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Generic scaling laws, such as Kolmogorov’s 5/3 law, are milestone
achievements of turbulence research in classical fluids. For quan-
tum fluids such as atomic Bose–Einstein condensates, superfluid
helium, and superfluid neutron stars, turbulence can also exist
in the presence of a chaotic tangle of evolving quantized vor-
tex lines. However, due to the lack of suitable experimental tools
to directly probe the vortex-tangle motion, so far little is known
about possible scaling laws that characterize the velocity corre-
lations and trajectory statistics of the vortices in quantum-fluid
turbulence, i.e., quantum turbulence (QT). Acquiring such knowl-
edge could greatly benefit the development of advanced statisti-
cal models of QT. Here we report an experiment where a tangle
of vortices in superfluid 4He are decorated with solidified deu-
terium tracer particles. Under experimental conditions where these
tracers follow the motion of the vortices, we observed an appar-
ent superdiffusion of the vortices. Our analysis shows that this
superdiffusion is not due to Lévy flights, i.e., long-distance hops
that are known to be responsible for superdiffusion of random
walkers. Instead, a previously unknown power-law scaling of the
vortex–velocity temporal correlation is uncovered as the cause.
This finding may motivate future research on hidden scaling laws
in QT.

quantum turbulence | superfluid | superdiffusion |
particle tracking velocimetry | scaling laws

Quantum fluids, such as superfluids, superconductors, and
Bose–Einstein condensates (BECs), exhibit macroscopic

quantum coherence that is responsible for their dissipationless
motion (1). In these quantum fluids, all rotational motion is
sustained by quantized vortex lines, i.e., line-shaped topological
defects characterized by a circulating flow of particles with a dis-
crete circulation κ= h/m , where h is Planck’s constant and m is
the mass of the particle.

Turbulence in quantum fluids, i.e., quantum turbulence (QT),
can be induced by a tangle of interacting vortex lines (2).
These vortex lines evolve chaotically under their self-induced
and mutually induced velocities and can reconnect when they
move across each other (3). The underlying science of QT is
broadly applicable to a variety of coherent physical systems, such
as coherent condensed-matter systems [e.g., superfluid 3He and
4He (4), atomic and polariton BECs (5), and type II super-
conductors (6)], cosmic systems [e.g., neutron-pair superfluid
in neutron stars (7, 8), cosmic strings in the Abelian–Higgs
model (9), and possible axion dark matter BECs in galactic
halos (10)], and even complex light fields (11). Insight into the
generic scaling laws that characterize the evolution of quan-
tized vortex tangles can inform statistical models of QT, which
could have a broad significance spanning multiple branches of
physics.

QT research has been conducted mostly in superfluid 3He and
4He due to the material’s accessibility and the wide range of
length scales involved in their turbulence behaviors (12). Never-
theless, despite extensive theoretical and numerical studies of the
vortex-line dynamics in superfluid helium (13–15), past experi-
mental research has largely been limited to the measurements

of spatially averaged quantities such as the vortex-line density L
(i.e., length of vortices per unit volume) (16–18) or local pres-
sure and temperature variations (19, 20). Important statistical
properties of a fully developed vortex tangle, such as the vortex–
velocity correlations and their trajectory statistics, remain largely
unexplored due to the lack of experimental tools for probing the
vortex-line motion.

A breakthrough has been made in recent years with the devel-
opment of quantitative flow visualization techniques (21). In
particular, by decorating the vortices in superfluid 4He (He II)
with solidified hydrogen particles, Bewley et al. (22) demon-
strated direct vortex-line visualization. Since then, vortex-line
reconnections and Kelvin-wave excitations on individual vortices
have been filmed (23–25). Nevertheless, visualization data show-
ing the real-time evolution of a complex vortex tangle are still
lacking, which impedes the development of reliable statistical
models for describing QT (26).

