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Effect of surface disorder on the chiral surface states of a three-dimensional quantum Hall system
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We investigate the effect of surface disorder on the chiral surface states of a three-dimensional quantum
Hall system. Utilizing a transfer-matrix method, we find that the localization length of the surface state along
the magnetic field decreases with the surface disorder strength in the weak disorder regime but increases
anomalously in the strong disorder regime. In the strong disorder regime, the surface states mainly locate at the
first inward layer to avoid the strong disorder in the outmost layer. The anomalous increase of the localization
length can be explained by an effective model, which maps the strong disorder on the surface layer to the weak
disorder on the first inward layer. Our work demonstrates that surface disorder can be an effective way to control
the transport behavior of the surface states along the magnetic field. We also investigate the effect of surface
disorder on the full distribution of conductances P(g) of the surface states in the quasi-one-dimensional (1D)
regime for various surface disorder strengths. In particular, we find that P(g) is Gaussian in the quasi-1D metal
regime and log-normal in the quasi-1D insulator regime. In the crossover regime, P(g) exhibits highly nontrivial
forms, whose shapes coincide with the results obtained from the Dorokhov-Mello-Pereyra-Kumar equation of
a weakly disordered quasi-1D wire in the absence of time-reversal symmetry. Our results suggest that P(g) is
fully determined by the average conductance, independent of the details of the system, in agreement with the
single-parameter scaling hypothesis.
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I. INTRODUCTION

The quantum Hall effect (QHE) in two-dimensional (2D)
electron systems originates from discrete Landau levels form-
ing under a strong perpendicular magnetic field [1,2]. In
three-dimensional (3D) systems, the band dispersion along the
magnetic field (z axis) usually closes the quantum Hall gap.
However, if the interlayer coupling is small compared with the
Landau level spacing, we expect that the QHE still exists [3,4].
This idea was realized in an engineered multilayer quantum
well system [3,5] and, very recently, in an anisotropic lay-
ered material, BaMnSb2 [6,7]. Even if the interlayer coupling
is large enough to close the quantum Hall gap, a gap may
further be induced by a spontaneous charge density wave in
the z direction under a strong magnetic field [8]. The 3D
QHEs recently observed in ZrTe5 [9–11] and HfTe5 [12,13]
are suggested to be of this type. Signatures of 3D QHE have
also been found in Bechgaard salts [14,15], η-Mo4O11 [16],
graphite [17,18], n-doped Bi2Se3 [19], and EuMnBi2 [20].
These materials offer us great opportunities to study the QHE
beyond two dimensions [21–28].

The distinct feature of a 2D quantum Hall system is its
chiral edge states, which are topologically protected by the
bulk gap and robust against disorder. In the 3D case, the
chiral edge state of each layer is coupled to neighboring edge
states, forming a 2D chiral surface state [29]. The transport
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properties of the chiral surface states turn out to be highly
anisotropic in the presence of disorder. Due to the chiral nature
of the surface states, the in-plane transport is ballistic. In
the vertical direction, interestingly, there exist three distinct
regimes in a mesoscopic sample, namely, 2D chiral metal,
quasi-one-dimensional (1D) metal, and quasi-1D insulator
[30–35].

The existence of the 2D chiral surface states was confirmed
in Refs. [5,6,36]. So far, however, the three transport regimes
of the surface states have not been investigated in experiments.
Disorder is inevitable in real experiments. With the improve-
ment of sample quality, disorder in the bulk tends to be weak,
and surface disorder tends to dominate transport. The latter
can be caused by the defects on the surface and adsorption
of residual atoms in the vacuum rest gas. In addition, surface
disorder can be easily controlled by adatom deposition, ion
sputtering, and air exposure, hence allows a systematic study
in experiments. Therefore, it is important to investigate the
effect of surface disorder on the 2D chiral surface states.
Theoretically, the disordered surface states have been mainly
investigated using a 2D directed network model [4,32–35,37]
and a 2D continuum model [29–31,38–40]. However, we note
that the scattering strength of an adatom on a sample surface
can easily be of the order of magnitude of 1 eV [41,42], which
can be much larger than the 3D quantum Hall gap [6]. In
such a condition, the disorder-induced coupling between the
surface and bulk states has to be taken into consideration.
Moreover, as we can see below, the strong disorder on the
surface layer tends to push the surface states inward into the
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bulk. A 2D model that describes the surface alone cannot
capture the physics above, and one needs to treat a full 3D
Hamiltonian here.

