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Non-Abelian anyons are a type of quasiparticle with the potential to 
encode quantum information in topological qubits protected from 
decoherence1. Experimental systems that are predicted to harbour 
non-Abelian anyons include p-wave superfluids, superconducting 
systems with strong spin–orbit coupling, and paired states of 
interacting composite fermions that emerge at even denominators 
in the fractional quantum Hall (FQH) regime. Although even-
denominator FQH states have been observed in several two-
dimensional systems2–4, small energy gaps and limited tunability 
have stymied definitive experimental probes of their non-Abelian 
nature. Here we report the observation of robust even-denominator 
FQH phases at half-integer Landau-level filling in van der Waals 
heterostructures consisting of dual-gated, hexagonal-boron-nitride-
encapsulated bilayer graphene. The measured energy gap is three 
times larger than observed previously3,4. We compare these FQH 
phases with numerical and theoretical models while simultaneously 
controlling the carrier density, layer polarization and magnetic 
field, and find evidence for the paired Pfaffian phase5 that is 
predicted to host non-Abelian anyons. Electric-field-controlled 
level crossings between states with different Landau-level indices 
reveal a cascade of FQH phase transitions, including a continuous 
phase transition between the even-denominator FQH state and 
a compressible composite fermion liquid. Our results establish 
graphene as a pristine and tunable experimental platform for 
studying the interplay between topology and quantum criticality, 
and for detecting non-Abelian qubits.

At high magnetic fields, two-dimensional electrons form flat bands 
known as Landau levels. At finite charge density n, interactions drive 
the formation of ordered states that depend on the Landau-level filling 
(ν π= ℓ n2 B

2 , where = /ℓ ħ eB( )B  is the magnetic length, e is the 
elementary charge and ħ is the reduced Planck constant) and the spin 
and orbital structure of the Landau-level wavefunctions. Of particular 
interest is the fate of the half-filled Landau level, which can be under-
stood as a weakly interacting state of composite fermions6 that consist 
of one electron and two magnetic flux quanta. Having incorporated 
part of the external magnetic field B, the composite fermions experi-
ence an effective field Beff =​ B(1 −​ 2ν). At ν =​ 1/2, this field vanishes 
and the composite fermions form an emergent Fermi surface7 that 
manifests in both microwave and transport experiments8,9. As in a con-
ventional metal, the emergent Fermi surface can be unstable, depending 
on the strength and sign of the residual interactions between the com-
posite fermions. Most intriguingly, composite fermions have been 
predicted to form the quantum Hall analogue of a superconductor5,10, 
which, in a single-component system, naturally has p-wave pairing 
symmetry and supports non-Abelian, charge-e/4 quasiparticle excita-
tions in an incompressible liquid. Numerical studies find that in the 
lowest Landau level of a conventional, massive electron system, the 
composite-fermion interactions are sharp and the Fermi surface is 
stable, whereas in the first Landau level a node in the single-particle 

wavefunction leads to softer composite-fermion interactions that are 
conducive to pairing11. An incompressible quantized Hall state was 
indeed observed2 in the first Landau level of GaAs quantum wells, at 
filling ν =​ 5/2, although experiments have yet to reveal definitive  
evidence for non-Abelian statistics.

Bernal-stacked bilayer graphene (BLG) is emerging as a new 
platform for exploring the half-filled Landau level. Comprising two 
aligned graphene layers in direct contact, it has a rich phase diagram 
that depends on both the electron density n and the layer polarization 
density p. An FQH phase was observed3 at ν =​ −1/2 in BLG devices 
suspended in vacuum and gated from below. The interpretation of 
this state12 is complicated by the complex structure of the zero-energy 
Landau level (ZLL) of BLG, which consists of eight quasi-degenerate 
components comprising electron spin, a ‘valley’ index that is charac-
teristic of honeycomb systems, and an orbital degeneracy that is unique 
to BLG. The spin and valley combine to form an approximately SU(4) 
isospin, whereas no such symmetry relates the orbital levels, which 
are approximately equivalent to the lowest (N =​ 0) and first excited 
(N =​ 1) Landau levels of conventional, massive electrons. Although a 
non-Abelian paired state is expected theoretically when the fractional 
part of the filling lies in a single N =​ 1 orbital, this is difficult to verify 
experimentally in a singly gated sample. In devices in which the BLG 
is sandwiched between boron nitride, it can be gated from above and 
below, and the splitting between valley and orbital degrees of freedom 
can then be controlled using magnetic and electric fields13,14. A recent 
experiment15 exploited this control to map out the valley and orbital 
character of the ZLL, revealing that, throughout much of the accessible 
parameter space, the valence electrons are fully polarized in a single 
valley and orbital component. However, even-denominator states have 
not previously been reported in dual-gated devices.