In our recent experiment on He II QT driven by an applied
heat current, we seeded the fluid with solidified deuterium (D2)
tracer particles and observed that a group of particles could
remain trapped on the tangled vortices (27–30). By applying a
separation scheme in data analysis (28), we were able to track
solely these trapped particles and therefore could directly probe
the vortex-tangle dynamics. In this paper, we discuss our study
of the apparent diffusion of these trapped particles under exper-
imental conditions where they faithfully follow the motion of the
evolving vortices.

We report the observation of a superdiffusion of the vor-
tices in the tangle when their root-mean-square displacement
(rmsd) is less than the mean intervortex distance ` = L−1/2. Sur-
prisingly, our analysis shows that this superdiffusion is not due
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Fig. 1. (A) A schematic diagram of the experimental setup. (B) Representative trajectories obtained at T = 1.85 K and q = 38 mW/cm2 in He II for G1 particles
trapped on vortices (blue) and G2 particles entrained by the normal fluid (red). (C) The corresponding streamwise particle–velocity distribution, where the
solid and the dashed curves represent Gaussian fits to the data.

to Lévy flights (i.e., randomized, long-distance hops) that are
known to be responsible for superdiffusion in various physical
and nonphysical systems (31). Instead, we reveal that a previously
unknown power-law scaling of the vortex–velocity temporal cor-
relation is the cause. The derived power-law exponent appears to
be temperature and vortex-line density independent, suggesting
that the observed scaling behaviors may be generic properties
of a fully developed random vortex tangle. These findings may
excite future research on hidden scaling laws in QT.

Results
Experimental Setup and Procedures. Our experimental setup is
shown schematically in Fig. 1A. A 400-Ω planar resistive heater
is installed at the bottom of a vertical flow channel (1.6×1.6×33
cm3) inside a He II bath. The temperature T of the He II in the
bath can be controlled by regulating the vapor pressure. When a
direct current voltage is applied to the heater, a counterflow of
the two interpenetrating fluid components of He II establishes
in the flow channel (32): The viscous normal-fluid component
that consists of thermal quasiparticles in He II (i.e., phonons and
rotons) flows away from the heater at a mean velocity given by
vn = q/ρsT , where q is the heat flux, and ρ and s are the He
II density and specific entropy, respectively; while the inviscid
superfluid component (i.e., the condensate) moves in the oppo-
site direction at a velocity vs = −vnρn/ρs , where ρn/ρs is the
density ratio of the two fluids.

It has been known that above a small threshold heat flux of
the order 10 mW/cm2 (33), turbulence appears spontaneously
in the superfluid as a random tangle of quantized vortex lines,
each carrying a quantized circulation κ' 10−3 cm2/s around its
angstrom-sized core (3). A mutual friction between the two flu-
ids arises due to scattering of the thermal quasiparticles off the
vortices (34). Above a heat flux of the order 102 mW/cm2, the
normal fluid can also become turbulent (35–37), rendering a
complex doubly turbulent system (38–41). Our current research
focuses on the low heat flux regime where only the superfluid is
turbulent.

To probe the flow, we adopt a particle-tracking velocimetry
(PTV) technique using solidified D2 particles as tracers. Due to
their small sizes (i.e., about 4 µm in diameter) (42), these parti-
cles have a small Stokes number in the normal fluid and hence
are entrained by the viscous normal-fluid flow (43). But when
they are close to the vortex cores, a Bernoulli pressure due to the
superfluid flow induced by the vortex cores can push the particles

toward the cores (3), resulting in the trapping of the particles
on the quantized vortex lines. These tracer particles are illumi-
nated by a thin continuous-wave laser sheet and their positions
are recorded by a video camera at 90 Hz. We have also installed
a pair of second-sound transducers for measuring the vortex-line
density using a standard second-sound attenuation method (44).
More details can be found in Materials and Methods.