In this paper, we study the effect of surface disorder on
the 2D chiral surface states using a 3D tight-binding lattice
model [43,44]. Surface disorder has also been considered in
the context of topological insulators [45–52]. Different from
topological insulators, our 3D quantum Hall system can be
viewed as 2D Chern insulators stacked in the z direction.
While the in-plane surface transport is expected to be topo-
logically protected, there is no such topological protection
in the vertical direction. For 2D topological insulators, it has
been shown that the surface conductance is always quantized
and remains unchanged by surface disorder at any disorder
strength [48,51]. Therefore, we focus on vertical transport in
this work. Utilizing a transfer-matrix method, we first de-
termine the localization length of the surface states in the
z direction under various surface disorder strengths. As the
disorder strength increases, the localization length decreases
in the weak disorder regime but increases anomalously in the
strong disorder regime. The main weight of the surface state
gradually moves from the outmost layer to the first inward
layer and finally forms a weakly disordered surface state be-
neath the disordered surface layer in the large disorder limit
[46]. The anomalous increase of the localization length in
the strong disorder regime can be explained by an effective
model [47], which maps the strong disorder on the surface
to the weak disorder on the first inward layer. Our results
demonstrate that surface disorder can be an effective way to
control the transport behavior of the surface states in the z
direction. For the localized surface state in the intermediate
disorder regime, the conduction can be further enhanced by
doping disorder on its surface, forming a more extended state
beneath the outmost disordered layer.

We also investigate the effect of surface disorder on the
conductance distributions P(g) of the chiral surface states
in the quasi-1D regime. The conductance distributions of
the chiral surface states have been mainly investigated using
the 2D directed network model in the literature [32,33,35].
Analytically, Gruzberg, Read, and Sachdev proved that in
the quasi-1D regime, the conductance properties of the 2D
directed network model are the same as those of a weakly
disordered quasi-1D wire [32]. The conductance distributions
of the latter can be calculated from the Dorokhov-Mello-
Pereyra-Kumar (DMPK) equation of the Fokker-Planck
approach [53–58]. Direct numerical investigations of the P(g)
of the chiral surface states are rather limited in the literature.
To the best of our knowledge, the only work was done in
Ref. [35], which studied P(g) using the 2D directed network
model in the quasi-1D regime. However, the P(g) in the
crossover regime between the quasi-1D metal and insulator
regimes was not closely examined in Ref. [35]. We emphasize
that both the network model and the DMPK equation are,
however, only valid in weakly disordered systems. It is unclear
whether the conductance distributions of the chiral surface
states in the quasi-1D regime can still be described by the
DMPK equation in the presence of strong surface disorder,
which is the typical case in realistic samples.

Using the 3D tight-binding model, we investigate P(g)
of the chiral surface states under various surface disorder

strengths and provide a detailed study of the P(g) in the
crossover regime. It is found that P(g) is Gaussian in the
quasi-1D metal regime and log-normal in the quasi-1D in-
sulator regime as expected. In the crossover regime, P(g) is
found to exhibit highly nontrivial forms, whose shapes coin-
cide with the results obtained from the DMPK equation of
a weakly disordered quasi-1D wire in the absence of time-
reversal symmetry (unitary universality class) [32,57,58]. Our
results suggest that P(g) is the only function of the average
conductance, independent of the surface disorder strength and
the size of the system, in agreement with the single-parameter
scaling hypothesis. For most of our work, the disorder is only
introduced at the surface of the sample, and the bulk is left
clean. Finally, we examine the effect of weak disorder in the
bulk, which is often the case in a realistic sample.

The rest of the paper is organized as follows. In Sec. II we
describe the tight-binding Hamiltonian for the 3D quantum
Hall system and the numerical method we use. In Sec. III
we present our numerical results. The paper is summarized
in Sec. IV.

II. MODEL AND METHOD

We consider an electron on an Lx × Ly × Lz cubic lattice
in the presence of a magnetic field Bẑ with tight-binding
Hamiltonian

H = −
∑
〈i, j〉

(
ti je

iθi j c†
i c j + H.c.

)
, (1)

where we have anisotropic nearest-neighboring hopping

ti j =
⎧⎨
⎩

1 i and j are horizontal nearest neighbors
tz i and j are vertical nearest neighbors
0 i and j are not nearest neighbors.

