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Observation of fractional
Chern insulators in a
van der Waals heterostructure
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Topologically ordered phases are characterized by long-range quantum entanglement and
fractional statistics rather than by symmetry breaking. First observed in a fractionally filled
continuum Landau level, topological order has since been proposed to arise more generally at
fractional fillings of topologically nontrivial Chern bands. Here we report the observation of
gapped states at fractional fillings of Harper-Hofstadter bands arising from the interplay of a
magnetic field and a superlattice potential in a bilayer graphene–hexagonal boron nitride
heterostructure.We observed phases at fractional filling of bands with Chern indices
C = −1, ±2, and ±3. Some of these phases, in C = −1 and C = 2 bands, are characterized by
fractional Hall conductance—that is, they are known as fractional Chern insulators and
constitute an example of topological order beyond Landau levels.

B
ands in electronic systems can be classified
by their symmetry and topology (1). In two
dimensions with no symmetries beyond
charge conservation, for example, bands
are characterized by a topological Chern

number, C (2). The Chern number determines
theHall conductance contributed by a filled band,
which takes quantized integer values, sxy ¼ t e

2

h
with t∈ℤ (2) (here e is the charge of an electron, h
is the Planck constant, and ℤ is the set of all
integers). Systems with an integer number of
filled bands with nonzero C (Chern bands) thus
show a quantized, nonzero Hall conductance
and are known as Chern insulators (CIs). The
first experimental examples of CIs are the in-
teger quantum Hall (IQH) states, which have
been observed in isotropic two-dimensional
electron systems subjected to a large magnetic
field (3). In the case of IQH states, a quantized
Hall conductance is observed when an integer
number of Landau levels (LLs) are filled, each
with C ¼ 1.
IQH systems are very nearly translation-

invariant, in which case t is fixed by the mag-
netic field B and the electron density n, via
t ¼ nh

Be , with some disorder required for the
formation of plateaus in the Hall conductance
(4). Recently, there has been interest in a dif-

ferent class of CIs for which continuous trans-
lation invariance is strongly broken by a lattice,
decoupling the Hall conductance from the mag-
netic field. CIs in which t is decoupled from n

B
have been observed in magnetically doped thin
films with strong spin-orbit interactions (5) and in
the Harper-Hofstadter (2) bands of graphene sub-
jected to a superlattice potential (6–8). Haldane’s
staggered flux model (9), which has nonzero quan-
tized Hall conductance even when the net mag-
netic field is zero, has been engineered with
ultracold atoms in an optical lattice (10).
Interactions expand the topological classifica-

tion of gapped states, allowing t to be quantized to
a rational fraction. By Laughlin’s flux-threading
argument, an insulator with t ¼ p

q (p, q ∈ ℤ)
must have a fractionalized excitationwith charge
e
q (11). A fractionally quantized Hall conductance
in a bulk insulator is thus a smoking-gun signature
of topological order, and fractional quantum Hall
(FQH) effects have been observed in partially-
filled continuumLLs in a variety of experimental
systems (12–15). Can a fractional Chern insulator
(FCI) arise from fractionally filling a more gen-
eral Chern band (16)? Although a FQH effect in a
LLmay be considered a special case of an FCI, in
this work we focus on FCIs that require a lattice
for their existence.
The phenomenology of lattice FCIs differs from

that of continuumLLs. Chern bandswithC≠1 can
arise, leading to different ground states than are
allowed in C ¼ 1 LL. In addition, unlike LLs,
Chern bands generically have a finite, tunable
bandwidth that competes with interactions,
providing a new setting for the study of quantum
phase transitions. Finally, FCIs might be found
in experimental systems where Chern bands,
but not LLs, are realizable. A large body of the-

oretical work has begun to investigate these
issues (17–24).
Here we report the experimental discovery of