As we reported in refs. 28–30, two distinct groups of particles
can be observed at q below about 102 W/cm2 (Fig. 1B). The
G1 group includes particles entrapped on vortices, resulting in
irregular trajectories. The G2 group includes untrapped parti-
cles entrained by the up-moving laminar normal fluid, resulting
in relatively straight trajectories. The streamwise particle veloc-
ity distribution based on the analysis of all trajectories exhibits
two nearly separated peaks (Fig. 1C), which allows us to distin-
guish these two groups of particles for separately analyzing their
motion (28). The mean velocity of the G2 particles equals the
expected normal-fluid velocity. The G1 particles are carried by
the vortex tangle which drifts at vs toward the heater at small
q (45), but in general the G1 particles may also slide along the
vortices due to the viscous drag from the normal fluid.

Nevertheless, at q less than a few tens of mW/cm2, we find
that the mean velocity of the G1 particles is about vs (28), in

Fig. 2. Representative data showing the horizontal mean-square displace-
ment 〈∆x2(t)〉 of the G1 particles as a function of the diffusion time t. The
solid and the dashed lines are power-law fits to the data.
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Fig. 3. A and B show, respectively, the obtained scaling exponents γ1 and
γ2 for the two diffusion regimes of the G1 particles. (C) A comparison of the
transition rmsd with the mean intervortex distance `. The vertical error bars
represent the uncertainties in the power-law fits as shown in Fig. 2, and
the horizontal error bars denote the standard deviation of the measured
`. At small vortex-line density L (i.e., large `), the increased measurement
uncertainty leads to large horizontal error bars.

agreement with the observations of Paoletti et al. (46, 47). This
observation suggests that the viscous drag effect on the trapped
G1 particles should be mild in the low heat-flux regime. Further-
more, a recent theoretical work suggests that micrometer-sized
tracers trapped on quantized vortex lines in He II are indeed
immobilized along the lines due to an effective friction originat-
ing from the breakdown of the vortex coherence (48). Therefore,
in the low heat flux regime, it is feasible to explore the genuine
vortex-tangle dynamics by tracking the motion of the trapped G1
particles. Specifically, we focus on studying the apparent diffu-
sion of the G1 particles in the horizontal direction to keep the
viscous drag influence minimal.

Vortex Diffusion Statistics. For the data obtained at each temper-
ature and heat flux, we first calculate the horizontal mean-square
displacement of the G1 particles 〈∆x2(t)〉 = 〈[x (t)− x (0)]2〉,
where the diffusion time t starts from the moment when a parti-
cle is first observed along its trajectory, and the angle brackets
denote an ensemble average over at least 103 trajectories. In
general, a power-law scaling 〈∆x2(t)〉∝ tγ is expected, where
the exponent γ is often used to identify different types of dif-
fusions, i.e., normal diffusion (γ = 1), superdiffusion (γ >1), and
subdiffusion (γ <1) (49). Fig. 2 shows a representative result
obtained at T = 1.7 K and q = 38 W/cm2. The data exhibit
two power-law scaling regimes: a superdiffusion regime with
γ1'1.63 at small rmsd (i.e.,

√
〈∆x2〉) and a nearly normal dif-

fusion regime with γ2' 1.1 at larger rmsd. These two regimes
intersect at

√
〈∆x2〉c ' 79.6 µm. Due to their irregular tra-

jectories, the G1 particles seldom stay in the thin laser plane
for a long time. Therefore, we have relatively few long tra-
jectories to study the G1 particle diffusion at large t , which
limits the range of the observed γ2-scaling regime. We also
comment that at sufficiently small diffusion times, the vortex seg-
ments are expected to move ballistically at the local superfluid
velocity (3), which should lead to a t2 scaling of 〈∆x2〉. How-
ever, this distinct regime likely would occur only below a few
milliseconds for the vortex-line density examined in our exper-
iments, which is beyond the resolution of typical He II PTV
measurements.

Our analysis of the datasets obtained at other heat fluxes and
temperatures also shows similar two-power-law scaling regimes.
The derived γ1, γ2, and

√
〈∆x2〉c are collected in Fig. 3. Surpris-

ingly, in the explored temperature range of 1.7 to 2.0 K where
ρn/ρs varies from 0.3 to 1.24 (50), the γ1 value is always around
1.6 to 1.7 while γ2 is close to unity, regardless of the applied
heat fluxes. This suggests that the observed diffusion scalings
could be generic properties of an evolving random vortex tan-
gle. We have also examined the transition rmsd that separates
the two diffusion regimes and find that

√
〈∆x2〉c increases with

decreasing the vortex-line density L. Considering the fact that
the diffusion occurs in three-dimensional (3D) space, we com-
pare

√
3〈∆x2〉c with the measured intervortex distance ` in

Fig. 3C. These two quantities agree reasonably, suggesting that
the transition occurs when the rmsd of the vortices is greater
than `.

