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The kagome lattice is a two-dimensional network of corner-sharing 
triangles1 that is known to host exotic quantum magnetic states2–4. 
Theoretical work has predicted that kagome lattices may also host 
Dirac electronic states5 that could lead to topological6 and Chern7 
insulating phases, but these states have so far not been detected in 
experiments. Here we study the d-electron kagome metal Fe3Sn2, 
which is designed to support bulk massive Dirac fermions in 
the presence of ferromagnetic order. We observe a temperature-
independent intrinsic anomalous Hall conductivity that persists 
above room temperature, which is suggestive of prominent Berry 
curvature from the time-reversal-symmetry-breaking electronic 
bands of the kagome plane. Using angle-resolved photoemission 
spectroscopy, we observe a pair of quasi-two-dimensional Dirac 
cones near the Fermi level with a mass gap of 30 millielectronvolts, 
which correspond to massive Dirac fermions that generate Berry-
curvature-induced Hall conductivity. We show that this behaviour is 
a consequence of the underlying symmetry properties of the bilayer 
kagome lattice in the ferromagnetic state and the atomic spin–orbit 
coupling. This work provides evidence for a ferromagnetic kagome 
metal and an example of emergent topological electronic properties 
in a correlated electron system. Our results provide insight into the 
recent discoveries of exotic electronic behaviour in kagome-lattice 
antiferromagnets8–10 and may enable lattice-model realizations of 
fractional topological quantum states11,12.

The kagome lattice (Fig. 1a) is a network with trihexagonal (3.6)2 
Archimedes tiling that has been studied extensively in the context of 
frustration-induced quantum-spin-liquid phases2–4. In terms of elec-
tronic structure, simple tight-binding models on kagome lattices have 
long been known to yield unusual features, including dispersionless 
bands and Dirac points (Fig. 1b); the Dirac points appear in a man-
ner similar to those in hexagonal graphene lattices13. Although such 
features have not previously been observed in experiments, theo-
retical interest has persisted and lead to several further predictions. 
Of particular interest are kagome networks in which time reversal 
symmetry is broken via ferromagnetism (Fig. 1c)5,7,11, which has the 
effect of splitting the spin-degenerate Dirac bands (Fig. 1d). Further 
inclusion of spin–orbit coupling (Fig. 1e) yields various gapped phases 
(Fig. 1f) with integer7 or fractional11,12 topological invariants (Chern 
numbers). When the chemical potential is within the Dirac gap, the 
intrinsic anomalous Hall effect, which results from the integration of 
Berry curvature over the Brillouin zone, is quantized and in principle 
affords detection of the Chern number of the wavefunction of the sys-
tem14,15. More generally, with multiple bands and arbitrary positions 
of the chemical potential, such measurements can detect the Berry 
curvature that is concentrated by massive Dirac bands16.

Despite a broad theoretical understanding of electronic Berry-
phase effects in ferromagnetic kagome models and extensive studies 

of kagome insulators4, experimental realization of the former has been 
challenging, in part owing to the relative rarity of kagome materials. 
An approach to realizing metallic kagome networks in the hexagonal 
transition-metal stannides AxSny (A = Mn, Fe or Co; x:y = 3:1, 3:2 or 
1:1) has been reported17. As shown in Fig. 1g for A = Fe (studied here), 
starting from a single layer of a hexagonal close-packed structure of 
iron atoms, a kagome net emerges naturally by replacing a 2 × 2 sub-
lattice (dashed cell) with tin atoms, resulting in an Fe3Sn plane with an 
underlying iron kagome lattice.

Here we study the bilayer kagome compound Fe3Sn2 (space group 
R m3 ; hexagonal lattice constants a = 5.338 Å and c = 19.789 Å)—a 
structural variation of FexSny that includes a stanene layer sandwiched 
between Fe3Sn bilayers (Fig. 1h). In Fig. 1h we also show a correspond-
ing transmission electron microscopy image of a (1010) cross-section 
of a single crystal of Fe3Sn2, which reveals the Fe3Sn and stanene layers. 
Previous studies17 have identified Fe3Sn2 as an unusual magnetic con-
ductor with a high Curie temperature of TC = 670 K. Although attention 
was originally focused on the zero-field spin structure18, recent studies 
have focused on the formation of skyrmion bubbles19 and a substantial 
anomalous Hall effect20,21 at finite field. The latter is particularly inter-
esting in comparison with the structurally related antiferromagnets 
Mn3Sn and Mn3Ge, which were recently reported to have a large 
room-temperature anomalous Hall response8,9 and possible Weyl  
fermion states10.

Measurements of magnetization M as a function of magnetic induc-
tion B along the c axis (Fig. 2a) demonstrate that the system is a soft 
ferromagnet, with the saturation field and saturation magnetization Ms 
depending mildly on temperature T. The saturation magnetization Ms 
reaches approximately 1.9μB per iron atom at low temperature T (where 
μB is the Bohr magneton; Fig. 2a, inset). The crystals exhibit high 
metallicity, with the residual resistivity ratio of ρ(300 K)/ρ(2 K) ≈ 25 
(Extended Data Fig. 1) allowing characterization by electrical transport. 
The transverse resistivity in the kagome plane ρyx(B) (Fig. 2b) strongly 
reflects M(B)—a characteristic of the anomalous Hall effect20,21. In fer-
romagnetic conductors it is conventional16 to express ρyx(B) in terms 
of contributions from the ordinary (Lorentz-force) Hall coefficient R0 
and the anomalous Hall coefficient Rs: ρyx = R0B + RsM; as shown in 
the inset of Fig. 2b, R0 depends mildly on T (corresponding to 6 × 1021 
electrons per cm3 at low T), whereas Rs is much larger but decreases 
with decreasing T.