We choose Landau gauge �A = (0, Bx, 0) and define θi j =
e
h̄

∫ j
i

�A · d�l . The magnetic flux φ per unit cell in a horizontal
plane is

φ

φ0
= Ba2

hc/e
= 1

2π

∑
�

θi j, (2)

where φ0 = hc/e is the flux quantum.
In the 2D limit with Lz = 1, this model has a butterflylike

self-similar energy spectrum, as the flux φ per unit cell varies
[59]. When the flux φ per unit cell is chosen as φ0/N for
integer N , there are exactly N subbands in the spectrum.
Here we consider the case where tz is much smaller than the
horizontal hopping t = 1, so that the subband gaps are not
closed by the dispersion in the z axis. The 2D chiral surface
states lie in the gap regions between the subbands and can be
revealed by imposing open boundary conditions in the x and
y directions.

To study the effect of surface disorder on the surface states,
we consider the random on-site potential given by

Himp =
∑

i

εic
†
i ci, (3)

where εi are independent variables with identical uniform
distribution on [−W/2,W/2], and W is the surface disorder
strength. The effect of bulk disorder, where disorder is added
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FIG. 1. Density of states of a 21 × 21 × 21 cubic lattice with
φ = φ0/3, tz = 0.1 for (a) bulk-disordered systems with disorder
strength Wbulk and (b) surface-disordered systems with disorder
strength W . Here we apply OBCs in the x and y directions and a
PBC in the z direction.

on every site of the system, on the bulk and surface states
of this model has been studied in Refs. [43,44]. Here, we
consider surface disorder and introduce disorder only for the
sites at the outmost sidewalls of the sample.

The evolution of the density of states (DOS) as a func-
tion of the disorder strength for both bulk-disordered and
surface-disordered systems is illustrated in Fig. 1. Here we
choose φ = φ0/3, tz = 0.1. The system size is 21 × 21 × 21,
and we apply open boundary conditions (OBCs) in the x
and y directions and a periodic boundary condition (PBC) in
the z direction. In such a case, the 2D chiral surface states
can be identified by the finite DOS inside the bulk band
gaps. For bulk-disordered systems, the Landau bands broaden
as the bulk disorder strength Wbulk increases. The gaps be-
tween the subbands close at about Wbulk = 3. For Wbulk >

3, the three Landau bands merge into a single large band,
which keeps broadening with increasing Wbulk. The DOS of
surface-disordered systems displays quite different behaviors,
as shown in Fig. 1(b). Similar to the bulk-disordered case, the
band tails of the DOS expand as the surface disorder strength
W increases. The central region, however, is relatively stable
against disorder. The finite DOS of the surface states inside
the band gaps persists even when W = 150, indicating that

the surface states are topologically protected by the bulk gap
and cannot be destroyed by surface disorder.

To calculate the two-terminal vertical conductance, we
attach two semi-infinite clean leads at the top and bottom
ends of the sample. The conductance is calculated from the
Landauer-Büttiker formula [60]

G = 2e2

h
Tr(tt†). (4)

In it, t is the transmission matrix, which we calculate using
the transfer-matrix method [61,62]. For simplicity, we use the
dimensionless conductance g defined as g = G/(2e2/h) in the
rest of the paper.

III. RESULTS

A. Localization length

Due to the chiral nature of the edge states, the transport of
the surface states is ballistic in the x-y plane. Furthermore,
the unidirectional transport in the x-y plane suppresses the
localization effect in the z direction. In order to make quantum
interference happen, an electron has to circumnavigate the
sample and return to its starting point. This is impossible in an
infinite sample. Thus, for an infinite sample, vertical transport
is always diffusive, independent of the disorder strength [29].

In a mesoscopic sample, an electron can circle the sample
and interfere with itself. For a very long length Lz, the system
is of quasi-1D nature. The interference can happen many
times so that the surface state is localized in the z direction.
This is the so-called quasi-1D insulator regime of the chiral
surface states. For l � Lz � ξ , where l is the mean free path
and ξ is the localization length, the system is in the diffusive
regime. Here another characteristic length scale emerges and
separates the diffusive regime into two regimes [33]. During
one round-trip of the sample, an electron diffuses a distance
L0 in the vertical direction. If L0 � Lz � ξ , that means the
electron circles around the sample many times before diffus-
ing out, and the system is in the quasi-1D metal regime. If
l � Lz � L0, the electron diffuses out of the sample without
a complete round-trip, and the system is in the 2D chiral metal
regime. In terms of the average conductance, both regimes
share the same Ohmic behavior. However, the conductance
fluctuations can be much larger in the 2D chiral metal regime,
since the system can be effectively broken up into independent
parallel strips, whose width is the distance an electron prop-
agates in the chiral direction during the trip [30,33]. We note
that to avoid entering into the ballistic regime, the system size
needed for the 2D chiral metal regime is rather large for a 3D
tight-binding Hamiltonian [34,35,44]. Therefore, we focus on
the quasi-1D metal and insulator regimes in this paper.

