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Heterostructures of vertically stacked graphene double layers,  
separated by a thin tunnel barrier, provide a highly tunable 
system to explore strongly interacting electron states. This 
is because the interlayer Coulomb interactions can be sensi-
tively tuned simply by varying the barrier thickness. Recent 
studies of double-layer graphene have shown that, in the 
quantum Hall effect regime, strong interlayer coupling can 
induce electron–hole pairing across the two layers, resulting 
in a superfluid phase of interlayer excitons1–3. Here, we report 
a series of emergent fractional quantum Hall effect (FQHE) 
states appearing under similar conditions. We find excellent 
agreement between the sequence of observable FQHE states 
and the theoretically proposed two-component composite-
fermion (CF) model, where the CF quasiparticle construction 
results from both interlayer and intralayer interactions4,5. 
Most remarkably, we observe an additional series of incom-
pressible states at fractional filling that do not fit within either 
the single- or two-component CF models. We interpret these 
states to result from residual pairing interactions between 
CFs, representing a new type of correlated ground state that is 
unique to graphene double-layer structures and not described 
by the conventional CF model.

Within the narrowly dispersing Landau levels (LLs) that define 
the quantum Hall effect regime, the kinetic energy is quenched. 
The resulting electron behaviour is therefore determined almost 
entirely by minimizing Coulomb repulsion. This results in a series 
of correlated states appearing at fractional LL filling, known as the 
fractional quantum Hall effect (FQHE)6,7. In double-layer quantum 
wells consisting of closely spaced parallel two-dimensional electron 
gases, even richer quantum Hall physics emerges. In the small- 
separation limit, the additional layer degree of freedom and inter-
layer Coulomb interactions lead to a variety of new correlated states 
that are tunable with interlayer separation and transverse displace-
ment fields. Experimentally observed examples include formation 
of a superfluid exciton condensate1–3,8–10 between electrons in one 
layer and holes in the other, occurring at total integer LL filling (half 
filling in each layer) and even-denominator FQHE states at 1/2 and 
1/4 total filling11–15. Theoretical work has identified a host of other 
possible states at fractional total filling, some of which are expected 
to be exotic non-abelian states with topologically non-trivial excita-
tions4,16–21. However, compared with single-layer systems the FQHE 
in double layers has been less explored experimentally, and many of 
these states remain unobserved.

Here we report measurement of the FQHE in dual-gated double-
layer graphene heterostructures where the active regions consist of 
two graphene monolayers separated by a layer of hexagonal boron 
nitride (see Supplementary Information for details of the device 

structure). Several recent efforts have demonstrated that in double-
layer graphene the hexagonal boron nitride spacer can be made as 
thin as 1–2 nm before interlayer tunnelling becomes relevant2,3,22–25. 
Consequently, the effective interlayer separation ∕ℓd B, which char-
acterizes the interlayer coupling strength, can remain less than 0.5 
for B field up to 30 T. This provides access to a previously unex-
plored regime in quantum Hall bilayers that combines strong intra-
layer (high B) and strong interlayer (small effective d) Coulomb 
repulsion, and in a device structure where the layer densities can be 
independently tuned. We identify insulating interlayer states with a 
Corbino geometry, which was previously shown to yield improved 
resolution of FQHE states in single layer-graphene devices26, and 
confirm the nature of these states with Coulomb drag measure-
ments in a Hall bar geometry.

In the single-component composite-fermion (CF) model, an 
even number of flux quanta are attached to each electron, trans-
forming the strongly interacting electrons into a system of nearly 
independent CF quasiparticles (this transformation is illustrated 
in Fig. 1a). Owing to the flux attachment, each CF also moves in 
a reduced effective magnetic field, B* = B − anϕ0, where n is the 
carrier density, ϕ0 = h/e is the magnetic flux quantum and a is the 
number of flux quanta attached to each electron. At filling fraction 
ν = 1/a the effective magnetic field is precisely zero and the CFs 
behave as a metal with a well defined Fermi surface27. Away from 
these Fermi surfaces, the FQHE states at fractional electron filling 
are reinterpreted instead as effective integer quantum Hall states 
of CFs, where the effective CF filling fraction, ν*, is related to the 
real electron filling, ν, by the relation ν* = ν/(1 − aν). This remark-
ably simple construction makes it possible to interpret a wide range 
of complex behaviour associated with the correlated FQHE states 
within the context of a non-interacting single-particle picture5.