To elucidate the role of the bilayer kagome lattice further, we examine 
the associated Hall conductivities in the kagome plane. The contribu-
tions to the total Hall conductivity σ σ σ= +xy xy xy

N A , where the super-
script ‘N’ (‘A’) denotes the normal (anomalous) component, can be 
separated by using the field linearity of σxy

N  in the low-Hall-angle limit 
(Methods). Although σxy

A  is known to have contributions of both intrin-
sic (Berry curvature) and extrinsic (scattering) origin16, it has recently 
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been demonstrated that the insensitivity of the latter to thermal excita-
tions allows the parameterization σ σ σ σ= +f ( )xy xx xx xy

A
,0

2 int , where f(σxx,0) 
is a function of the residual conductivity σxx,0, σxx is the conductivity 
and σxy

int is the intrinsic anomalous Hall conductivity22. Because σxy
int 

does not depend on the scattering rate, in a system with substantial 
Berry curvature, σxy

int is then the remnant σxy
A  that is observed as σ → 0xx

2  
(Fig. 2c, top inset). Figure 2c demonstrates that σ T( )xy

A  remains rela-
tively unchanged from this remnant value at high temperature, until 
T ≈ 100 K at which an upturn concomitant with increasing σxx(T) is 
observed. This upturn is indicative of the onset of an extrinsic response, 
which is expected16 with the longer relaxation time in this range of σxx; 
the subsequent σxx

2  scaling of the additional σxy
A  (Fig. 2c, top inset) is 

also consistent with an extrinsic origin22,23. The scattering-rate- 
independent value of σxy

A  at high T persists, varying by about 10% down 
to T = 2 K (158 ± 16 Ω−1 cm−1), which corresponds to approximately 
0.27e2/h per kagome bilayer, where e is the electronic charge and h is 
the Planck constant. We identify this contribution as σxy

int (Fig. 2c), with 
behaviour akin to that expected from a massive Dirac band23.

These observations point to a substantial Berry-curvature contri-
bution to the transport response in Fe3Sn2 in a geometry that samples 
the kagome planes (Fig. 2c, middle inset). We also measured the  
Hall response perpendicular to the kagome plane σzx (Fig. 2c, lower 
inset). This out-of-plane signal is much smaller (Fig. 2c), with  
the ratio σ σ/zx xy

A A  being less than 10% at the highest T, indicating a 
large relative enhancement of the Berry curvature in the kagome 
plane.

To examine the origin of this Hall response further, we measured 
the electronic structure of Fe3Sn2 by using angle-resolved photoemis-
sion spectroscopy (ARPES). In Fig. 3a, b we show the experimen-
tal Fermi surface and energy–momentum dispersion, respectively, 
of the electronic bands along high-symmetry directions parallel to 
the kagome planes, measured at T = 20 K (see also Extended Data  
Fig. 2). A rich spectrum of electronic excitations with hexagonal 
symmetry is observed, consistent with the metallicity and crystal-
lographic structure described above. More notably, linearly dispers-
ing Dirac cones are observed at the corner points K and K′ of the 
Brillouin zone. This spectrum, which is reminiscent of the electronic 
structure of graphene24, is the long-sought realization of kagome- 
derived Dirac fermions5. These Dirac-like bands are shown in detail 
in the high-resolution energy–momentum section of the ARPES data 
across the K point in Fig. 3c (data are collected along the blue dashed 
line in Fig. 3a and then symmetrized in momentum about K); two Dirac 
cones, separated in energy but centred at K, are resolved. Hereafter, we 
focus on these bands and their role in generating Berry curvature.

The two-fold Dirac cones can also be identified in constant-energy 
contours (Fig. 3d). At the Fermi energy EF (Fig. 3d, top layer), a pair of 
Dirac cones forms two electron pockets centred at K: a circular inner 
pocket and a trigonally warped outer pocket. Moving down from EF 
each pocket shrinks, forming apparent Dirac points at binding energies 
of 70 meV (Fig. 3d, second layer) and 180 meV (Fig. 3d, bottom layer). 
At the midpoint energy (125 meV), the two Dirac cones cross and, 
within our experimental resolution, form a ring of Dirac points in the 
x–y momentum plane. The experimental electronic structure near the 
K point is therefore characterized by two energy-split (ΔE = 110 meV) 
interpenetrating Dirac cones. This splitting is a natural consequence 
of the bilayer kagome structure, similarly to the case of multilayer 
graphene24, whereas the exchange splitting due to magnetic order 
is expected25 to be much larger (in excess of 2 eV). Photon-energy-
dependent ARPES (Extended Data Fig. 4) reveals negligible variation 
in the Dirac bands as a function of out-of-plane momentum kz, indi-
cating quasi-two-dimensional (quasi-2D) bands confined to the iron 
kagome bilayer.