Here we report magnetocapacitance measurements from a new 
generation of BLG devices, depicted schematically in Fig. 1a. Unlike 
previous dual-gated device architectures13–15, the gate electrodes on 
both sides of the BLG are made of few-layer graphite flakes, greatly 
reducing sample disorder (see Supplementary Fig. 11). The sum and 
difference of the two applied gate voltages, n0 and p0 (see Fig. 1), control 
the charge density n and layer polarization density p within the bilayer. 
Figure 1b shows the penetration field capacitance CP, which is closely 
related to the thermodynamic compressibility16, in a region of the  
n0–p0 plane that spans the ZLL, −4 <​ ν <​ 4. Incompressible FQH phases 
manifest as peaks in CP that are locked to the filling factor. We observe 
many new incompressible states at fractional ν and numerous p0-tuned 
phase transitions at which the state becomes compressible at fixed ν.

We group the observed FQH sequences into three categories on the 
basis of the pattern of incompressible phases, indicated by red, blue and 
green colouring in Fig. 1c. In the red regions, we observe sequences of 
FQH states at valence fillings of  ν ν ν≡ −   = / +� m m(2 1) . In contrast, 
in the blue regions, we observe robust FQH states only at ν= /� 1 3, 2/3 
and 1/2, with weaker states observed at ν= /� 7 13 and 3/5 (Fig. 1d, e). 
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The red and blue regions correspond to the experimentally15 deter-
mined orbital character (N =​ 0 or N =​ 1) of the valence electrons, which 
have different effective interactions. In red regions, a single N =​ 0 com-
ponent is fractionally filled and the effective interactions are sharp, 
stabilizing the odd-denominator sequence that is associated with integer 
quantum Hall states of two-flux composite fermions. We therefore 
ascribe the compressible state at ν= /� 1 2 to the composite Fermi liquid 
(CFL). In the blue regions, a single N =​ 1 component is fractionally filled 
and the effective interactions are softer. This suggests that the incom-
pressible state observed at ν= /� 1 2 is an FQH state constructed from 
paired composite fermions. Finally, in the green regions, p0 induces a 
level crossing between the eight near-degenerate components15, and 
there is a cascade of phase transitions between incompressible states 
with a structure that depends on the fractional filling.

We first discuss the even-denominator FQH states. In an incompressible  
FQH state, a finite energy is required to inject an electron or hole. This 
‘thermodynamic’ gap can be determined16 from CP , shown in Fig. 2a 
for different temperatures at B =​ 14 T. We measure this thermodynamic 
gap by integrating the inverse electronic compressibility ∂​μ/∂​n with 
respect to n (Fig. 2b), yielding a gap of 4 K at the base temperature of 
our dilution refrigerator (see Supplementary Information). Transport 
measurements from a second device show the expected quantized Hall 
plateau and concomitant longitudinal resistance minimum (Fig. 2c). 
Temperature-dependent transport exhibits a lower value of the activa-
tion gap of 1.8 ±​ 0.2 K at B =​ 14 T. This discrepancy is not surprising16. 
The thermodynamic gap measures the energy that is required to add an 
entire electron–hole pair, whereas thermally activated transport meas-
ures the energy cost of injecting a fractionally charged quasiparticle–
quasihole pair. For a half-filled FQH state, the quasiparticle charge is 
predicted to be e/4, in which case the measured activation gap should 
be roughly one-quarter of the thermodynamic gap16 at T =​ 0.