Figure 1c shows bulk conductance versus filling fraction, mea-
sured in a monolayer graphene Corbino disk at B = 36 T. The data 
range spans a single branch of the lowest LL between ν = 0 and ν = 1. 
A large number of FQHE states are visible (fractional denomina-
tors as large as 15 are resolvable), confirming the excellent sample 
quality and transport resolution achievable in the Corbino geom-
etry. The top axis in Fig. 1c labels the filling fraction of the CF LLs 
(referred to as Λ-levels) calculated from the above relation for the 
2-flux (a = 2) and 4-flux (a = 4) series. The sequence of states and 
their hierarchy are in excellent agreement with the non-interacting 
single-component CF model4,5.

For double-layer systems, an expanded two-component CF 
model has been proposed to account for both intra- and inter-
layer types of interaction4,5. In addition to the flux attachment  
scheme described above, an additional number of flux quanta  
penetrating one layer are attached to electrons of the opposite 
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layer (we illustrate this as blue arrows in Fig. 1b). This construc-
tion renormalizes both the intra- and interlayer interactions, once 
again resulting in a system of nearly non-interacting CF quasipar-
ticles. For this case the effective magnetic field seen by the CFs 
is determined by the electron density in both graphene layers, 

ϕ= − +†B B an bn( )i i j 0, where the subscripts i and j denote the layer 
index, and a and b are the numbers of intralayer and interlayer flux 
attachments, respectively. We note several important features of this 
transformation: (1) the CFs retain their layer index, but the layers 
become nearly independent of one another; (2) the CFs can experi-
ence different effective magnetic fields when the layer densities are 

not matched; (3) while the intralayer flux attachment must be an 
even number, the interlayer flux can be any integer value (but no 
larger than a). In this work we mainly consider two-component CF 
states with a = 2 and b = 1, which we refer to as a (2 + 1)-flux CF or 
CF1

2  for simplicity. While a and b can take on different integer values 
we find that the CF1

2  is dominant in the magnetic field and layer sep-
aration ranges that we discuss here (a detailed study of the interplay 
between different interlayer flux states will be presented elsewhere).

Figure 1d shows the electron transport response for a double-
layer Corbino device with d = 2.7 nm interlayer spacing (this mea-
surement is obtained in the matched-density condition with current 
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Fig. 1 | CF construction and bulk conductance measurement in Corbino geometry. a,b, Electron interactions within an LL can be modelled by attaching 
magnetic flux tubes to electrons to form non-interacting CFs. This process also modifies the effective magnetic field experienced by CFs, leading to an 
effective filling fraction that is different from that of the bare electrons. Zero effective field for CFs corresponds to LL filling ν = 1/2 for single layers (a) and 
ν1 = ν2 = 1/3 for double layers (b) (see text). c, Bulk conductance, G, versus ν, measured in a single graphene Corbino disk. ν* for the single-layer 2-flux and 
4-flux CFs is indicated in red on the top axis. d, G versus ν1 = ν2 for a double-layer Corbino device, measured at equal layer densities. The corresponding 
effective filling, νi

†, for (2 + 1)-flux CFs is indicated in blue along the top axis (see text). Red and blue circles in c and d, respectively, highlight minima 
corresponding to integer-valued effective CF filling in each system. The circle radius is proportional to the width of the conductance minimum. Insets in c 
and d show the Corbino measurement geometry.
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flowing through the two layers simultaneously, as depicted in the 
inset). We plot the bulk conductance versus individual layer filling 
fraction over the same range as in Fig. 1c, so that in the absence of 
interlayer interactions the two plots should be identical. However, it 
is clear on inspection that the presence of the second layer substan-
tially modifies the response. While again we resolve a large number 
of FQHE states (labelled by the individual layer filling fraction on 
the bottom axis), the hierarchy of states shows no correlation to the 
single-layer response, and novel structures appear such as the con-
densate of electron–hole pairs at ν ν= =1 2