It is worthwhile noting that the spatial spreading of a decay-
ing isolated vortex tangle at T = 0 K either near a solid surface
(51) or in bulk He II (52) has been simulated. The growth of the
tangle diameter d as reported in ref. 52 exhibits a normal diffu-
sion regime at large t and a clear superdiffusion regime at small
t with a fitted scaling of about d2∝ t1.74 (note that the authors
interpreted this latter regime as the ballistic regime). This simi-
larity is encouraging, although our work focuses on the trajectory
statistics of vortices in a steady tangle at finite temperatures.

4

8
Gaussian 

A 210

010

210�

0-0.2 0.2

t ���
t � 4
t � 8

Gaussian fit

10 2 3

(
)

m
�

�

B

10

5

15

1.65opt� �

C

0-0.05 0.05

210

010

210�

410�

Rescaled

1

1

( ) (0) (mm)x x t x� � �

1
(

,
) 

(m
m

)
P

x
t

�
�

/2
( / )  (mm)optx t �� �� �

/2
1

(
/

)
 (

m
m

)
op
t

P
t

�
�

�
�

20

25

Fig. 4. (A) Representative particle-displacement distribution function
P(∆x, t) for the data obtained at 1.7 K and 29 mW/cm2. (B) The measure of
the self-similarity m versus the scaling exponent γ. (C) The rescaled profiles
of P(∆x, t).

Tang et al.
Superdiffusion of quantized vortices uncovering scaling laws in quantum turbulence

PNAS | 3 of 6
https://doi.org/10.1073/pnas.2021957118

D
ow

nl
oa

de
d 

at
 F

lo
rid

a 
S

ta
te

 U
ni

ve
rs

ity
 L

ib
ra

rie
s 

on
 M

ar
ch

 1
0,

 2
02

1 

https://doi.org/10.1073/pnas.2021957118


4

20

Gaussian

010
110

 (mm)x

 (mm)y

-610

-410

-210

010

0 0.02-0.02

0.00

-0.02

-0.04

A B

0t �

6t �

( , )P x t �� �
3x

�
��

/x ��

1

Fig. 5. (A) An example G1 particle trajectory that exhibits one large step
displacement. (B) The tail profiles of P(∆x, t), normalized by the stan-
dard deviation σ of ∆x, at different t. The data were taken at 1.7 K and
29 mW/cm2.

Furthermore, following ref. 52, we can use our data in the normal
diffusion regime to evaluate the effective diffusion coefficient
ν′/κ = 3〈∆x2(t)〉/4t . For the data shown in our Fig. 2, we get
ν′/κ' 0.3, which is close to the simulated values (51, 52).

Vortex-Displacement Distribution. Naturally, one would wonder
about the cause of the observed vortex-line superdiffusion and
why there is a transition to normal diffusion at

√
3〈∆x2〉c ∼ `.

Indeed, superdiffusion has been observed in a wide range of sys-
tems, such as the motion of cold atoms in an optical lattice (53),
the chaotic drifting of tracers in rotating flows (54), the cellular
transport in biological systems (55), and even the search patterns
of human hunter-gatherers (56). A useful function for charac-
terizing superdiffusion is the distribution function P(∆x , t) of
the particle displacement ∆x at time t , whose time evolution is
often described by a fractional diffusion equation (57). A gen-
eral property of P(∆x , t) is the existence of a self-similar scaling
P(∆x , t) = (t/t ′)−