The characteristic length scale that separates the quasi-
1D metal and insulator regimes is the localization length ξ .
First, we study how the surface disorder strength affects the
localization length of the surface states in the z direction. The
localization length can be determined from the scaling behav-
ior of the average conductance. For relatively short samples,
the average conductance follows a typical Ohmic behavior.
For relatively long samples, the average conductance decays
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FIG. 2. Averaged logarithm of conductance 〈ln g〉 as a function
of the length Lz in a quasi-1D system L × L × Lz at E = −1.35 for
widths L = 21 and 30. Here φ = φ0/3, tz = 0.1, and the surface
disorder strength W = 1. The average is taken over 104 disorder
realizations. The inset shows 〈ln g〉 as a function of Lz in units of
C in the insulating regime, where C is the circumference of the
sample. We determine the localization length from the inset using
〈ln g〉 = −2Lz/ξ . The fitting yields ξ = 53.5 ± 0.1 for L = 21 and
ξ = 69.1 ± 0.7 for L = 30.

exponentially with the length Lz in the form

〈ln g〉 ∼ −2Lz

ξ
. (5)

The crossover from the quasi-1D metal to insulator regime
occurs at 〈g〉 ∼ 1, where Lz is of the order of ξ . Figure 2 shows
〈ln g〉 as a function of Lz in a quasi-1D system L × L × Lz for
two different transverse system sizes L = 21 and 30. Here we
choose φ = φ0/3, tz = 0.1, and the surface disorder strength
W = 1. The energy is at E = −1.35, which is near the cen-
ter of the subband gap (see Fig. 1). For a quasi-1D system,
the localization length is expected to be proportional to the
number of conducting channels N [55]. Since the number of
conducting channels of the surface states is proportional to
the circumference C of the sample, we expect the localization
length to be approximately proportional to C. This is verified
in the inset of Fig. 2, where 〈ln g〉 is plotted as a function of
Lz in units of C for very long samples. The two straight lines
are almost parallel to each other. We obtain the localization
lengths from the inset by using Eq. (5), and the fitting yields
ξ = 53.5 ± 0.1 for L = 21 and ξ = 69.1 ± 0.7 for L = 30.

By repeating the above procedure, we calculate the local-
ization length as a function of the surface disorder strength
in Fig. 3. For both widths L, the localization length decreases
as the disorder strength increases at weak disorder. However,
after a critical disorder strength Wc, which is of the order of the
bandwidth, the localization length increases anomalously with
the disorder strength. In other words, the conduction of the
surface state is enhanced by surface disorder in this regime.
Moreover, we note that the distance between the two curves
becomes slightly larger in the strong disorder regime.

To understand the anomalous increase of the localization
length in the strong disorder regime, in Fig. 4 we plot the typi-
cal surface states in a 21 × 21 × 21 cubic lattice at E = −1.35

 10
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ξ

W
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L = 30

FIG. 3. Log-log plot of the localization length ξ as a function
of the surface disorder strength W in a quasi-1D system L × L × Lz

at E = −1.35 for L = 21 and 30. Here φ = φ0/3, tz = 0.1. Both
curves reach their minimum at Wc = 6, and the distance between
them becomes larger in the strong disorder regime.

for surface disorder strengths W = 1, 6, and 150. For weak
disorder W = 1, the surface state mainly locates at the outer-
most layer and is extended in the z direction. At intermediate
disorder W = 6, the surface state moves inward significantly,
and it becomes inhomogeneous in the x-y plane and localized
in the z direction. For very strong disorder W = 150, the sur-
face state mainly locates at the first inward layer and becomes
extended again in the z direction. The surface states in the x-y
plane are topologically protected by the bulk gap of the sys-
tem. Since surface disorder does not alter the bulk gap, it never
destroys the surface states in the x-y plane. This is also verified
in the DOS in Fig. 1(b). For very strong disorder, the surface
layer becomes an Anderson insulator [46]. The redistributed
surface state on the first inward layer can be considered as
an interface state between an Anderson insulator and a 3D
quantum Hall system [46,47]. More quantitatively, in Fig. 5,
we plot the probability P(d ) = ∫

d3�x|ψ (�x)|2δ[d − d (�x)] as
a function of distance d from the surface in a 21 × 21 × 21
cubic lattice at E = −1.35 for W = 0, 6, 11, 40, and 150. As
the surface disorder strength increases, the main weight of the
surface state gradually moves from the outmost layer to the
first inward layer.