Having established the Dirac fermiology of Fe3Sn2, we focus on 
the role of spin–orbit coupling and the possible mass acquisition 
of the Dirac bands. Inspection of the raw ARPES data reveals that 
the spectral intensity at the Dirac point is suppressed substantially 
(Extended Data Fig. 3d), which is more clearly visualized in the second  
derivative of the ARPES map (Fig. 3e). Analysis of the energy distri-
bution curves displayed in Fig. 3f reveals a break between the upper 
and lower branches of the Dirac cone, which signals the opening of an 
energy gap Δ. A quantitative analysis performed by fitting the energy 
distribution curves with Gaussian peaks returns Δ = 30 ± 5 meV 
(Methods). This value is similar to that predicted previously for spin–
orbit-coupled 3d transition metals in kagome lattices7, but smaller 
than that observed in magnetically doped topological insulators (about 
50 meV)26,27 and in hydrogen-decorated graphene (at least 0.5 eV)28.

The emergence of massive Dirac fermions in Fe3Sn2 can be under-
stood as a combination of ferromagnetic splitting and spin–orbit cou-
pling in the underlying kagome geometry. Motivated by the weak kz 
dispersion observed in ARPES, we consider a stacked system of kagome 
layers. In Fig. 4a we show a perfect Fe3Sn kagome layer and the corre-
sponding Brillouin zone. The kagome layer has two-fold and three-fold 
rotational symmetries (C2x and C3z, respectively) that leave the K and 
K′ points invariant and thus form point group D3. In the absence of 
spin–orbit coupling, the two-fold-degenerate crossing (Dirac) points 
at K and K′ belong to a two-fold irreducible representation (E) and 
are therefore protected. As illustrated in Fig. 4b, a Dirac crossing can 
be observed at K in a tight-binding model HK for nearest-neighbour 
hopping on the kagome sites:

∑=
〈 〉
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Figure 1 | The kagome structure and Fe3Sn2. a, b, Structure of the 
kagome lattice (a) and the associated Dirac point in the nearest-neighbour 
tight-binding model (b), with the Brillouin zone shown in the inset. The 
band is degenerate, as denoted with red and blue spins. c, d, Ferromagnetic 
kagome lattice with broken time-reversal symmetry (moments in blue) (c) 
and the associated spin-polarized Dirac band with coupling between the 
magnetization and spin (d). e, f, Spin–orbit-coupled ferromagnetic 
kagome lattice with Berry phase φ accrued via hopping (e) and the 
corresponding gapped Dirac spectrum (f). g, The Fe3Sn kagome plane in 
Fe3Sn2, with the kagome network shown in red. h, Transmission electron 
microscopy cross-section of Fe3Sn2 and the corresponding Fe3Sn and 
stanene layers viewed from the [1010] direction.
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where 〈ij〉 indexes nearest-neighbour pairs, t is the hopping integral 
and cj (ci

†) is the fermion annihilation (creation) operator, which is 
taken to be spin-polarized owing to exchange. The kagome bilayers in 
Fe3Sn2 (Fig. 4c) are tiled by triangles of two different bond lengths, 
2.59 Å and 2.75 Å, as indicated by the red and blue shading. However, 
the combined unit of these kagome layers and the intervening stanene 
layer preserves the {C2x, C3z} symmetry of the perfect kagome lattice 
and the Dirac points are thus protected by crystal symmetry in the 
absence of spin–orbit coupling. The additional layer degree of freedom 
further enriches the electronic structure. In particular, the ABA layer 
stacking of the structure in Fig. 4c gives rise to bonding–antibonding 
splitting29, as seen in a simple tight-binding model with this additional 
hopping (Fig. 4d).

We next introduce Kane–Mele-type spin–orbit coupling HSOI to the 
tight-binding model HK, with

∑ λ= −
〈 〉

↑ ↑ ↓ ↓H i c c c c( ) (2)
ij

ij i j i jSOI
† †

where λij represents the effect of spin–orbit coupling and ↑ and  
↓ denote the spin quantum number30. Writing λij = λ(Eij × Rij) · s, 
where λ is the spin–orbit coupling constant, E is the electric field  
on the hopping path, R is the hopping vector and s represents the 
electron spin, for spin-polarized bands near K and K′ with non-zero 
z polarization sz, HSOI effectively reduces to the Haldane term31. 
Accordingly, for the single-layer case (Fig. 4b), when EF is positioned 
in the Dirac gap, the system enters a Chern insulating phase with 
quantized anomalous Hall conductance7,31.