γ
2 ·P(∆x · (t/t ′)−

γ
2 , t ′), where the scaling

exponent γ should be identical to the diffusion exponent of the
mean-square displacement (31). To test whether this property
holds for the apparent diffusion of the G1 particles, we examine
the P(∆x , t) profiles at different t for the data taken at 1.7 K and
29 mW/cm2 (see example profiles in Fig. 4A). We use the profile
at t = τ as the reference, where τ '11 ms is the time step set by
the camera frame rate. To determine the optimal exponent γopt
that gives the best match among the P(∆x , t) profiles after the
rescaling, we minimize the profile difference by calculating the
standard L1-type variance (53)

m(γ) =

N τ∑
t=τ

∫
| (t/τ)

γ
2 ·P(∆x · (t/τ)

γ
2 , t)−P(∆x , τ) | dx∫

P(∆x , τ)dx
,

[1]
where the summation goes over all of the P(∆x , t) profiles
obtained at t ∈ [τ ,N τ ], where N τ is the maximum diffusion time
in the γ1-scaling regime. Fig. 4B shows the calculated variance m
as a function of γ. The minimum m is achieved at γopt = 1.65,
which is indeed close to the diffusion scaling exponent
γ1 = 1.57 for the chosen dataset. As shown in Fig. 4C, the
rescaled P(∆x , t) profiles overlap very well except perhaps in
the tail region.

Indeed, for superdiffusion systems involving random walk-
ers, another important property of P(∆x , t) is its non-Gaussian
tails. It has been identified that superdiffusion in those systems
is caused by long-distance hops of the walkers (53–57), i.e.,

the so-called Lévy flights (31). These flights lead to asymptotic
power-law tails of the step-displacement distribution P(∆x , τ)∝
|∆x |−α with α< 3 (58). After many steps, the resulting P(∆x , t)
converges to a Lévy distribution with similar power-law tails.
The variance 〈∆x2〉 for such a heavy-tailed distribution diverges,
but a pseudovariance behavior 〈∆x2(t)〉∝ tγ with γ = 2

α−1
can

be derived through a scaling argument (31, 57, 58), resulting
in an apparent superdiffusion (i.e., γ > 1 when α< 3). With-
out such fat tails (i.e., if α≥ 3), 〈∆x2〉 would converge, which
then leads to a Gaussian distribution of P(∆x , t) and hence a
normal diffusion of the walkers according to the central limit
theorem (58).

Interestingly, the trapped G1 particles do exhibit occasional
long-distance hops over the time step τ . An example G1 tra-
jectory that contains an exceptionally large step displacement
is shown in Fig. 5A. The origin of these long-distance hops
has been understood as due to the particles carried by vor-
tex segments that are close to locations of vortex reconnections
(29). As revealed by Paoletti et al. (46), vortex reconnections
result in local high vortex–velocity occurrences, which lead to
non-Gaussian |v |−3 tails of the vortex-line velocity distribu-
tion. Therefore, when τ is small, the step-displacement dis-
tribution of the vortex lines should acquire similar power-law
tails P(∆x , τ)∝ |∆x |−3. However, since the velocities of the
reconnecting vortex segments become high only within a short
time window centered at the moment of reconnections, over
longer time t the total displacement of a vortex segment ∆x =∫ t

0
vx (t ′)dt ′ would rarely exhibit exceptionally large values.

Therefore, the tails of the resulting P(∆x , t) are suppressed. To
see this effect, we show the tails of P(∆x , t) at different t in
Fig. 5B for the data taken at 1.7 K and 29 mW/cm2. Obviously,
as t increases from τ to 20τ , the tail changes from close to |∆x |−3

to nearly a Gaussian form. This observation is similar in nature to
what was reported in ref. 59. Therefore, despite the existence of
some long-distance hops of the G1 particles at small time steps,
their statistical weight is not sufficient to render the observed
superdiffusion.