1
2
 (that is, total electron 

filling fraction νtotal = 1)2,3.
In the two-component CF1

2  model, the effective Λ-level filling 
fraction at matched layer density is given by4,5

ν ν ν
ν

= =
−

† †

1 3
(1)i j

where ν ≡ ν1 = ν2 and we use superscript † to distinguish this from 
the single-component CF model. For the hole-conjugate states at 
1/2 < ν < 1, ν in equation (1) should be replaced by 1 − ν. On the top 
axis of Fig. 1d we label the CF1

2  Λ-level filling fractions for each of the 
observed FQHE states. A prominent sequence of insulating features 
corresponding to integer values of ν†

i  is evident, and its hierarchy is 
in excellent agreement with the two-component CF1

2  model, con-
verging to the expected Fermi surface ν = ∞†( )i  at electron LL filling 
νi = 1/3 and 2/3 (blue circles in Fig. 1d). However, a larger number 
of additional FQHE states are also present that do not correspond 
to integer filling of CF1

2  Λ-levels. These fall into three distinct cat-
egories: (1) fractional ν† with even denominator (highlighted by red 
squares in Fig. 1d), (2) fractional ν† with odd denominator (black 
squares) and (3) ν = ∞†  (ν = 1/3 and 2/3), where a Fermi surface of 
CFs is expected (green squares). We note that incompressible states 
at a partially filled Λ-level, that is outside the integer CF Hall effect 
sequence, presumably involve correlation between CFs. An example 
of this kind of behaviour has been reported in GaAs single layers, 
where for example the ν = 4

11
 state was argued to be a 1/3 FQHE of 

CFs, resulting from residual interactions between the CF quasipar-
ticles28. In double layers, residual CF interactions play a more prom-
inent role, stabilizing a wider variety of ground states with strength 
comparable to that of integer ν† (refs. 4,5). The relative strength of 
fractional and integer ν† states indicates an effective Coulomb inter-
action different from a single two-dimensional confinement, due to 
the interlayer interaction.

Our dual-gated geometry allows us to independently tune the 
density of each layer and therefore map the evolution of these states 
away from the layer-balanced condition. Figure 2a plots bulk con-
ductance as a function of νtotal = ν1 + ν2 and the difference between the 
individual layer filling fractions, Δν = ν1 − ν2. In the chosen colour 
scale dark blue indicates low conductance (either one or both layers is 
weakly conducting), while white indicates high conductance. Figure 
2b summarizes the main features of Fig. 2a, where the solid lines 
identify prominent trajectories of low conductance. Open circles in 
Fig. 2b label the same layer-balanced CF1

2  states as were identified in 
Fig. 1d, where blue, red and black indicate integer, even-denominator 
and odd-denominator ν†

i  states, respectively. Figure 2c plots a higher-
resolution map of the dashed region in Fig. 2a, and Fig. 2d shows 
a corresponding contour plot where the sequence of incompressible 
states inside this dashed area can be seen in clearer detail.

For density imbalance between the layers, equation (1) can be 
generalized to

ν
ν
ν ν

=
− −

†

1 2 (2)i
i

i j

The dashed lines in Fig. 2b reflect lines of constant individual 
layer CF filling, according to equation (2). We observe that states 
appearing at integer ν†

i  values under density balance evolve along 

trajectories (solid blue lines) that match the expected trajectories 
for integer filling of CF1

2  states in one layer (dashed blue lines). 
The intersection point between dashed blue lines, highlighted by 
blue circles in Fig. 2d, corresponds to regions where both layers are 
expected to have integer-valued ν†

i  according to equation (2), and 
therefore both layers should be insulating. Figure 2c,d demonstrates 
robust insulating features at each of these crossing points, and shows 
a well defined hierarchy as judged by the depth of the conductance 
minimum: namely, the most robust ground states are observed at 
the four corners of the diamond-shaped area, where Λ-level filling 
is the lowest and the effective magnetic field is the strongest. The 
observed trajectories of the integer ν†

i  states with layer imbalance, 
and their hierarchical behaviour, provide further evidence that 
these states are well described by the CF1