FCIs in a bilayer graphene (BLG) heterostructure
at high magnetic fields. The requirements to
realize an FCI in an experimental system are,
first, the existence of a Chern band, and, second,
electron-electron interactions strong enough to
overcome both disorder and band dispersion.We
satisfied these requirements by using a high-
quality BLG heterostructure in which the bi-
layer is encapsulated between hexagonal boron
nitride (hBN) gate dielectrics and graphite top
and bottom gates (Fig. 1, A and B). This geome-
try was recently demonstrated to markedly de-
crease disorder, permitting the observation of
delicate FQH states (25). We generated Chern
bands by close rotational alignment (~1°) be-
tween the BLG and one of the two encapsulating
hBN crystals. Beating between the mismatched
crystal lattices leads to a long-wavelength (~10 nm)
moiré pattern that the electrons in the closest layer
experience as a periodic superlattice potential (Fig.
1B) (26). At highmagnetic fields, the single-particle
spectrum of an electron in a periodic potential
forms the Chern bands of the Hofstadter but-
terfly (7–9). These bands are formally equivalent
to Chern bands proposed to occur in zero mag-
netic field; at any fractional flux, a finite-field
lattice model can be converted to an equivalent
zero-field model using gauge invariance (16).
Wemeasured the penetration field capacitance

(27) (CP), which distinguishes between gapped
(incompressible) and ungapped (compressible)
states (26). Figure 1, C and D, shows CPmeasured
as a function ofB and the electrondensity,n≈n0≡
c(vt + vb), where vt and vb are the applied top and
bottom gate voltages and c denotes the geo-
metric capacitance to either of the two sym-
metric gates. We used a perpendicular electric
field, parameterized by p0/c = vt − vb (where
p0 is the electron density imbalance between
layers in the absence of screening), to localize
the charge carriers onto the layer with a super-
lattice potential, e.g., adjacent to the aligned
hBN flake. High-CP features, corresponding to
gapped electronic states, are evident through-
out the experimentally accessed parameter space
(Fig. 1, C and D), following linear trajectories in
the nB plane. We estimated the area of the
superlattice unit cell from zero-field capaci-
tance data (26) and defined the electron den-
sity ne = Ne/NS and flux density nF ¼ NF=NS

per unit cell. Here Ne, NS, and NF are the
number of electrons, superlattice cells, and mag-
netic flux quanta (F0 = h/e) in the sample,
respectively. The trajectories are parameter-
ized by their inverse slope t and n-intercept s
in the nB plane

Ne ¼ tNF þ sNS;ne ¼ tnF þ s ð1Þ
TheStreda (28) formula,t ¼ @ne

@nF
jNS

¼ h
e2 sxy, shows

that the Hall conductance of a gapped phase is
exactly t. The invariant s ¼ @Ne

@NS
jNF0

encodes the
amount of charge “glued” to the unit cell; i.e.,
the charge that is transported if the lattice isdragged
adiabatically (29). Nonzero s indicates that strong
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lattice effects have decoupled the Hall conduct-
ance from the electrondensity.Within band theory,
the invariants of a gap arise from summing the
invariants (Dtj, Dsj) of the occupied bands, ðt; sÞ ¼P
j∈occ

ðDtj ;DsjÞ—in particular, the Hall conductance t

is the sum of the occupied band Chern indices,
Dtj ¼ Cj .
On the basis of the properties of t and s, we

observed five classes of high-CP trajectories,
each of which corresponds to a distinct class
of gapped state (Fig. 1, E and F). Free-fermion
band gapsmust have integer t and s: Trajectories
with s = 0 correspond to gaps between LLs, i.e.,
IQH states. Trajectories with s≠0 indicate the
formation of the non-LL Chern bands of the
Hofstadter butterfly (6–8). Trajectories with frac-
tional t or s are beyond the single-particle pic-
ture and thus indicate interaction-driven gapped
phases. The conventional FQH states follow tra-
jectories with fractional t and s = 0. Gap tra-
jectorieswith integer t and fractional s [previously

observed in monolayer graphene (30)] must be
either topologically ordered or have interaction-
driven spontaneous symmetry breaking of the
superlattice symmetry. The theoretical analy-
sis below suggests that the latter case is most
likely, so we refer to this class as symmetry-broken
Chern insulators (SBCIs). Finally, there are trajecto-
ries with fractional t and fractional s, which are
the previously unreported class of topologically
ordered FCI phases.
To better understand states with fractional

t or s, we first identified the single-particle
Chern bands in our experimental data by iden-
tifying all integer-t, integer-s gapped states. We
focused on adjacent pairs of gapped states with
integer (tL, sL) and (tR, sR) (where L andRdenote
gapped states with lower and higher n0, respec-
tively), which form the boundaries of a finite range
of ne in which no other single-particle gapped
states appear (Fig. 1G). Adding charge to the left
gapped state corresponds to filling a Chern band
with invariants (Dt, Ds) = (tR − tL, sR − sL). From