Vortex–Velocity Correlation. Without invoking Lévy flights,
superdiffusion may still emerge if the motion of the particles is
not completely random but instead exhibits extended temporal
correlations (58, 60). For quantized vortices in a vortex tangle,
the chaotic motion of the vortex segments is driven by their
self-induced and mutually induced velocities (3). There is no
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Fig. 6. The calculated horizontal-velocity temporal correlation function
Rx(t′) for the data taken at 1.7 K and 38 mW/cm2. The solid line represents
a power-law fit.
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existing knowledge on whether this motion is completely random
or indeed has a certain temporal correlation.

Mathematically, the mean-square displacement 〈∆x2(t)〉 of a
vortex-line segment can be evaluated based on its velocity vx (t)
as (61)

〈∆x2(t)〉= 2

∫ t

0

dt0

∫ t−t0

0

dt ′〈vx (t0)vx (t0 + t ′)〉, [2]

where the horizontal-velocity temporal correlation function
Rx (t ′, t0) = 〈vx (t0)vx (t0 + t ′)〉 for statistically steady and homo-
geneous systems would depend only on the lapse time t ′; i.e.,
Rx (t ′) = 〈vx (0)vx (t ′)〉. In this situation, if a power-law scal-
ing Rx (t ′)∝ (t ′)−β exists, one can easily derive from Eq. 2 that
the mean-square displacement will scale as 〈∆x2(t)〉∝ t2−β .
On the other hand, if Rx (t ′) drops rapidly with t ′, a normal
diffusion can be obtained. In Fig. 6, we show the calculated
Rx (t ′) for the representative dataset included in Fig. 2. At
small lapse time t ′, the data do exhibit a power-law scaling
with β of about 0.4. This scaling exponent leads to 〈∆x2(t)〉∝
t1.6, which agrees nicely with the observed superdiffusion. Fur-
thermore, Rx (t ′) drops sharply beyond a transition time that
coincides with the transition to the normal diffusion as seen in
Fig. 2, which naturally explains this transition. Similar Rx (t ′)
scaling behaviors are also observed for other datasets. These
observations provide direct evidence showing the existence of a
possible generic power-law scaling of the vortex–velocity tem-
poral correlation at scales less than ` for a random vortex
tangle.

Discussion
The analyses that we have presented support the following sim-
ply physical picture. The trapped G1 particles move with the
quantized vortices in the tangle whose velocities exhibit a power-
law temporal correlation. This correlation leads to an apparent
superdiffusion of the vortex lines in 3D space. But when their
rmsd becomes greater than the mean intervortex distance `, the
vortices are expected to move across each other and hence would
undergo reconnections. Following the reconnections, the result-
ing vortex lines move apart toward directions that are distinct
from their original directions (23, 25), a process that effectively
randomizes the motion of the vortices. This randomization then
leads to a sharp drop of the vortex–velocity temporal correlation
and hence results in the normal diffusion of the vortices at large
length and time scales.

Note that the spatial velocity correlation functions of vortices
in atomic condensates have been simulated (62, 63), where the
authors reported a rapid decay of the correlation over a length
scale comparable to `. But to test the physical picture we have
outlined, numerical simulations similar to ref. 64 need to be con-
ducted so that the temporal correlation of the vortex velocity
in steady counterflow turbulence can be examined. Indeed, our
communication with the authors of ref. 64 has returned encour-
aging news that their recent simulation does reproduce the
power-law scaling of the vortex–velocity correlation as depicted
in Fig. 6. These authors also notice that the derived diffusion
exponent γ1 is nearly temperature independent, thereby support-
ing our observation about the generic nature of this diffusion
scaling.

In summary, our work demonstrates that examining the veloc-
ity correlations and trajectory statistics of individual vortices
in a vortex tangle could uncover hidden scaling properties of
QT. Along the lines, many intriguing questions may be raised.
For instance, what is the mechanism underlying the observed
power-law scaling of the vortex–velocity temporal correlation for
a random tangle? Does this scaling also hold for a vortex tan-
gle with large-scale polarizations? How do superfluid parcels

Table 1. Measured vortex-line density L

T (K) q (mW/cm2) L (cm−2)

1.70 74 (22.5± 1.0)× 103

49 (9.7± 1.0)× 103

38 (5.5± 1.3)× 103

29 (1.7± 1.1)× 103

1.85 82 (28.2± 3.2)× 103

38 (2.8± 1.7)× 103

2.00 63 (34.9± 6.1)× 103

undergo apparent diffusion and dispersion in QT? We hope that
these questions will stimulate more future research on vortex and
superfluid dynamics.

