting the top left inset of Fig. 3c. α = 3 is defined as the 
BKT transition temperature. f, Differential resistance as a function of current 
and displacement field along the constant density line shown in a. g, I–V curves 
outside the halo.
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Extended Data Fig. 5 | Enhancement of the critical temperature under 
in-plane magnetic field. a, Resistivity as a function of in-plane magnetic field 
across the half-filled insulator and superconducting-like state in the 1.26° 
device. b, Resistivity as a function of temperature and in-plane magnetic field 
at optimal doping and displacement field. TBKT denotes the BKT temperature 
extracted from nonlinear IV measurements. T50% marks the temperature where 

resistance is half of the normal resistance. c, Line traces at different in-plane 
magnetic fields. d, Illustration of pairing in spin-polarized superconductor. 
The blue (red) surface represents the spin down (up) electron band. The two 
bands are filled differently due to the parent ferromagnetic metallic state.  
The hexagon represents the Brillouin zone of graphene lattice. Pairing thus 
happens between Fermi surfaces of the same spin and opposite valleys.



Extended Data Fig. 6 | Origin of a small residual resistivity at T ≪ Tc. R(T) curve measured in the superconducting regime of the 1.26° device in two measurement 
configurations. The voltage probes are kept the same between the two configurations while the source and the drain contacts are switched.
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Extended Data Fig. 7 | Landau fan diagram as a function of filling fraction 
and perpendicular magnetic field. a, The 1.33° device. The numbers next to 
the guiding lines indicate Landau-level filling factors. b, The 1.26° device. 

Horizontal lines highlight the Hofstadter’s butterfly features that occur when a 
simple fraction of the flux quantum ϕ0/N (N is an integer) penetrates through a 
moiré unit cell.



Extended Data Fig. 8 | Effective mass calculation for the 1.33° and 1.26° 
devices. a–c, Temperature-dependent SdH oscillations in the θ = 1.33° device 
at a few representative density points: n = −1.3 × 1012 cm−2 (a), 1.45 × 1012 cm−2 (b) 
and 2.65 × 1012 cm−2 (c). d, Extracted oscillation amplitudes as a function of T/B 

for the density configuration shown in a–c and corresponding fitting curves.  
e, Temperature-dependent SdH oscillations in the θ = 1.26° device at 
n = 0.61 × 1012 cm−2, which is above half-filling and inside the halo. f, Extracted 
oscillation amplitudes as a function of T/B in the θ = 1.26° device.
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Extended Data Fig. 9 | Device characterization. a, c–g, Device structure, 
optical image and four-terminal resistivity map of each device: 1.26° (a),  
1.32° (c), 1.41° (d), 1.48° (e), 1.53° (f) and 2.00° (g). For the 1.26° device, the 
active device is the four-terminal Van der Pauw sample. The structure of each 

device is depicted by the cross-section illustration on the left of the optical 
image. b, Two-terminal resistance measured in the 1.26° device in the same gate 
voltage range presented in a. Dashed square marks the active area studied.  
h, Structure and optical image of the 1.33° device.

Summary of all TDBG devices studied



Extended Data Table 1 | Summary of all TDBG devices studied

Minimum bandwidth w at the optimal displacement field obtained from continuum model 
calculation (experimentally estimated bandwidth is shown in the bracket), half-filled gap Δn /2s

 
and resistivity well below the critical transition inside the halo ρmin for devices with different 
twist angles. There is no sign of any correlated state in the 2.00° device (N.A.). Δn /2s

 shows a 
general trend of diminishing away from the optimal angle 1.41°, although the disorder might 
cause some device-to-device variation.
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