this criterion, we detected a variety of Chern bands
with Dt = ±1, ±2, ±3, and ±5 in the experimental
data (26), each of which appears as a triangle
between adjacent single-particle gapped states.
These Chern bands are observed to obey certain
rules expected from the Hofstadter problem:
For example, Dt and Ds are always coprime, and
Chern bands with Dt always emanate from a flux
nF
� ¼ p=Dt.
Interaction-driven phases occur at fractional

filling vC of a Chern band, following trajecto-
ries ðtvC ; svC Þ ¼ ðtL; sLÞ þ vCðDt;DsÞ. The Chern
numbers of the bands in which some of the
observed interaction-driven phases appear (Fig. 2,
A to C) are depicted schematically in Fig. 2,
D to F.
By combining a phenomenological descrip-

tion of the moiré potential with knowledge of
orbital symmetry breaking in BLG (31), we were
able to construct a single-particlemodel that closely
matches the majority of the experimentally ob-
served single-particle Chern bands (25). The
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Fig. 1. Magnetocapacitance in a high-quality BLG moiré superlattice
device. (A) Optical micrograph of the device. Scale bar, 10 mm. (B) Schematic
of the device, with top and bottom graphite gates at potential vt and vb. A
moiré potential is induced by alignment of the graphene bilayer with one of the
encapsulating hBN crystals. (C) Penetration field capacitance (CP) as a
function of density ne ~ n0 ≡ c(vt + vb) and magnetic field B for n0 < 0. T =
300 mK, and CRef is a reference capacitance. A large electric field p0/c =
(vt− vb) = 16 V is applied to force the valence electrons onto the top layer,which
is in contact with the aligned hBN. (D) CP for n0 > 0 with vt − vb = −16 V at
T = 300 mK. (E and F) Linear gap trajectories observed in (C) and (D)

parameterized by ne ¼ t � nF þ s. nF and ne are the magnetic flux
quanta and number of electrons per moiré unit cell, respectively.

nF≡
ffiffi
3

p
l2B

2F0
¼1=2 (l, wavelength) when B = 24.3 T and ne = 1 when

n0/c = 3.1 V. Five trajectory classes are distinguished by color: Integer

quantum Hall (gray; s = 0, t∈ℤ), fractional quantum Hall (green; s = 0,

t fractional), Hofstadter Chern insulators (black; s; t ∈ ℤ, s≠0), symmetry-

broken Chern insulators (purple; fractional s, t∈ℤ), and fractional

Chern insulators (cyan; fractional s, t). (G) Schematic of a (Dt,Ds)

Chern band (see text).
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calculated energy spectra of the bands relevant
to Fig. 2, A to C, are shown in Fig. 2, G to I. As is
clear from the band structure, stable phases at
fractional vC are not expected within the single-
particle picture: Instead, the encompassing Chern
band splits indefinitely into finer Chern bands at
lower levels of the fractal butterfly that depend
sensitively on nF.
The three columns of Fig. 2 represent instances

of three general classes of fractional vC states ob-
served in our experiment. Figure 2A shows two
gapped stateswithin aDt=−1 bandat vC ¼ 1

3 and
2
3.

These gapped states extend from nF≈0:55 to at
least nF≈0:8 (26). Both are characterized by
fractional t and s, and we identify them as FCI

states. As with FQH states, the fractionally quan-
tized Hall conductance implies that the system
has a charge e/3 excitation (11). The fractional s
values of these states, being multiples of this
fractional charge, do not require broken super-
lattice symmetry. Gapped states at vC = 1/3, 2/3
in a Dt = −1 band are accompanied by com-
paratively weaker states at vC = 2/5, 3/5 (Fig. 3B).
These fillings match the odd-denominator com-
posite fermion sequence observed for FQH states
(Fig. 3C), in agreement with theoretical predic-
tions (32).
Figure 2 shows gapped states with fractional s

and integer t at vC = 1/3, 2/3 in a Dt = +3 band
(Fig. 2B) and at vC = 1/2 in a Dt = +2 band (Fig.