To connect with the Hall response, we construct a k · p Hamiltonian 
near K and K′ for the dual Dirac fermions and fit to the ARPES data 
(Fig. 4e, inset; Methods). We then calculate the contribution of the 
massive Dirac bands to the Hall response by integrating the Berry 
curvature of the filled states, which yields σ = . ± . /e h(0 31 0 05)xy

calc 2  at 
EF for a kagome bilayer (Fig. 4e), comparable to the observed value 
of σ = . ± . /e h(0 27 0 03)xy

int 2  per bilayer. Remarkably, despite the  
simplicity of our model, the action of the quasi-2D massive Dirac 
fermions at K and K′ largely accounts for the observed Hall response 
with the crystal viewed as a parallel network of bilayer kagome planes. 
However, there are limitations; for example, for a 2D model there is 
no contribution to the out-of-plane Hall response. We suggest instead 
that this out-of-plane response originates from the three-dimensional 
(3D) network of tin atoms and the associated kz-dispersive bands  
near Γ (Methods). The relative smallness of σzx

A  is then consistent  
with a minor contribution of tin-atom-derived bands to the overall 
Berry curvature. More generally, the model evidences the role of the 
concentration of Berry curvature in the quasi-2D massive Dirac 
bands, which have small EF comparable to the spin–orbit coupling 
strength16. The robustness of the Hall response observed here is  
comparable to that of the Hall response that is driven by chiral  
antiferromagnetic order in Mn3Sn (ref. 8) and Mn3Ge (ref. 9); 
however, instead of originating from 3D Weyl nodes10, the Hall 
response observed here is driven by quasi-2D Dirac fermions in a 
ferromagnetic kagome network interleaved with stanene layers.

By combining electrical transport measurements, ARPES and 
theoretical analysis, this study provides a comprehensive proof of 
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Figure 2 | Anomalous Hall response of Fe3Sn2. a, Magnetization M of 
Fe3Sn2 along the c axis as a function of magnetic induction B at room 
temperature (T = 300 K; orange) and low temperature (T = 2 K; black). The 
inset shows the saturation magnetization Ms (measured at 2 T) as a 
function of temperature T. b, Hall resistivity ρyx as a function of B. The 
inset shows the ordinary and anomalous Hall coefficients R0 (black) and Rs 
(purple), respectively, as a function of T. c, Anomalous Hall conductivities 

σxy
A  (red, left axis) and σzx

A  (black, left axis) in the x–y and z–x planes, 
respectively, along with the longitudinal conductivity σxx (blue, right axis) 
and estimated intrinsic Hall conductivity σxy

int (orange, left axis). The 
measurement configurations for σxy (top) and σzx (bottom) are shown in 
the lower inset; I represents the charge current. The upper inset shows σxy

A  
plotted against σxx

2 ; the solid and dashed lines are the scaling curves  
(see text).
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principle for engineering band-structure singularities and topolog-
ical phenomena in correlated systems. In particular, we realize lat-
tice-driven6,7,30,31 topological 3d electronic bands, which we suggest 
exhibit the defining properties of a ferromagnetic kagome metal. 
Viewed in isolation, the bands near K can be considered to exhibit 

a 2D ‘Chern gap’—a time-reversal-symmetry-broken topologically 
non-trivial phase that is intrinsic to stoichiometric materials and has 
a dominant contribution to the electrical response at temperatures of 
up to 300 K and above. To isolate these bands, as a step towards reali
zing high-temperature dissipationless modes15, we propose finding  
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simplified structures with a single kagome layer per unit cell or pur-
suing 2D morphologies via thin films or exfoliation of related materi-
als with van der Waals bonding. Furthermore, the frustrated hopping 
network of kagome lattices is predicted to support electronic bands 
(as in Fig. 4d) with non-zero Chern number and enhanced electronic 
correlation5. Searching for these bands by chemically doping Fe3Sn2, 
by using alternative structures and stoichiometries in AxSny or by using 
other spin–orbit-coupled 4d and 5d kagome metals are key to realizing 
new, magnetically driven fractionalized phases of matter11,12.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.

received 26 September 2017; accepted 19 January 2018. 

Published online 19 March 2018.

1.	 O’Keeffe, M. & Hyde, B. G. Crystal Structures. I. Patterns and Symmetry Ch. 5 
(Mineralogical Society of America, 1996).

2.	 Sachdev, S. Kagome- and triangular-lattice Heisenberg antiferromagnets: 
ordering from quantum fluctuations and quantum-disordered ground states 
with unconfined bosonic spinons. Phys. Rev. B 45, 12377–12396 (1992).

3.	 Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a 
kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

4.	 Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 
025003 (2017).

5.	 Mazin, I. I. et al. Theoretical prediction of a strongly correlated Dirac metal.  
Nat. Commun. 5, 4261 (2014).

6.	 Guo, H.-M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 
80, 113102 (2009).

7.	 Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the 
kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

8.	 Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-
collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

9.	 Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry 
curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

10.	 Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. 
Nat. Mater. 16, 1090–1095 (2017).

11.	 Tang, E. & Wen, X.-G. High-temperature fractional quantum Hall states.  
Phys. Rev. Lett. 106, 236802 (2011).

12.	 Bergholtz, E. J., Liu, Z., Trescher, M., Moessner, R. & Udagawa, M. Topology and 
interactions in a frustrated slab: tuning from Weyl semimetals to C > 1 
fractional Chern insulators. Phys. Rev. Lett. 114, 016806 (2015).

13.	 Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).
14.	 Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall 

conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 
405–408 (1982).

15.	 Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall 
effect in a magnetic topological insulator. Science 340, 167–170 (2013).

16.	 Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous 
Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

17.	 Giefers, H. & Nicol, M. High pressure X-ray diffraction study of all FeSn 
intermetallic compounds and one FeSn solid solution. J. Alloys Compd. 422, 
132–144 (2006).