In a bilayer electron system it is natural to ask whether the incom-
pressible states observed at half-filling are single- or multi-component 
phases. Whereas the leading theoretical candidates for a single-
component even-denominator FQH phase—the paired Pfaffian5 and 
anti-Pfaffian17,18 states—are non-Abelian, in multi-component systems 
the Abelian ‘331’ phase is more likely19. Using the map of the valence 
polarization15 (aspects of which were repeated here at higher resolution; 
see Supplementary Information), we find that the gapped phase appears 
in regions where the fractional filling is polarized into a single N =​ 1 
component. The situation is thus roughly analogous to the ν =​ 5/2 state 
of GaAs (ref. 2), in which numerics have long predicted a paired phase. 
We note, however, that the measured activation gap is several times 
larger than the largest gaps measured in GaAs (558 mK; ref. 20), ZnO 
(90 mK; ref. 4) or suspended BLG (600 mK; ref. 3).

Despite the superficial similarity, the N =​ 1 orbital in BLG differs in 
two important ways from its counterpart in semiconductor quantum 
wells. First, the N =​ 1 Landau levels of BLG and GaAs are not strictly 
equivalent. In GaAs, the N =​ 1 Landau level consists purely of the 
conventional |​1〉​ orbital wavefunction. In contrast, in BLG, the N =​ 1 
Landau level includes a combination of both |​0〉​ and |​1〉​ wavefunctions 
localized on different sublattices of the unit cell (see Supplementary 
Information), with the relative weight of the |​0〉​ wavefunction growing 
with B. The effective interaction depends on the character of the wave-
function, so that B tunes the structure of electron–electron interactions 
continuously within an N =​ 1 level. At low B the wavefunctions are 
purely |​1〉​-like, with comparatively soft interactions, whereas at high B 
they are an equal admixture of |​0〉​ and |​1〉​ and interactions are conse-
quently sharper. Numerical studies predict that a non-Abelian paired 
phase at lower B should give way to a gapless CFL at sufficiently high 
magnetic fields12,21 (Fig. 2d). We indeed find that the ν= /� 1 2 gap 
changes non-monotonically with B (Fig. 2e), peaking around B =​ 27 T 

Figure 1 | Fractional quantum Hall (FQH) effect in an all van der Waals 
heterostructure. a, Device schematic. A BLG flake is successively 
encapsulated in hexagonal boron nitride (HBN) dielectric and graphite 
gate layers. Charge density n and layer polarization density p are controlled 
via voltages n0/c ≡​ (vt +​ vb) and p0/c ≡​ (vt −​ vb), where c is the average 
geometric capacitance of the two gates to the graphene, and vt and vb are 
the applied gate voltages. b, Penetration-field capacitance CP at B =​ 12 T 
from sample A. The plot spans the ZLL, showing incompressible quantum 
Hall states, manifesting as peaks in CP, at all integer filling factors ν as well 
as at several rational ν. c, Illustration of the orbital character of the 
observed FQH states. As valence electrons fill N =​ 0 orbitals (red),  
we observe odd-denominator fractions consistent with two-flux  

composite-fermion hierarchy states. When filling N =​ 1 orbitals (blue), 
only multiples of 1/3 appear consistently from this sequence, with the 
second most robust state occurring at half-filling. Near orbital and valley 
level crossings (green), a cascade of interlayer correlated states is 
observed19. d, Detail of an N =​ 1 Landau level from a second device 
(sample B), measured at B =​ 14 T and base temperature. Incompressibility 
peaks are evident at ν= /� 3 5 and 7/13, but not 2/5 or 6/13, showing the 
development of particle–hole asymmetry. e, FQH sequences in valence 
N =​ 0 and N =​ 1 regions as a function of ν ν ν≡ −  �  for 1 <​ ν <​ 2 (blue) and 
2 <​ ν <​ 3 (red), measured at p0/c =​ −​2.0 V and p0/c =​ −​2.7 V, respectively, 
in sample A. The N =​ 0 levels are compressible at half-filling, whereas the 
N =​ 1 levels show incompressibility peaks.
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and then decaying up to the limit of our experiment at B =​ 35 T. Over 
a similar range, we simultaneously observe the emergence of a conven-
tional odd-denominator FQH series typical of the lowest Landau level, 
providing further evidence that the effective N =​ 1 interactions sharpen 
with magnetic field (see Supplementary Information and 
Supplementary Fig. 16). The decrease in the ν= /� 1 2 gap despite an 
increase in the Coulomb scale ∝E BC  supports the scenario of a 
paired-to-CFL transition22 at higher magnetic fields.