2C). Filling a Chern-Dt band to a multiple of
vC ¼ 1

jDtj corresponds to integer t but fractional s.
These states are unlikely to admit a simple inter-
pretation as FCIs; however, we cannot exclude
exotic fractionalized states. Absent fractional ex-
citations, a gapped state with fractional s ¼ x

y im-
plies broken superlattice symmetry: The unit cell
of such a phase must contain an integral number
of electrons, and the smallest such cell contains y
superlattice sites. Theoretically, such symmetry
breaking is expected to arise spontaneously as a
result of electronic interactions, in a lattice analog
of quantumHall ferromagnetism (33). ADtChern
band is similar to a Dt-component LL, but in
contrast to an internal spin, translation acts by
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Fig. 2. Interaction-driven states at partial Chern-band filling. (A to C) Details of Fig. 1, C and D,
showing (A) FCI states in a Dt = −1 band, (B) SBCI states in a Dt = +3 band, and (C) FCI and SBCI
states in Dt = 2 bands. (D) Schematic of (A). FCI states (black dotted lines) with (t, s) = (−13/3, 1/3),
(−22/5, 2/5), (−23/5, 3/5), and (−14/3, 2/3) occur at fractional filling of a Dt = −1 band (light blue). FQH
states (gray dotted lines) occur at fractional filling of a conventional LL (Dt = +1, green) at low fields.
(E) Schematic of (B). SBCI states (dashed lines) at (t, s) = (0, 2/3) and (1, 1/3) occur at 1/3 and 2/3
fractional filling of a Dt = 3 band (orange). (F) Schematic of (C). Both FCI and SBCI states (dotted and
dashed lines, respectively) occur in the Dt = 2 bands. (G) Calculated Hofstadter energy spectrum
(25) in the regime of (A), matching the observation that the LL splits into C ¼ �1;2 bands.
(H) Calculated Hofstadter spectrum in the regime of (B), matching the observed splitting of a C ¼ 3 band
into C ¼ 5;�2 bands. (I) Calculated Hofstadter spectrum in the regime of (C).The IQH gap at v = 2
separates the two single-particle bands and is much larger than vM.

Fig. 3. Line cuts of CP comparing FCI and
FQH states. (A) Line cut of CP versus n0/c
(bottom axis) and Chern band filling factor (vC,
top axis). The data are averaged over p0/c ~ 1.0
to 4.0 V at B = 12 T, showing FQH states in a
conventional LL. At low fields, the effective
moiré potential is weak, and FQH states are
observed at filling factors v − 4 = 1/3, 2/3 as
well as 2/5, 3/5 of the Dt = +1 LL. (B) Line
cut averaged over p0/c ~ 4.0 to 14.0 V at
B = 30 T, showing FCI in the Dt = −1 band (also
shown in Fig. 2A). Weaker features appear at
vC = 2/5, 3/5, similar to the composite fermion
sequence in (A). (C) Line cut averaged over
p0/c ~ −14.0 to 9.0 V at B = 30 T, showing FCI in
two Dt = 2 bands (also shown in Fig. 2C). Blue
and green values indicate the filling of two
distinct bands. The relative strength of the
vC = 1/3 state compared to the vC = 1/6 state in
the right Dt = 2 band is consistent with the
former preserving the lattice symmetry.
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cyclically permuting the components (33–35).
Spontaneous polarization into one of these com-
ponents thus leads to a t-fold increase of the unit
cell (33). The observation of SBCIs is thus analogous
to the observation of strong odd-integer IQHEs
that break spin-rotational invariance. Some of the
“fractional fractal” features recently described in
monolayer graphene appear to be consistent with
this explanation (30).
Further, we also observed fractional-t states

within a Dt = +2 band (Fig. 3C); for example,
at vC = 1/3 (t = 8/3 and s = −1/3) and vC = 1/6
(t = 7/3 and s = −1/6). FCIs in Chern�Dt≠
T1 bands can either preserve or break the under-
lying lattice symmetry. Symmetry-preserving
FCIs are expected (21, 32, 36) at fillings vC ¼