The larger distance between the curves of localization
lengths in the strong disorder regime in Fig. 3 can be under-
stood from the movement of the surface states in the x-y plane.
Due to the double-log plot in Fig. 3, the distance between
the curves measures the ratio of the localization lengths. As
mentioned above, the localization length is expected to be pro-
portional to the circumference C of the surface states. In the
weak disorder regime, the surface states mainly locate at the
outermost layer, and the ratio of C at L = 30 to C at L = 21
can be calculated as (30 × 4 − 4)/(21 × 4 − 4) = 1.45. On
the other hand, in the strong disorder regime, the surface states
mainly locate at the first inward layer, and the C ratio increases
to (28 × 4 − 4)/(19 × 4 − 4) = 1.5. This explains why the
ratio of the localization lengths becomes larger in the strong
disorder regime.
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FIG. 4. Typical surface states in a 21 × 21 × 21 cubic lattice at E = −1.35 for surface disorder strengths (a) W = 1, (b) W = 6, and
(c) W = 150. Here φ = φ0/3, tz = 0.1. The results are obtained by exact diagonalization under OBCs in the x and y directions and a PBC in
the z direction for three particular disorder realizations. We show both the plots of the 3D probability density |ψ |2 and its projections onto the
x-y, x-z, and y-z planes. Each lattice point is represented by a small cube (square), whose color and opacity depend on the value of |ψi|2. The
color and opacity bar is given on the right of each plot. For weak disorder W = 1, the surface state mainly locates at the outermost layer and
is extended in the z direction. At intermediate disorder W = 6, the surface state moves inward significantly, and it becomes inhomogeneous
in the x-y plane and localized in the z direction. For very strong disorder W = 150, the surface state mainly locates at the first inward layer to
avoid the strong disorder in the outmost layer, and it becomes extended again in the z direction.

Since the surface states mainly locate at the first inward
layer in the strong disorder regime, one can derive an effective
model that describes the effect of surface disorder on the first
inward layer [47]. To proceed, we divide the system into two
parts: the clean bulk and the disordered surface layer. The
Schrödinger equation of the whole system can be written as

(
H0 V
V † Hdis

)(
ψ0

ψdis

)
= E

(
ψ0

ψdis

)
, (6)

where H0 is the Hamiltonian for the clean bulk, Hdis is the
Hamiltonian for the disordered surface layer, V and V † are
the couplings between them, and ψ0 and ψdis are the cor-
responding wave functions. In the strong disorder regime,
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FIG. 5. The probability P(d ) = ∫
d3�x|ψ (�x)|2δ[d − d (�x)] as a

function of distance d from the surface in a 21 × 21 × 21 cubic
lattice at E = −1.35 for surface disorder strengths W = 0, 6, 11, 40,
and 150. Here φ = φ0/3, tz = 0.1. The average is taken over 103

disorder realizations. As the surface disorder strength increases, the
main weight of the surface state gradually moves from the outmost
layer to the first inward layer.

W � t , ψdis may be considered as a high-energy sector and
can be integrated out. Eliminating ψdis in Eq. (6), we obtain
an effective Hamiltonian for the clean bulk(

H0 − VV †

Hdis − E

)
ψ0 = Eψ0, (7)

which means that the disorder potential on the first inward
layer is renormalized into V (Hdis − E )−1V †. Physically, this
term describes the virtual hopping from the clean bulk to the
states on the disordered surface layer with typically very dif-
ferent energies, and finally back to the bulk. Since the matrix
elements of V are of the order of t , the effective disorder
on the first inward layer is of the order of t2/W , which is
much weaker than the disorder strength W on the outmost
layer. As W increases, the effective disorder on the first inward
layer decreases. This explains the anomalous increase of the
localization length in the strong disorder regime.

The above argument suggests that the minimum of the
localization length Wc is situated at disorder strength of the
order of the in-plane hopping strength t and is independent of
the interlayer hopping strength tz. This is indeed the case in
the numerical simulation in Fig. 3, where Wc = 6 for t = 1,
tz = 0.1. To further verify this point, we have numerically
checked that when the in-plane hopping strength doubles to
t = 2, Wc also doubles to 12; on the other hand, Wc remains
unchanged when the interlayer hopping strength tz is reduced
to 0.01.