Second, particle–hole symmetry breaking differs in BLG as 
compared with GaAs. Within a single Landau level, the Pfaffian and 
anti-Pfaffian states, which can be understood as different pairing 
channels, are degenerate owing to a particle–hole symmetry (effected 
by ν ν↔ −� �1 ). Including scattering between Landau levels breaks this 
symmetry and determines the ground state. Although the subject of 
longstanding debate, recently demonstrated numerical agreement 
between exact diagonalization and density matrix renormalization 
group (DMRG) methods suggests that the ν =​ 5/2 state of GaAs is in 
the anti-Pfaffian phase23–25. However, Landau-level scattering is 
markedly different in BLG: scattering between the ZLL and the |​N|​ ≥​ 2 
levels breaks particle–hole symmetry only weakly, whereas scattering 
within the ZLL breaks it strongly as a result of the small splitting 
between N =​ 0 and N =​ 1 levels (Δ10 ≈​ 0.1EC; see Supplementary 
Information). In our experiment, particle–hole symmetry breaking 
manifests in the fractions observed in the N =​ 1 Landau level. We find 
incompressible states at ν= /� 7 13 and 3/5 (Fig. 1d), the particle–hole 
conjugates of what is observed in GaAs, in which unconventional states 
were observed20 at 6/13 and 2/5. To address these differences, we 
perform comprehensive DMRG calculations that account for the 
B-dependent mixed orbital character and screening from filled |​N|​ ≥​ 2 
Landau levels, while non-perturbatively accounting for scattering 
between the N =​ 0 and N =​ 1 orbitals of the ZLL (Fig. 2; see 

Supplementary Information for computational details). We find that, 
in contrast to GaAs (refs 23–25), the Pfaffian phase is strongly preferred 
over the anti-Pfaffian phase over the experimentally explored range of 
p0 and B. In agreement with this finding, we observe a strong incom-
pressible phase at 7/13 (as well as a weaker feature at 8/17), the pre-
dicted filling of the first ‘daughter’ state of the Pfaffian phase26. In 
contrast, the anti-Pfaffian daughter states are expected at 6/13 and 9/17, 
at which no incompressible states are observed.

Our results suggest that encapsulated BLG has certain advantages 
over GaAs as a platform for interferometric detection of non-Abelian 
quasiparticles11. First, the large energy gap and small correlation length 
relative to GaAs may reduce bulk–edge coupling that is detrimental to 
interferometric probes27, while exponentially suppressing the density 
of thermally activated quasiparticles. Second, hexagonal boron nitride 
gate dielectrics can be made almost arbitrarily thin, enabling edges 
and quantum point contacts to be engineered using sharp electrostatic 
potentials. Recent experiments have demonstrated long coherence 
lengths in the quantum Hall regime along such gate-defined edges28. 
Finally, the putative Pfaffian state at ν =​ −​1/2 in BLG would have fewer 
edge modes than the anti-Pfaffian state at ν =​ 5/2 in GaAs, making 
the former a preferable candidate for interferometry. Even without 
phase-coherent transport measurements, the thermodynamic meas-
urements presented here, carried to lower temperatures, can be used 
to probe topological ground-state degeneracy29, which could provide 
clear evidence for non-Abelian statistics in the near future.

In addition to control over the total charge density n and the effective 
interactions, the dual-gated architecture allows us to tune level crossings 
between the eight components of the ZLL. Within the ZLL, the two 
valleys are supported on opposite layers, so the electric field (p0) acts 
like a ‘valley Zeeman’ field and the layer polarization density (p) can 
be used to infer valley polarization. A schematic of the single-particle 

Figure 2 | The ν= /� 1 2 state. a, Penetration-field capacitance CP (top 
curves) and dissipation (bottom curves) near ν =​ 3/2 at B =​ 14 T (sample A). 
The labels denote the probe temperature in millikelvin. b, Density 
dependence of the chemical potential ∫µ∆ ≈ / / /e k C c n c( ) ( )d( )B P 0 , 
obtained by integrating the curves in a. Δ​μ1/2 is defined as the difference 
between the maximum and minimum Δ​μ proximal to ν =​ 3/2. c, Hall 
(black; Rxy) and longitudinal (red; Rxx) resistance measured in sample C. 
Magenta lines denote Rxy = 2/3. Inset, Arrhenius plot of Rxx ≈​ e−Δ/(2T) at 
ν =​ 3/2, from which we obtain Δ =​ 1.8 ±​ 0.2 K at B =​ 14 T. Error bars in the 
gap measurement arise primarily from ambiguity in choosing the 
thermally activated region. d, DMRG calculation of the correlation length 