18.	 Le Caër, G., Malaman, B. & Roques, B. Mössbauer effect study of Fe3Sn2.  
J. Phys. F 8, 323–336 (1978).

19.	 Hou, Z. et al. Observation of various and spontaneous magnetic Skyrmionic 
bubbles at room temperature in a frustrated kagome magnet with uniaxial 
magnetic anisotropy. Adv. Mater. 29, 1701144 (2017).

20.	 Kida, T. et al. The giant anomalous Hall effect in the ferromagnet  
Fe3Sn2—a frustrated kagome metal. J. Phys. Condens. Matter 23, 112205 
(2011).

21.	 Wang, Q., Sun, S., Zhang, X., Pang, F. & Lei, H. Anomalous Hall effect in a 
ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer 
kagome lattice. Phys. Rev. B 94, 075135 (2016).

22.	 Tian, Y., Ye, L. & Jin, X. Proper scaling of the anomalous Hall effect. Phys. Rev. 
Lett. 103, 087206 (2009).

23.	 Shitade, A. & Nagaosa, N. Anomalous Hall effect in ferromagnetic  
metals: role of phonons at finite temperature. J. Phys. Soc. Jpn 81, 083704 
(2012).

24.	 Kim, K. S. et al. Coexisting massive and massless Dirac fermions in symmetry-
broken bilayer graphene. Nat. Mater. 12, 887–892 (2013).

25.	 Sales, B. C., Saparov, B., McGuire, M. A., Singh, D. J. & Parker, D. S. 
Ferromagnetism of Fe3Sn and alloys. Sci. Rep. 4, 7024 (2014).

26.	 Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped 
topological insulator. Science 329, 659–662 (2010).

27.	 Xu, S. Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic 
topological insulator. Nat. Phys. 8, 616–622 (2012).

28.	 Balog, R. et al. Bandgap opening in graphene induced by patterned hydrogen 
adsorption. Nat. Mater. 9, 315–319 (2010).

29.	 Ishii, Y., Harima, H., Okamoto, Y., Yamaura, J. & Hiroi, Z. YCr6Ge6 as a candidate 
compound for a kagome metal. J. Phys. Soc. Jpn 82, 023705 (2013).

30.	 Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 
95, 226801 (2005).

31.	 Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: 
condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 
2015–2018 (1988).

Acknowledgements We are grateful to X.-G. Wen and E. Tang for discussions. 
This research was funded in part by the Gordon and Betty Moore Foundation 
EPiQS Initiative, grant GBMF3848 to J.G.C. and NSF grant DMR-1554891. L.Y., 
J.L. and F.v.C. acknowledge support by the STC Center for Integrated Quantum 
Materials, NSF grant number DMR-1231319. L.Y. acknowledges support by the 
Tsinghua Education Foundation. M.K. acknowledges a Samsung Scholarship 
from the Samsung Foundation of Culture. This research used resources of the 
Advanced Light Source, which is a DOE Office of Science User Facility under 
contract number DE-AC02-05CH11231. A portion of this work was performed 
at the National High Magnetic Field Laboratory, which is supported by NSF 
cooperative agreement number DMR-1157490, the State of Florida and the US 
Department of Energy.

Author Contributions L.Y., T.S. and C.R.W. grew the single crystals. L.Y. 
characterized the materials, performed the transport and magnetic 
measurements and analysed the resultant data. M.K., C.J., A.B. and E.R. 
performed the ARPES experiment and analysed the resultant data. J.L. and L.Y. 
performed the theoretical calculations. F.v.C. and D.C.B. performed the electron 
microscopy study. All authors contributed to writing the manuscript. L.F., R.C. 
and J.G.C. supervised the project.

Author Information Reprints and permissions information is available at  
www.nature.com/reprints. The authors declare no competing financial 
interests. Readers are welcome to comment on the online version of the paper. 
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. Correspondence and 
requests for materials should be addressed to R.C. (rcomin@mit.edu) or  
J.G.C. (checkelsky@mit.edu).

Reviewer Information Nature thanks E. Bergholtz, B. Lake and O. Rader for their 
contribution to the peer review of this work.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature25987
http://www.nature.com/reprints
http://www.nature.com/doifinder/10.1038/nature25987
mailto:rcomin@mit.edu
mailto:checkelsky@mit.edu