2  model.
Among the non-integer ν†

i  states, the even-denominator states 
also evolve along lines of constant ν†

i  (solid red lines in Fig. 2b) 
for half-filled CF1

2  Λ-levels (dashed red lines). As this trajectory is 
unique to the CF1

2  construction, it rules out the possibility of the 
ground state being an effective integer quantum Hall effect of other 
CFsb

a . We note that along the red-line trajectories one of the lay-
ers remains at constant half-integer ν†

i , while the other layer varies 
over a large range of effective filling. A state persisting along this 
trajectory therefore could indicate pairing between CFs within the 
half-Λ-filled layer only, with no correlation to the other layer. We 
speculate that these states may be of a similar origin to the Pfaffian 
that is believed to describe the half-filling even-denominator state 
in single-layer systems4,29,30, though from the Corbino data alone we 
cannot definitively confirm this. At the matched-density condition, 
two copies of the presumed Pfaffian could persist, that is one in each 
layer, although interlayer correlations between the CFs1

2  could also 
play a role in determining the ground state here. In particular, we 
note the possibility of a CF exciton state31 resulting from interlayer 
pairing of electron and hole CFs1

2  (ref. 31) (Fig. 3a,b), in analogy to 
the condensate of electron–hole pairs that is observed when elec-
trons occupy half-filled LLs in these same double layers2,3. We note 
that the even-denominator ν† states are stronger overall than the 
odd-denominator ν† states, a behaviour that is strikingly similar to 
the bare electron–hole bilayers, where the exciton condensate at half 
filling of each layer is generally the most dominant.

The odd-integer ν = ∕† 1 3 states (black circles in Fig. 2b) dis-
perse vertically with layer imbalance (solid black lines in Fig. 2b 
and highlighted by blue arrows in Fig. 2a,c,d) and show no corre-
lation with behaviour expected for CF1

2  states. The state appearing 

at ν = 1
6
 ν =†( )1

3
, together with the observed insensitivity to layer 

imbalance, is consistent with the exciton condensate described by the 
Halperin Φ333 wavefunction, which has been theoretically predicted 
to stabilize in double-layer systems but not previously observed16.

By contrast, the FQHE states at ν = ∞†  (νi = 1/3 and 2/3) do not 
disperse at all with layer imbalance (green circles in Fig. 2b). We 
note that no state is expected here in the non-interacting CF1

2  pic-
ture since this filling corresponds to the expected Fermi surface. 
The pairing instability of such a Fermi surface, potentially giving 
rise to non-abelian incompressible states, has been the focus of the-
oretical discussion4,18–20.

To distinguish among possible ground states we performed 
Coulomb drag measurements in a similar double-layer structure in 
which each layer is shaped into a Hall bar geometry (see Methods 
and Supplementary Information for detailed information on device 
geometry). In the Coulomb drag measurement, the Hall resistance 
of each layer exhibits a quantized plateau in the presence of an 
incompressible FQHE state, and the quantization value provides a 
topological invariant characteristic of the ground-state order5,32. For 
the integer CF1

2  filling states, marked by blue vertical lines in Fig. 3c, 
we observe zero-valued longitudinal drag resistance simultaneous 
with nearly quantized Hall resistance on both drag and drive layers 
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(Fig. 3c–e). In Fig. 3d,e we indicate the expected Rxy
drag and Rxy

drive 
plateau values according to the CF1

2  construction (Supplementary 
Information) by horizontal blue lines. We find good agreement with 
the measured values, providing further validation for the CF1

2  inter-
pretation of these states32.

For the even-denominator CF1
2  states (red vertical lines in  

Fig. 3c), the drag response demonstrates two types of behaviour 
depending on filling fraction range. At ν =i

3
7
, where ν = ∕† 3 2,  

the Hall resistance on both drive and drag layers approaches the 
expected plateau value for a composite exciton phase (red hori-
zontal lines) with concomitant zero longitudinal drag resistance. 
Similar to the exciton condensate phase at ν =i