ξ at ν= /� 1 2 in the N =​ 1 level as a function of the energy splitting Δ10 
between the N =​ 0 and N =​ 1 orbitals, in units of Coulomb energy EC, and 
the magnetic field B (see Supplementary Information). In the lower right 
corner, the system transitions from the incompressible Pfaffian phase to 
the compressible CFL phase. The red line denotes an estimate15 of the 
trajectory within the B–Δ10 plane corresponding to the data shown in e.  
e, The thermodynamic gap Δ​μ1/2 at different B in sample A (left) and 
sample C (right). Data in the right panel are scaled to the Δ​μ1/2 gap at 
B =​ 14 T (see Supplementary Information). For energy gaps of other  
FQH states, see Supplementary Fig. 17 and Supplementary Tables 1 and 2.
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energies near p0 ≈​ 0 is shown in Fig. 3a, b. Four single-particle levels 
are involved in the crossing, which we label by their orbital (N =​ 0, 
N =​ 1) and valley (ξ =​ ±​) indices (we suppress the spin here, because 
tilt B-field measurements show that the spin polarization is unchanged 
across the transition). Because the two valleys are distinguished by 
their crystal momentum, the tunnelling between them vanishes in the 
absence of short-range disorder and the crossing between the levels is 
unavoided, as supported by the sharp transition at ν =​ −​3 and p0 ≈​ 0 
(Fig. 3c). Hence, unlike the dependence on B, the p0 dependence across 
the transition is not equivalent to continuously tuning the interaction 
potential. When charge is separately conserved in each valley, the valley 
polarization cannot change continuously without closing the neutral 
gap: just as the charge gap vanishes in a compressible system, the  
neutral gap vanishes in a polarizable system. During such depolariza-
tion, the charge gap may or may not close.

Figure 3c shows CP near p0 =​ 0. For the best-developed odd-
denominator ν= / +� m m(2 1) states when −​4 <​ ν <​ −​3, |​m|​ +​ 1 distinct 
high-CP incompressible regions are visible, separated by |​m|​ low-CP 
transitions. Referring to Fig. 3a, the crossing is predicted to transfer 
valence filling m/(2m +​ 1) between N =​ 0 orbitals in opposite valleys. 
The m compressibility spikes presumably occur when filling 1/(2m +​ 1) 
is transferred between valleys. This is expected from composite 
Fermion theory, which predicts two-component correlated states6,19 at 
fillings of (ν+, ν−) =​ (m+, m−)/[2(m+ +​ m−) +​ 1] (the ‘±​’ subscripts 
indicate the valley ξ =​ ±​), separated by phase transitions at which the 
gap closes. For instance, the state at ν =​ −​4 +​ 2/3 and p0 =​ 0 corre-
sponds to m± =​ −​1 and we ascribe it to a previously unobserved valley 
SU(2) singlet. For −​3 <​ ν <​ −​2, states at filling ν =​ −​4 +​ (3m +​ 1)/
(2m +​ 1) exhibit 3m +​ 1 transitions. Four levels are involved in these 
transitions. At high p0, one N =​ 0 level is completely filled and the 

fractional filling resides in the N =​ 1 level of the same valley. As p0 is 
decreased, occupation is transferred according to the levels shown in 
Fig. 3b, consistent with the observed strengths of the gapped  
phases, the CP peaks of which are strongest when only N =​ 0 orbitals 
are involved.