Letter RESEARCH

Methods
Single-crystal growth. Single crystals of Fe3Sn2 were grown using an I2-catalysed 
reaction. A stoichiometric ratio of Fe and Sn powders was sealed in a quartz tube 
with approximately 1% I2 by mass and kept in a horizontal three-zone furnace 
with a temperature gradient from 750 °C to 650 °C for five weeks followed by 
water quenching to stabilize the Fe3Sn2 phase. Hexagonal, plate-like crystals of sub-
millimetre size (Extended Data Fig. 1a, inset) formed near the high-temperature  
region as has been reported previously32 for Fe3Ge. The hexagonal surfaces were 
confirmed as (0001) kagome planes by using single-crystal X-ray diffraction.
Magnetization measurements. Magnetization measurements were performed 
using a commercial superconducting quantum interference device (SQUID) 
magnetometer with the field oriented along the c axis and in the a–b plane. 
Demagnetization corrections were performed for all measurements. The 
measured saturation moment (1.9μB per Fe atom) is consistent with previous 
reports18,19,33.
Transport measurements. Four probe transport measurements were performed 
for longitudinal and Hall resistivity in a commercial cryostat with a superconduct-
ing magnet. High-field transport measurements in fields of up to 31 T were per-
formed in a He-3 cryostat at Cell-9 of the National High Magnetic Field Laboratory. 
For measurements in the kagome plane, the field was applied along the [0001] 
direction with current and voltages in the kagome plane. For Hall measurements 
perpendicular to the kagome plane, the magnetic field and current were applied 
orthogonally in the kagome plane and the out-of-plane voltage is measured. The 
choice of coordination for in-plane and out-of-plane Hall measurements is such 
that, for the ordinary Hall effect of holes, σxy > 0 when the field is applied along 
the +z direction and σzx > 0 (σxz < 0) when the field is applied along the +y 
direction. Electrical signals were detected using standard AC lock-in techniques 
with a typical current density of 10 A cm−2. To correct for contact misalignment, 
the measured longitudinal and transverse voltages were field-symmetrized and 
field-antisymmetrized, respectively. Demagnetization corrections were performed 
for all measurements.
Scanning transmission electron microscopy (STEM). STEM experiments were 
conducted at a probe-corrected STEM (JEOL ARM) operated at an acceleration 
voltage of 200 kV. Fe3Sn2 samples were prepared by a Helios focused-ion beam 
(FEI), operated at an acceleration voltage of 30 kV for the gallium beam during 
lift-out and of 2 kV during polishing. Additional polishing was performed at 1 kV 
and 0.5 kV with a NanoMill (Fischione). At both acceleration voltages, samples 
were polished for 20 min on each side.
Angle-resolved photoemission spectroscopy (ARPES). ARPES experiments were 
conducted at the Microscopic and Electronic Structure Observatory (MAESTRO) 
at beamline 7 (main data) and at the meV Resolution Soft X-ray Inelastic Scattering 
Beamline (MERLIN) at beamline 4 (preliminary measurement) of the Advanced 
Light Source. The two ARPES endstations are equipped with R4000 hemispherical 
electron analysers (VG scienta, Sweden). Data in Fig. 3 and Extended Data Fig. 3 
were collected at 20 K with a photon energy of 92 eV, which maximizes the ARPES 
spectral weight of the Dirac bands. The photon-energy-dependent measurement 
was conducted from 45 eV to 120 eV (Extended Data Fig. 4). Energy and momen-
tum resolutions were better than 15 meV and 0.01 Å−1, respectively. Fe3Sn2 samples 
were cleaved in the ultrahigh-vacuum chamber with a base pressure of better than 
4 × 10−11 torr. All of the data were collected within 8 h after cleaving to minimize 
the effect of sample degradation. Six different samples from various growth batches 
were analysed to confirm the consistency of results.
Longitudinal electrical transport. The resistivity in the kagome plane of sample 
C1 as a function of temperature, ρ(T), is shown in Extended Data Fig. 1a. A metallic 
response is seen at all T, with a residual resistivity ratio of ρ(300 K)/ρ(2 K) = 25. 
The magnetoresistance for magnetic induction B normal to and within the kagome 
plane is shown in Extended Data Fig. 1b, c, respectively. In both figures, the electri-
cal current I is perpendicular to the applied field. For B  c (Extended Data Fig. 1b),  
we observe a non-monotonic response below the saturation field (B ≤ 1.2 T), 
which may reflect a transition through a skyrmion bubble phase, as was reported 
recently19. This structure is absent for B ⊥ c (Extended Data Fig. 1c). In addition, 
for both B  c and B ⊥ c, a negative linear magnetoresistance characteristic of mag-
non suppression34 is observed at high T.
Analysis of the Hall effect. In a ferromagnetic metal, the total Hall conductivity 
is composed of contributions from the normal Hall effect (‘N’) induced by Lorentz 
force and the anomalous Hall effect (‘A’): σ σ σ= +xy xy xy

N A . In the limit of small Hall  
angle (Θ ρ ρ≡ /  1yx xxH ), we have σ ρ≈ /B ne( )xy xx

2 , where n is the carrier density  
and e is the electronic charge. Given the relatively small magnetoresistance, we 
extract σxy

N  from a linear fit of σxy(B) for fields above saturation (1.7 T to 5 T), with 
the intercept returning σxy

A  (Extended Data Fig. 2a). That the condition Θ  1H  is 
satisfied is confirmed to high field, with Θ . 0 04H  for fields up to 30 T (Extended  
Data Fig. 2b).

We measured the anomalous Hall effect at temperature T = 300 K in multiple 
samples. We find a consistently enhanced anomalous Hall conductivity in the 
kagome plane σxy

A  relative to out of the kagome planeσzx
A . For samples C1, C4 and 

C5, the observed value of σxy
A  is 163.6 Ω−1 cm−1, 179.1 Ω−1 cm−1 and 

138.8 Ω−1 cm−1, respectively. For samples C2, C4, C5 and C6, the observed value 
of σzx