1
2
, such behaviour in 

Coulomb drag measurement is determined by the balance between  
counterflow current of composite excitons in sample bulk and 
quasiparticle current along the sample edge (see Supplementary 
Information for detailed calculation for composite exciton state)2,3. 
In the range 1/2 < ν < 1, the boundary condition combined with 
the edge mode configuration require the current flow through 
the device to be zero. Consequently both drive and drag layers are 
expected to exhibit insulating behaviour in the Coulomb drag geom-
etry (Supplementary Information). Such insulating behaviour is 
clearly demonstrated by the resistance peak at ν =i

4
7
, which diverges 

with increasing B and exceeds 100 kΩ (Fig. 3c). Similar resistance 

peaks are present at ν =i
8
13

 and 8
11

. Taken together, Coulomb drag 
measurement in the matched-density condition provides strong 
evidence for exciton pairing between CFs1

2  (ref. 31) when both gra-
phene layers correspond to half-filled Λ-levels.

Finally, we briefly address the Coulomb drag response for the 
other two types of non-integer CF1

2  state. In Fig. 3c–e we observe a 
robust Hall resistance plateau at ν =i

2
3
, where a CF1

2  Fermi surface 
is expected. The drive- and drag-layer Hall resistances quantize to 
h/e2 and ∕h e1

2
2, respectively, simultaneously with zero longitudi-

nal resistance. This rules out the possibility of this feature being a 
conventional Laughlin state of two decoupled graphene layers13,14, 
while providing direct evidence for a ground state with interlayer 
correlation. A detailed study of this behaviour with varying inter-
layer separation and magnetic field may resolve the origin of this 
state. However, we note that at present there is no theory of Hall 
drag associated with the pairing states that have been proposed 
for this filling fraction4,18–20. The odd-denominator CFs1

2  were not 
observable in our drag measurements (Fig. 3c–e), making it diffi-
cult to comment further beyond their observation in the Corbino 
measurement. We emphasize that the overall transport mea-
surement resolution in the Hall bar geometry (Fig. 3) shows less  
resolution than our Corbino geometry (Fig. 1d), which is consis-
tent with recent findings in monolayer graphene devices26. Further 
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investigation in improved Hall bar geometries will probably be 
required to resolve the nature of these states.

Overall, our observations suggest that the two-component CF 
construction for bilayers exhibits a self-similar correspondence to 
the bare electron bilayer behaviour but with residual interactions 
playing an important role. We note that interlayer coupling between 
the CFs remains evidently strong, and tunable, with effective layer 
separation providing a dynamic new way to study pairing between 
CFs. More generally, we establish double-layer graphene as a highly 
tunable system for studying pairing interaction between quasipar-
ticles, and pave the way for systematic examination of exotic phases 
with novel topological and statistical properties.
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Methods
Charge-carrier density in top and bottom layers, ntop and nbot, can be independently 
controlled by applying a voltage bias to the top and bottom graphite gate electrodes. 
Note that all measurements are performed with a hole-type charge carrier, with ν1 
and ν2 denoting the LL filling of holes. Bulk conductance in parallel flow geometry 
is measured between the inner and outer edges of the Corbino shaped sample while 
changing the applied gate voltage on the top and bottom graphite electrodes. The 
interlayer separation is 3 nm for the device with Corbino geometry, and 2.5 nm in 
the device with Hall bar geometry.

In a sample with aligned Hall bar geometry as shown in the inset of Fig. 3c, 
Coulomb drag measurement is performed by flowing current in one graphene layer 
(the drive layer) while the other layer (the drag layer) is grounded. Longitudinal 
and Hall voltages are measured simultaneously on both graphene layers, which 

is made possible by shaping the double-layer structure into an aligned Hall bar 
geometry and making electrical contact to each graphene layer independently. 
The Hall resistance on the drive layer is defined as = ∕R V Ixy xy

drive drive
drive, 

whereas the longitudinal and Hall resistances on the drag layer are defined as 
= ∕R V Ixx xx

drag drag
drive and = ∕R V Ixy xy

drag drag
drive, respectively. Vxy

drive, Vxx
drag and Vxy

drag 
are labelled in the inset of Fig. 3e. In the presence of a ground state with interlayer 
correlation, the Hall resistances in both drive and drag layers are expected to form 
a well-defined plateau, with the plateau value directly related to the nature of the 
interlayer correlation. At the same time zero longitudinal resistance is expected.
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