Materials and Methods
Particle-Tracking Velocimetry. We use solidified deuterium (D2) particles as
tracers in He II. These tracer particles are produced by slowly injecting a
mixture of 5% D2 gas and 95% 4He gas directly into the He II bath via
a gas injection system similar to what Fonda et al. (65) reported. Upon
the injection, the D2 gas forms small ice particles with a mean diameter
of about 4 µm, as determined from their settling velocity in quiescent
He II (42). Following the particle injection, we then turn on the heater
and wait for 10 to 20 s for a steady counterflow to establish in the
flow channel. A continuous-wave laser sheet (thickness, 200 µm; height,
9 mm) passes through the geometric center of the channel to illuminate
the particles. The positions of the particles in the illuminated plane are
captured by a video camera at 90 frames per second. At a given tem-
perature and heat flux, we took a sequence of 720 images and would
typically repeat this data acquisition three times to obtain enough parti-
cle trajectories for statistical analyses. A modified feature-point tracking
routine (66) is adopted to extract the trajectories of the tracer particles
from the sequence of images. The velocity of a particle can be determined
by dividing its displacement from one frame to the next by the frame
separation time.

Separation Data Analysis Scheme. To determine whether a tracer particle
belongs to the G1 group (i.e., particles that are trapped on vortices) or the
G2 group (i.e., untrapped particles that are entrained by the normal fluid),
a separation data analysis scheme is adopted (28). As shown in Fig. 1C, the
vertical-velocity distribution based on the analysis of all particle trajectories
exhibits two nearly separated peaks at low heat fluxes. Through Gaussian
fits to these two peaks, we can determine their respective mean velocities
(i.e., v̄1 and v̄2) and the corresponding standard deviations (i.e., σ1 and σ2).
Then, for a particle with a vertical velocity vy < v̄2− a2σ2, it is categorized
as a G1 particle. Otherwise, if vy > v̄1 + a1σ1, the particle is treated as a G2
particle. Depending on how far the G1 and the G2 peaks are separated,
the coefficients a1 and a2 are adjusted in the range of 2 to 6 to better dis-
tinguish the two groups. Most of the particle trajectories can be identified
as either the G1 type or the G2 type. At relatively large heat fluxes, some
trajectories may appear to be partly the G1 type and partly the G2 type.
This is due to the particles originally moving with the normal fluid later get-
ting trapped by vortex lines (i.e., G2 to G1) or the trapped particles getting
released during vortex reconnections (i.e., G1 to G2). In the current work, we
focus on analyzing the whole and partial trajectories that are identified as
the G1 type.

Second-Sound Attention. We measure the volume-averaged vortex-line den-
sity L in the flow channel using the standard second-sound attenuation
method (44). Due to its two-fluid nature, He II supports two distinct sound
modes: an ordinary pressure-density wave (i.e., the first sound), where both
fluids move in phase, and a temperature-entropy wave (i.e., the second
sound), where the two fluids move out of phase. The second-sound waves
can be generated and picked up by oscillating superleak transducers (44).
These transducers are essentially parallel plate capacitors with one fixed
plate and one flexible plate made of a thin porous membrane coated with
an evaporated gold layer. By applying an alternating current to one trans-
ducer as shown in Fig. 1A, a standing second-sound wave across the channel
width can be established, whose amplitude can be measured by the other
transducer installed on the opposite channel wall. In the presence of quan-
tized vortices, the amplitude of the second-sound wave is attenuated, and
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the degree of this attenuation can be used to calculate the vortex-line den-
sity L (42). Table 1 lists our measurement results under various temperatures
and heat fluxes.

Data Availability. All study data related to this work, including the flow
visualization videos, have been deposited in Open Science Framework
(10.17605/OSF.IO/YQUZV).
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