A  is 20.5 Ω−1 cm−1, 22.0 Ω−1 cm−1, 55.6 Ω−1 cm−1 and 53.7 Ω−1 cm−1, respec-
tively. The T dependence for C1 and C4 is shown in Fig. 2.
Energy–momentum dispersion along high-symmetry directions. Extended Data 
Fig. 3a, e shows the experimental Fermi surface of Fe3Sn2 obtained from different 
orientations of the crystal axis with respect to the photoelectron emission plane. 
Extended Data Fig. 3b–d, f, g shows the experimental band dispersion of Fe3Sn2 
along high-symmetry directions. Despite the occurrence of a complex-matrix-el-
ements effect near the K point, the structure of the two interpenetrating Dirac 
cones is clearly visible in all momentum directions probed in this experiment. 
In Extended Data Fig. 3h, energy distribution curves at different Brillouin-zone 
corner points are shown. All energy distribution curves show a consistent two-peak 
structure near the first Dirac point, signalling a gap opening. The velocity of the 
Dirac fermions vD is found to be isotropic in the kagome plane, with magnitude 
vD = (1.76 ± 0.11) × 105 m s−1, comparable to that observed recently in iron pnic-
tide35 and selenide36 superconductors, but lower than in graphene37,38, possibly 
reflecting the correlated character of the Fe-3d states.
Photon-energy-dependent ARPES. Photon-energy-dependent ARPES probes 
the variation of the band structure along the momentum direction perpendicular 
to the sample surface (the kz direction in our geometry)39. The experiment here 
was conducted by varying the photon energy from 55 eV to 120 eV. The ARPES 
spectral weight of the localized d electrons is suppressed at low photon energy, 
so we report only the results from 90 eV to 120 eV. Considering the large c-axis 
lattice constant (c = 19.8 Å), the photon energy range presented here spans more 
than three complete Brillouin zones. The dependence on photon energy varies 
substantially between different bands. For example, the dispersion of the innermost 
electron pocket at Γ (Extended Data Fig. 4b) depends critically on the photon 
energy (kz), whereas the dispersion of Dirac bands shows negligible dependence 
on kz. The latter finding demonstrates the pronounced 2D nature of the Dirac 
fermions that we observed. We ascribe the highly dispersive bands centred at Γ to 
the 3D network of Sn atoms within the crystal structure.
Tight-binding models. We use a simple 2D tight-binding model to capture the 
symmetry-protected Dirac nodes at K and K′ in the single-layer (Fig. 4a) and bilayer 
(Fig. 4c) kagome lattice. Starting with the former, in the absence of spin–orbit cou-
pling, the nearest-neighbour tight-binding model HK (equation (1)) yields Dirac 
bands and a dispersionless band (Fig. 4b). For the bilayer kagome lattice, we include 
additional hopping t0 = 0.3t between the vertically displaced sites on each kagome 
layer, which introduces a layer splitting of the Dirac states in energy (Fig. 4d)29.  
We examine the effect of the spin–orbit interaction by adding a Kane–Mele-type 
term30 HSOI (equation (2)) in the leading-order nearest-neighbour hopping to 
the tight-binding model HK with strength given by λ(Eij × Rij) · s. The magnetic 
moments in Fe3Sn2 have been proposed to be subjected to spin reorientation and 
microscopic domain formation19,33; contributions to λij arise from orthogonality 
of the hopping path and local electric-field and spin directions in each domain. In 
the simplified hopping model, these contributions are represented by an in-plane 
electric field and sz, with λij = 0.05t in Fig. 4b, d. Similar Hamiltonians40,41 have 
been used in the spin sector for insulating materials with kagome structures40–43.
Model calculation of Hall conductivity. To connect with the Hall response, we 
first construct a k · p Hamiltonian near K and K′ for the dual Dirac fermions 
observed in the ARPES spectra:

σ σ τ σ= − ⊗ + +H ħv k k I E m[ ( )] (3)x y y x x zD F 0

where σi (i = x, y, z) are the Pauli matrices of pseudospin for each Dirac band, E0 
is the energy splitting of the Dirac bands described by the Pauli matrix τx, and 
m = Δ/2 is the Dirac mass. To obtain the band parameters, we fit the observed 
dispersion E(k) to the massive Dirac model Δ=± + / +±E k ħkv E( ) ( ) ( 2)i i

D
2 2

0  , 
where Ei

0 is the energy offset of the upper (i = 1) and lower (i = 2) Dirac bands  
from EF. As shown in the inset of Fig. 4e, a satisfactory fit is found with 
vD = (1.85 ± 0.15) × 105 m s−1, Δ = 32 ± 3 meV, E0

1  = −73 ±  5 meV and 
E0

2 = −182 ± 5 meV. The Dirac band centred at 73 meV can be analysed reliably, 
whereas matrix-element effects and the proximity of neighbouring bands interfere 
with the intensity distribution of the lower Dirac point. Applying the same set of 
Fermi velocity and mass for the upper and lower Dirac bands, we then calculate 
the contribution of the massive Dirac bands to the Hall response by integrating the 
Berry curvature over the filled states described by equation (3) as follows.