B. Conductance distributions

So far, we have investigated the effect of surface disorder
on the localization length of the chiral surface states in the
z direction, which can be determined from the scaling of the
average conductance. In the following, we consider the effect
of surface disorder on the full distribution of the conductances
in the quasi-1D regime.

The conductance distributions of the chiral surface states
have been mainly investigated using a 2D directed network
model in the literature [32,33,35]. Analytically, Gruzberg,
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Read, and Sachdev proved that in the quasi-1D regime, the
conductance properties of the 2D directed network model
are the same as those of a weakly disordered quasi-1D wire
[32]. The latter has been extensively investigated, and a nearly
complete description of the conductance properties is avail-
able in the literature [55,56]. The first two moments of the
conductance distribution have been calculated using the su-
persymmetric nonlinear σ model [63,64]. Furthermore, the
full probability distribution of the transmission eigenvalues
P({Tn}) can be obtained from the DMPK equation of the
Fokker-Planck approach [53]. The DMPK equation describes
the evolution of P({λn}) with increasing wire length Lz [55]:

l
∂P

∂Lz
= 2

βN + 2 − β

N∑
n=1

∂

∂λn
λn(1 + λn)J

∂

∂λn

P

J
, (8)

J =
N∏

i=1

N∏
j=i+1

|λ j − λi|β, (9)

where λn is related to Tn by λn = (1 − Tn)/Tn and β is the
symmetry index, β = 1, 2, or 4 for orthogonal, unitary, or
symplectic class, respectively. For the unitary class, which
is the case we study here, the DMPK equation can be ex-
actly solved [54]. The conductance distribution P(g) can be
further calculated from P({Tn}), which was performed in
Refs. [57,58]. Thus, the equivalence between the two mod-
els offers us great insight into the conductance properties of
the chiral surface states in the quasi-1D regime. Numerical
investigations of P(g) of the chiral surface states are rather
limited in the literature. To the best of our knowledge, the
only work was done in Ref. [35], which studied P(g) using the
2D directed network model in the quasi-1D regime. However,
the conductance distributions in the crossover regime between
the quasi-1D metal and insulator regimes were not closely
examined in Ref. [35].

It is important to note that both the network model and the
DMPK equation are only valid in weakly disordered systems.
The network model describes the percolation of electrons in
a strong magnetic field and smooth disorder potential [65,66].
In the presence of strong surface disorder, it is no longer valid
and cannot capture the inward movement of the surface states.
The derivation of the DMPK equation is also based on the
assumption that the wire is weakly disordered, so that the
scattering in each increasing step δLz can be treated pertur-
batively [53,55,62,67]. Thus, it is an open question whether
the conductance distributions of the chiral surface states in the
quasi-1D regime can still be described by the DMPK equation
in the presence of strong surface disorder, which is the typical
case in realistic samples. In the following, we investigate the
effect of surface disorder on the conductance distributions
of the surface states using the 3D tight-binding model under
various disorder strengths.

We first present the results in the quasi-1D metal regime.
Figure 6(a) shows the conductance distributions P(g) in a
quasi-1D system 30 × 30 × Lz at E = −1.35 with φ = φ0/3,
tz = 0.1, and W = 1. We recall that the localization length
of this system is ξ = 69.1 ± 0.7, which was calculated in
Sec. III A. For Lz = 6, 9, and 14, Lz � ξ , and the system is
deeply in the metallic regime. As shown in the figure, P(g) is
well approximated by a Gaussian in this regime. We note that
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FIG. 6. Conductance distributions (a) P(g) and (b) P(ln g) in
a quasi-1D system L × L × Lz at E = −1.35 in the (a) quasi-1D
metal regime and (b) quasi-1D insulator regime. Here φ = φ0/3,
tz = 0.1. To construct each histogram, 5 × 104 disorder realizations
were used. Solid lines are fit to (a) Gaussian and (b) log-normal
distributions. For (a), we use L = 30 and W = 1, and the curves
from right to left correspond to Lz = 6, 9, and 14; for (b), L = 21
and W = 6, and the curves from right to left correspond to Lz = 25,
35, and 45.

the widths of the distributions barely change with Lz at small
Lz/ξ . The variance of the conductance is 0.0637, 0.0692, and
0.0715 for Lz = 6, 9, and 14, respectively, which is close to
the universal value 1/15 in the unitary class [33–35].

