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Abstract
Chronic musculoskeletal (MSK) pain is disabling to individuals and burdensome to so-
ciety. A relationship between telomere length and resilience was reported in individu-
als with consideration for chronic pain intensity. While chronic pain associates with 
brain changes, little is known regarding the neurobiological interface of resilience. 
In a group of individuals with chronic MSK pain, we examined the relationships be-
tween a previously investigated resilience index, clinical pain and functioning meas-
ures, and pain-related brain structures, with consideration for sex and ethnicity/race. 
A cross-sectional analysis of 166 non-Hispanic Black and non-Hispanic White adults, 
45–85 years of age with pain ≥ 1 body site (s) over the past 3 months was completed. 
Measures of clinical pain and functioning, biobehavioral and psychosocial resilience, 
and structural MRI were completed. Our findings indicate higher levels of resilience 
associate with lower levels of clinical pain and functional limitations. Significant as-
sociations between resilience, ethnicity/race, and/or sex, and pain-related brain gray 
matter structure were demonstrated in the right amygdaloid complex, bilateral thala-
mus, and postcentral gyrus. Our findings provide compelling evidence that in order 
to decipher the neurobiological code of chronic pain and related protective factors, it 
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1  | INTRODUC TION

Chronic musculoskeletal (MSK) pain conditions affect a large pro-
portion of the world population, represent a leading cause of 
functional decline and disability, and contribute toward significant 
societal burden (Briggs et al., 2016; Hoy et al., 2010; Vos et al., 2015). 
Research has predominantly focused on the role of risk factors in 
the development and exacerbation of chronic MSK pain (Blagojevic 
et  al.,  2010; Edwards et  al.,  2016; Mills et  al.,  2019; Silverwood 
et al., 2015). However, lower levels of clinical pain and greater func-
tioning are predicted by protective factors (Haukka et  al.,  2017; 
Macfarlane et al., 2017; Thompson et al., 2018). Investigating fac-
tors associated with resilience may reveal new avenues to reduce 
pain severity and aid in therapeutic developments moving forward 
(Bartley et al., 2017; Johnson et al., 2019; Sturgeon & Zautra, 2010). 
Resilience is conceptualized as “the process by which people bounce 
back from adversity and reintegrate and ideally grow from the ex-
perience” (Resnick, 2014). Psychological resilience factors, such as 
positive affect, dispositional optimism, active coping, acceptance, 
and purpose in life, have been shown to be inversely related to the 
negative sequelae of chronic MSK pain (Ferreira & Sherman, 2007; 
Hassett & Finan,  2016; Karoly & Ruehlman,  2006; Newton-John 
et  al.,  2014; Ong et  al.,  2010; Strand et  al.,  2006). Behavioral and 
social resilience factors such as engaging in physical activity, being 
a non-smoker, consuming a nutritious diet, maintaining a healthy 
weight, and receiving positive social support, have been linked with 
better outcomes among individuals with chronic MSK pain, includ-
ing lower morbidity and mortality (Geneen et  al.,  2017; Lambert 
et al., 1990; Lee et al., 2016; López-Martínez et al., 2008; Macfarlane 
et al., 2017; Messier et al., 2013; Sibille et al., 2016, 2018).

In addition to improving pain-related symptoms, resilience fac-
tors, as suggested by emerging evidence, may protect against the 
adverse biological consequences of chronic pain. Several studies 
have shown chronic pain severity and associated stress-related fac-
tors are inversely related to telomere length (Hassett et al., 2012; 
Sibille et  al.,  2017; Sibille, Langaee, et  al.,  2012), which is a mea-
sure of cellular aging and a downstream biomarker of stress system 
functioning (Epel et al., 2004; Sibille, Langaee, et al., 2012; Sibille, 
Witek-Janusek, et al., 2012). Thus, resilience factors might buffer the 
biological consequences of chronic pain and align with epidemiolog-
ical studies indicating better health outcomes, that is, reduced risk 
of morbidity and mortality, in individuals with chronic MSK pain who 
report protective health behaviors (Macfarlane et al., 2017).

Altered brain structure represents another biological conse-
quence of chronic pain. A strong body of evidence confirms differ-
ences in brain morphology in individuals with varying chronic MSK 
pain conditions compared to pain-free controls (Baliki et al., 2011; 
Kuchinad et  al.,  2007). In general, a pattern of decreased gray 
matter volume across cortical and subcortical areas of the brain 
is indicated in chronic MSK pain (Coppieters et  al.,  2016; Davis 
et al., 2016; Hashmi et al., 2013). While brain changes might predate 
chronic MSK pain, evidence suggests pain influences brain structure. 
Indeed, studies show increased gray matter volume following surgi-
cal interventions for knee and hip osteoarthritis (Gwilym et al., 2010; 
Lewis et al., 2018; May, 2011; Rodriguez-Raecke et al., 2009, 2013). 
Although little is known regarding the relationship between resil-
ience factors and the brain in individuals with chronic MSK pain, re-
lationships have been reported between measures of resilience and 
brain function and structure associated with chronic pain (Bushnell 
et al., 2015; Hemington et al., 2018).