For odd-denominator states, the high compressibility that is observed 
when the system changes polarization indicates that the gap for charged 
excitations also closes. This is not always the case at ν= /� 1 2, at which 
the charge gap in the single-component N =​ 1 regimes at large and 
small p0 fades gradually into the level crossing. We can quantify this 
transition by measuring the layer polarization directly (see 
Supplementary Information). Figure 3e shows the layer polarizability 
∂​p/∂​p0 over a similar region of four-level crossings. In contrast to the 
odd-denominator fractions, for which the spikes in polarizability are 
concentrated on the spikes in compressibility, near ν= /� 1 2 there is a 
region of p0 where the polarization changes only gradually while the 
charge gap remains finite. Figure 3f shows the measured charge gap 
alongside the integrated change in layer polarization across the level 
crossing. The charge gap persists from valley valence fillings of 
(ν+, ν−) =​ (1.5, 0) to (1.33, 0.17).

The coexistence of polarizability and incompressibility has intriguing 
implications. In the clean limit, in which charge is conserved sepa-
rately in each valley (a limit supported by the sharp transition at 
ν =​ −​3 and p0 ≈​ 0), finite polarizability requires a vanishing neutral 
gap, implying the existence of a new phase: a gapless fractionalized 
insulator. Microscopically, because the layers are atomically close, the 
finite polarization presumably arises from a finite density of inter-valley 
(equivalently, inter-layer) excitons, and the finite polarizability implies 
that these neutral excitons are gapless. This behaviour is reminiscent of 
quantum Hall bilayers at ν =​ 1, for which a charge gap also coexists with 

Figure 3 | Interlayer correlated FQH states. a, b, Single-particle energy 
level (εNξ) crossing and level-filling diagram as a function of p0, for  
ν =​ −​10/3 =​ −​4 +​ 2/3 (a) and ν =​ −​7/3 =​ −​4 +​ 5/3 (b). Occupation of the 
levels in increments of ν =​ 1/3 is represented by schematically showing 
each Landau level (indicated by colour) as being divided into three 
branches. Three distinct phases are expected by filling the two lowest-lying 
‘branches’ (solid lines) in a. In b, crossings now involve N =​ 0 and  
N =​ 1 levels, and six distinct phases are expected. c, Measured CP for  
−​4 <​ ν <​ −​2 near p0/c =​ 0 at B =​ 12 T in sample A. d, Annotated phase 
diagram for the range depicted in c. Occupations of the four relevant 
orbitals (ν0+, ν1+; ν0−, ν1−) are indicated for each fractional multiple of 
1/3. Shaded areas correspond to regions where the fractional filling lies 
entirely within one orbital. Colouring follows the schemes in a and b.  

e, Layer polarizability dp/dp0, measured over an analogous quadruple level 
crossing at high negative p0 for −​1 <​ ν <​ 0 in sample A. f, The black curve 
shows the integrated change in polarization ∫π ∆ = π ∂ /∂ℓ p ℓ p p p2 2 dB B

2 2
0 0, 

measured in the regions immediately adjacent to ν= /� 1 2, with shading 
indicating 1σ confidence interval (see Supplementary Information).  
The red curve shows the ν= /� 1 2 charge gap Δ​μ1/2/Δ​μmax. Vertical lines 
demarcate distinct regimes distinguished by their compressibility and 
polarizability: the incompressible and unpolarizable regions are the 
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a vanishing neutral gap. The transition is thus distinct in microscopic 
character from the Pfaffian-to-CFL transition that is predicted at high 
B in a single-component level (Fig. 2e), during which the charge and 
neutral gap would vanish in tandem.

Theoretically, the accompanying fractionalization at ν= /� 1 2 leaves 
several possibilities for the ultimate collective ground state—and indeed 
even the quantum statistics—of inter-valley excitons30. Most simply, 
the incompressible exciton phase could be disorder-dominated: as 
charge is transferred between valleys, the resulting density of excitons 
is trapped by local potential variations in a mechanism similar to that 
which stabilizes FQH plateaus over a finite range of ν. However, as is 
evident in Fig. 2b, c, the even-denominator state is stable to pure charge 
doping up to only Δ​ν ≈​ 0.005, more than an order of magnitude less 
than the change in occupation (Δ​ν+ ≈​ 0.17) of the N =​ 1 orbital that is 
implied by the depolarization measurement. Without this mechanism, 
the incompressible exciton phase may host phenomena such as inter-
layer phase coherence or an emergent Fermi surface, which can be 
distinguished experimentally by probing thermal transport or inter-
layer Coulomb drag.

Data Availability The data that support the findings of this study are available 
from the corresponding author on reasonable request.
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