For the quasi-1D insulator regime, in Fig. 6(b) we plot the
conductance distributions P(ln g) in a quasi-1D system 21 ×
21 × Lz at E = −1.35 with φ = φ0/3, tz = 0.1, and W = 6.
The calculated localization length is ξ = 2.65 ± 0.01 for this
system. We choose Lz = 25, 35, and 45, which fulfills Lz � ξ ,
to plot the conductance distributions. As shown in the figure,
P(ln g) can be well fitted by log-normal distributions in this
regime.

The conductance distribution is of particular interest in the
crossover regime, where 〈g〉 ∼ 1 [35,58,68]. Figure 7 repre-
sents the evolution of P(g) in a quasi-1D system L × L × Lz at
E = −1.35 with φ = φ0/3, tz = 0.1 in the crossover regime.
We choose three sets of parameters of disorder strengths
and transverse system sizes, ranging from weak to strong
surface disorder strength. For all cases, the agreements be-
tween the three distributions are excellent. This validates the
single-parameter scaling hypothesis in this surface-disordered
system. The conductance distribution depends only on the
average conductance, independent of the details of the system.
As the average conductance 〈g〉 decreases, P(g) gradually
deviates from the Gaussian distribution in the metallic regime.
For 〈g〉 = 4/5, only the g > 1 part can be approximated by
the Gaussian function. At 〈g〉 = 1/2, the distribution becomes
highly asymmetric, and there is a drastic change near g = 1.
Finally, for 〈g〉 = 1/3, the distribution develops a huge peak in
the small-g region, driving the system towards the insulating
regime. The peculiar forms of the conductance distributions in
the crossover regime have also been observed in other systems
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FIG. 7. Conductance distributions P(g) in a quasi-1D system
L × L × Lz at E = −1.35 in the crossover regime for (a) 〈g〉 = 1,
(b) 〈g〉 = 4/5, (c) 〈g〉 = 1/2, and (d) 〈g〉 = 1/3. Here φ = φ0/3,
tz = 0.1. Three different systems were used: (�) W = 1, L = 21,
(©) W = 10, L = 51, and (	) W = 150, L = 30, corresponding to
the surface disorder strength in the weak, intermediate, and strong
disorder regimes. We choose the length Lz such that the resulting 〈g〉
is closest to the corresponding 〈g〉 in each plot. The small deviation in
(c) for (©) W = 10, L = 51 from other curves can be attributed to its
smaller 〈g〉 = 0.488 compared with 〈g〉 = 0.50 for other curves. To
construct each histogram, 5 × 104 disorder realizations were used.
Solid lines are the Monte Carlo solutions of the DMPK equation of
a weakly disordered quasi-1D wire in the unitary class, taken from
Ref. [58].

[35,58,68–73]. Remarkably, we find that our results coincide
well with the results obtained from the DMPK equation of a
weakly disordered quasi-1D wire in the unitary class [57,58],
which are indicated as solid lines in Fig. 7. Therefore, our
results suggest that the conductance distributions of the chiral
surface states in the quasi-1D regime can still be described
by the DMPK equation, even in the presence of intermedi-
ate and strong surface disorder. We note that in the strong
surface disorder regime, the strong disorder on the surface
layer can be effectively mapped to the weak disorder on the
first inward layer, as we discussed in Sec. III A. Thus, the
truly unexpected finding is that the description of the DMPK
equation still holds in the intermediate disorder regime, where
the localization length is much shorter than the transverse size
of the sample.

Finally, it is worth noting that different from ordinary
surface-disordered wires [74], the bulk of our system is insu-
lating. Thus the unique physics in surface-disordered systems,
such as Lévy flights [75] and the coexistence of different
transport regimes [76], does not occur in our system.

C. Effect of weak bulk disorder

Up to now, we have discussed the effect of surface disorder
on the surface states by assuming that the bulk is clean. How-
ever, in a realistic sample, the bulk is often weakly disordered.
In this section, we discuss the effect of bulk disorder on the

50

 10

 1  10  100

ξ

W

Wbulk = 0
Wbulk = 1

FIG. 8. Log-log plot of the localization length ξ as a function
of the surface disorder strength W in a quasi-1D system L × L × Lz

at E = −1.35 with and without weak bulk disorder Wbulk = 1. Here
φ = φ0/3, tz = 0.1, and L = 21. In the presence of bulk disorder,
the localization length almost does not change in the weak surface
disorder regime and decreases significantly in the strong surface
disorder regime.

surface-disordered system by introducing weak disorder in the
bulk with disorder strength Wbulk = 1.