m
2lmDtþ1 for integers l and m. The state observed
at vC = 1/3 is consistent with this sequence (l = 1,
m = −1); in contrast, the weaker state at vC = 1/6
is not. For the vC = 1/6 state, the observed t = 7/3
suggests a fundamental charge of e/3. As for
SBCIs, the observed s = −1/6 implies that each
unit cell binds only half a fundamental charge—
i.e., the moiré unit cell is doubled and the vC =
1/6 state is a symmetry-broken FCI state. A Dt = 2
Hofstadter band is similar to a spin-degenerate
LL, with lattice symmetry taking the place of
spin symmetry. In a spin-degenerate LL at vC =
1/6 (i.e., LL filling vC = 1/3), the system spon-
taneously spin polarizes, forming a single-
component Laughlin state. In contrast, at vC =
1/3 (vC = 2/3) the system can either spin po-
larize (observed only for large Zeeman energy)
or form a multicomponent FQH state that pre-
serves spin rotation symmetry. The absence of
an obvious analog of the Zeeman effect in our
Hofstadter band makes a multicomponent state
a more likely candidate for the feature observed
at vC = 2/3.
To assess the plausibility of FCI and SBCI

ground states, we used the infinite density matrix
renormalization group (iDMRG) to numerically
compute the many-body ground state within a
minimal model of the BLG (37). We first con-
sidered Coulomb interactions and a triangular
moiré potential of amplitude VM projected into a
BLG N = 0 LL (38), matching the parameter
regime in Fig. 2A (26). We focused on nF ¼ 2

3 at
a density corresponding to vC ¼ 1

3 filling of the
Dt = −1 band.
If interactions are too weak compared with the

periodic potential [as parameterized by VM/EC,
where EC ¼ e2=ðe‘BÞ is the Coulomb energy,

‘B ¼
ffiffiffiffi
ℏ
eB

q
is the magnetic length, e is the dielec-

tric constant, and ℏ is the reduced Planck con-
stant], the ground state at nF ¼ 2

3 is gapless,
corresponding to a partially filled Chern band.
If the interactions are too strong, the system
forms aWigner crystal that is pinned by themoiré
potential. In the intermediate regime, however,
the numerical ground state of this model has a
fractional t and s that match the experiment and
hence is an FCI, with entanglement signatures
that indicate a Laughlin-type topological order
(26). The FCI is stable across a range of VM/EC
(Fig. 4A) corresponding to jVMj≈14� 38meV ,

consistent with recent experiments (39) suggest-
ing that jVMj∼25meV. Figure 4B shows that the
real-space density of an FCI is strongly modu-
lated by the potential but preserves all the sym-
metries of the superlattice.

We next conduct iDMRG calculations to assess
the plausibility of the SBCI hypothesis. We focus
on thewell-developed Chern-3 band of Fig. 2, B, E,
and H. As a minimal model, we project the moiré
and Coulomb interactions into theN = 1 LL of the
BLG, fixingVM=21meVandEC(B= 17T ) = 35meV,
and take nF ¼ 3

8.
At vC ¼ 1

3 filling, the electron density ex-
hibits a modulation that spontaneously triples
the superlattice unit cell (Fig. 4C). A similar
tripling is observed at vC ¼ 2

3 . These are not
merely density waves, however, as they have
finite (t, s) invariants, in agreement with experi-
mental observations.
The SBCI states are distinct from a second

class of integer-t, fractional-s features, the moiré-
pinned Wigner crystals (30, 40). In the latter case,
starting from a LL-gap at t, s = tL, 0, additional
electrons form a Wigner crystal pinned by the
moiré potential; the added electrons are elec-
trically inert, leading to a state at t; s ¼ tL; xy that
cannot be ascribed to fixed vC of an encompass-
ing band. These states are thus analogous to
reentrant IQH effects, with the moiré potential
playing the role of disorder. In contrast, although
the electrons added to the SBCI spontaneously
increase the unit cell, they also contribute an
integer Hall conductance, which together cor-
responds to some vC.
In summary, we find that instead of a self-

repeating fractal structure, interactions mix
Hofstadter-band wave functions to form stable,
interaction-driven states at fractional filling of a
Chern band. Among these are both SBCIs and
topologically ordered FCIs, the latter of which
constitute a lattice analog of the FQH effect.
Lattice engineering can lead to increased experi-
mental control. For example, multicomponent
FCI states in bandswith higher Chern numbers—
as may be responsible for the vC = 1/3 feature in
Fig. 3C—have been predicted to host non-abelian
defects at engineered lattice dislocations (34). A
pressing experimental question, then, is whether
FCI states can be realized in microscopically
engineered superlattices.
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