The Hall conductivity σxy can be considered a geometric quantity that charac-
terizes the mapping from the kx–ky momentum plane to the two-component  
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Dirac band structure44. For a general two-level Hamiltonian d(k) · σ, (where 
σ = {σx, σy, σz} and d(k) is a generic vector), the wave functions may be  
represented as points on the unit Bloch sphere by ± = /d̂ k d k d k( ) ( ) ( ) , where 
the ± denotes the two eigenstates of the Hamiltonian at a given k. σxy then takes 
the form44

∬σ = ⋅ ∂ ×∂d d de
h

k kˆ ˆ ˆ( )d d (4)xy x y x y
2

filled states

where the integrand (the Berry curvature) can be seen as the Jacobian associated 
with mapping the kx–ky plane to the unit sphere. Therefore, σxy is proportional to 
the total area covered on the unit sphere by the filled states. Also, because the 
integrand in equation (4) is a pseudoscalar, the states represented by ±d̂ have 
opposite contributions to σxy.

The above formulation for σxy of a single Dirac fermion is illustrated in Extended 
Data Fig. 5 for the gapless and gapped cases. For the former (Extended Data  
Fig. 5a), the wavefunction of the Dirac fermions is confined to the equator of the 
Bloch sphere and therefore σxy = 0. Extended Data Fig. 5b shows the case in which 
the lower branch of the massive Dirac cone is filled. In this case, the occupied states 
span the lower hemisphere and yield σxy = 0.5e2/h. When the upper branch of the 
gapped Dirac fermion is partially filled (Extended Data Fig. 5c), a contribution 
of opposite sign appears. The resulting σxy for a single Dirac fermion is therefore

σ =











π
≤ π

π−
π

≥ π

e
h

S S

e
h

S S

4
for 2

4
4

for 2
xy

2

2

where S is the total area of the filled states on the Bloch sphere; this is shown in 
Extended Data Fig. 5d as a function of energy E normalized by hvF (where vF is 
the Fermi velocity).

The above formulation is consistent with that expected from the semi-classical 
Boltzmann equation and Kubo formalism for a single massive Dirac fermion45:

σ
Δ

Δ
=

/

/ +

e
h ħv k

2
( 2) ( )

(5)xy
2

2
F F

2

where Δ is the size of the Dirac gap and kF is the Fermi wavevector. From  
equation (5) and Extended Data Fig. 5c, we see that σxy is maximized to e2/(2h) 
when EF is within the gap and drops outside the gap with a long tail46,47. 
Importantly, the massive Dirac fermions at the K and K′ valleys are related by 
inversion symmetry and therefore contribute similarly to the Berry curvature; the 
contribution from equation (5) is therefore doubled. With the experimental fits to 

equation (3) and adding up the contributions from the upper and lower Dirac 
points to the anomalous Hall conductivity described by equations (4) and (5), we 
obtain the energy-dependent 2D Hall conductance σxy

A  (Fig. 4e). The Hall conduc-
tivity at the Fermi level evaluates to σxy(EF) = (0.31 ± 0.05)e2/h. The uncertainty 
within this model arises from fitting the experimental band parameters near K; 
developing models that use the complete electronic structure and Berry curvature 
to compare to the experimental results is an important future direction.
Data availability. The data that support the findings of this study are available 
from the corresponding authors on reasonable request.
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Extended Data Figure 1 | Metallic transport in Fe3Sn2. a, Resistivity 
ρ as a function of temperature T in the kagome plane for Fe3Sn2 
sample C1. The inset shows a photograph of Fe3Sn2 single crystals. 

b, c, Magnetoresistance (defined as MR = [ρxx(B) − ρxx(0)]/ρxx(0)) at 
selected T with B applied perpendicular (b) or parallel (c) to the kagome 
plane and B ⊥ I (schematics of the configurations are shown as insets).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Extracting anomalous Hall conductivity and 
high-field transport. a, In-plane Hall conductivity σxy as a function of 
magnetic induction B at selected temperatures. Dashed lines represent the 

linear fit to σxy
N . The data at 2 K and 50 K have been scaled by the factors 

shown for clarity. b, Magnetoresistance (main panel) and Hall effect (inset) 
of Fe3Sn2 with applied magnetic field m0H  c up to 31 T.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Letter RESEARCH

Extended Data Figure 3 | Momentum and energy-dependent band 
structure along high-symmetry directions. a, e, Fermi surface of Fe3Sn2 
obtained from different experimental geometries. b–d, f, g, Band  
dispersion of Fe3Sn2 along high-symmetry directions. The panels 
correspond to the momentum directions along the red (b), orange (c), 
green (d), magenta (f) and purple (g) dotted lines in a and e. The inset 

in d shows the raw data of Fig. 3c (with the same energy and momentum 
range), highlighting the spectral weight distribution near the Dirac 
points. h, Energy distribution curves at different K points indicated in 
c, d, f and g. The curves are shifted along the vertical direction for clarity. 
The inset shows an example of Gaussian fits; the extracted gap size is 
Δ = 30 ± 5 meV.
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Extended Data Figure 4 | Photon-energy dependence of ARPES spectra. 
ARPES intensity plot for Fe3Sn2 taken along the Γ–K direction as a 
function of binding energy k and photon energy.
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Extended Data Figure 5 | Berry curvature and Hall conductivity for a 
massive Dirac fermion. a–c, Schematics of 2D Dirac fermions and the 
corresponding Bloch-sphere representation of the wavefunction of filled 

states for the gapless case (a) and the gapped case with EF in (b) and out of 
(c) the gap. d, Fermi energy EF dependence of σxy for the case of a single 
massive Dirac fermion with gap Δ and Fermi velocity vF.
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