We first discuss the effect of bulk disorder on the localiza-
tion length of the surface states in the z direction. In Fig. 8,
we show the localization length as a function of the surface
disorder strength W in a quasi-1D system at E = −1.35 in
the absence and presence of bulk disorder. In the weak surface
disorder regime, the weak disorder in the bulk almost does not
alter the localization length. Since the surface states mainly
locate at the outermost layer in this regime, the disorder in
the bulk has little influence on them. On the other hand,
the localization length decreases significantly in the strong
surface disorder regime, as the surface states are now pushed
into the bulk and mainly locate at the first inward layer. In
the absence of bulk disorder, one expects the localization
length to be infinitely large in the limit of infinite surface
disorder strength. In this limit, the outermost layer is fully
decoupled from the rest of the system, and the latter becomes
disorder-free. With bulk disorder, the localization length can-
not increase unboundedly and is expected to converge to
the value of a bulk-disordered system in the infinite surface
disorder limit.

Another effect of bulk disorder is to decrease the bulk
band gap [43], hence increasing the penetration length of the
surface states, which decay exponentially into the bulk. We
illustrate this in Fig. 9 by plotting the distributions of the
surface states in a 48 × 48 × 48 cubic lattice for different
bulk disorder strengths Wbulk with the surface disorder strength
W = 6. Clearly, as the bulk disorder strength increases, the
penetration length of the surface states becomes larger.

For conductance distributions, the presence of weak bulk
disorder Wbulk = 1 does not modify the results in Sec. III B.
We have numerically checked that P(g) is still the only func-
tion of the average conductance and coincides with the DMPK
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FIG. 9. Semi-log plot of the probability P(d ) =∫
d3�x|ψ (�x)|2δ[d − d (�x)] as a function of distance d from the

surface in a 48 × 48 × 48 cubic lattice at E = −1.35 for bulk
disorder strengths Wbulk = 0, 1.5, 2, and 2.5. Here φ = φ0/3,
tz = 0.1, and the surface disorder strength W = 6. We apply OBCs
in the x and y directions and a PBC in the z direction. The average
is taken over 103 disorder realizations. As the bulk disorder strength
increases, the penetration length of the surface states becomes larger.

results for a weakly disordered quasi-1D wire in the unitary
class.

IV. SUMMARY

To summarize, we have investigated the effect of surface
disorder on the chiral surface states of a 3D quantum Hall
system. We find that in the weak disorder regime, the local-
ization length in the z direction decreases with the surface
disorder strength as expected. However, after a critical dis-
order strength, which is of the order of the in-plane hopping
strength, the localization length increases anomalously. As
the surface disorder strength increases, the main weight of
the surface state gradually moves from the outmost layer to
the first inward layer. We explain the anomalous increase of
the localization length by an effective model, which maps the
strong disorder on the surface layer to the weak disorder on
the first inward layer.

We also investigate the effect of surface disorder on the
conductance distributions P(g) of the chiral surface states in
the quasi-1D regime for various surface disorder strengths. We
find that in the quasi-1D regime, the conductance distributions
of the surface states can be well described by the DMPK
equation of a weakly disordered quasi-1D wire, even in the
presence of intermediate and strong surface disorder. P(g) is
fully determined by the average conductance, independent of
the surface disorder strength and the size of the system, in
agreement with the single-parameter scaling hypothesis. We
have checked that the existence of weak disorder in the bulk
does not modify the above physical picture. The main effect
of bulk disorder is to decrease the bulk band gap [43], hence
increasing the penetration length of the surface states. It also
decreases the localization length of the surface states in the
strong surface disorder regime.

Despite recent experimental developments in the 3D QHE,
for real materials, the evidence of the 2D chiral surface states
has only been provided in Ref. [6], partly due to the difficulty
of device fabrication in the vertical transport measurement
[9]. In the future, it would be interesting to further examine
the properties of the surface states in experiments, especially
the three transport regimes in mesoscopic samples. Our
work demonstrates that surface disorder can be an effective
way to control the behavior of the surface states in the z
direction. Importantly, the surface states can be pushed into
the bulk and protected by the disordered surface layer in the
strong surface disorder regime. Since surface disorder can
be easily manipulated by adatom deposition, ion sputtering,
and air exposure, and conductance can be directly measured
in experiments, we expect that our results can be verified by
experiments in the future.
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