The research on the neurobiological interface of resilience 
specific to the stress responses and stress-related disorders (e.g., 
post-traumatic stress disorder and major depressive disorder) 
are well underway (Horn et  al.,  2016; Kautz et  al.,  2017; Osório 
et al., 2017). Resilience in response to stress is linked to a complex 
array of neurochemical responses and the structure and function 
of the hypothalamic–pituitary–adrenal axis, frontal and cingulate 
regions, and subcortical nuclei, among other larger brain networks 
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will be important to improve how chronic pain is phenotyped; to include an equal rep-
resentation of females in studies including analyses stratifying by sex, and to consider 
other sociodemographic factors.
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Significance

Chronic musculoskeletal pain is disabling to individuals and 
burdensome to society. In individuals with chronic muscu-
loskeletal pain, we investigated relationships between re-
silience, pain, functioning, and pain-related brain structure 
with consideration for sociodemographic factors. Higher 
resilience associates with lower pain severity and func-
tional limitations. Additionally, relationships between resil-
ience and pain-related brain structure were indicated in the 
right amygdala, bilateral thalamus, and postcentral gyrus 
which differed by sex and ethnicity/race. Our research 
demonstrates a neurobiological correlate to resilience and 
the importance of considering sociodemographic factors 
in investigations.
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(Cathomas et al., 2019; Horn et al., 2016). The neurobiology of resil-
ience involves numerous systems in the body which are influenced 
by predisposing factors such as genetics and temperament and ex-
acerbated or buffered by environmental experiences and epigen-
etic changes (Cathomas et al., 2019; Ioannidis et al., 2020; Osório 
et al., 2017). Models of resilience in the brain frequently align with 
the concept of allostasis (McEwen, 2016). Differences in individual 
systems are considered to be the result of the cumulative array of 
biopsychosocial, behavioral, and environmental factors facilitating 
adaption or dysregulation, for example, symptom/disease onset 
(Casale et  al., 2019; Ioannidis et  al., 2020). Importantly, the multi-
ple levels of functioning and complex array of factors provide nu-
merous potential targets to better understand the neurobiology of 
resilience.

Evaluation of the relationship between pain and functioning, 
resilience, and pain-related areas of the brain will also require 
the consideration of sex and ethnicity/race. Compelling evidence 
demonstrates sex and ethnic/race group differences in sever-
ity of chronic MSK pain and pain-related disability. Specifically, 
women have a higher prevalence, incidence, and severity of 
chronic MSK pain conditions compared to men (Boyan et al., 2013; 
Srikanth et al., 2005). Underrepresented ethnic/race groups (e.g., 
non-Hispanic Blacks) experience greater clinical pain and func-
tional limitations compared to their non-Hispanic White peers 
(Allen,  2010; Vaughn et  al.,  2019). Additionally, sex and ethnic/
race group differences have also been observed in the relation-
ship between risk and resilience factors and pain (Bartley, Hossain, 
et al., 2019; Booker et al., 2019) and in associations of pain cata-
strophizing with brain structure (Terry et  al.,  2020). Women are 
at greater risk for mood disorders and although not consistent, 
a number of studies indicate pain coping and social support dif-
ferences by gender (Dowdy et al., 1996; El-Shormilisy et al., 2015; 
Li et al., 2014; Rovner et al., 2017). The evidence for differences 
in psychosocial measures by ethnic/race group are also not con-
sistent, however, there is a pattern of findings showing that the 
relationships between psychosocial measures and clinical pain 
and neurobiological markers differ by ethnic/race group (Allen 
et  al.,  2006; Bartley, Hossain, et  al.,  2019; Booker et  al.,  2019; 
McIlvane, 2007; Terry et al., 2020).

The purpose of this study was to examine, in a group of in-
dividuals with chronic MSK pain, the relationships between a 
previously investigated biobehavioral/psychosocial resilience 
index (Johnson et  al.,  2019), clinical pain and functioning mea-
sures, and pain-related brain structure, with consideration for 
sociodemographic factors. Our objectives were to: (a) evaluate 
associations between the resilience index and clinical pain and 
functioning measures; (b) investigate associations between the 
resilience index and pain-related brain structures; and (c) explore 
sex and ethnic/race group differences in the resilience index and 
associations with pain-related brain structures. We hypothesized: 
(a) an inverse association between resilience and clinical pain, (b) 
that a relationship between resilience and pain-related areas of 
the brain would emerge, and (c) that the relationships between 

resilience and pain-related areas of the brain would differ by sex 
and ethnicity/race.

2  | MATERIAL S AND METHODS

2.1 | Study overview

Data used in the current cross-sectional study were obtained 
from an ongoing prospective observational cohort study titled 
Understanding Pain and Limitations in Osteoarthritic Disease-2 
(UPLOAD-2). The study aims to investigate the mechanisms un-
derlying ethnic/race group differences among adults with or at 
risk for knee osteoarthritis (OA). The UPLOAD-2 study is a multi-
site investigation conducted at the University of Florida (UF) and 
the University of Alabama at Birmingham (UAB). The participants 
described in the current analysis were recruited at both sites be-
tween August 2015 and May 2017. All procedures were reviewed 
and approved by the Institutional Review Boards at UF and UAB, 
and participants provided written and verbal informed consent. 
Participants were recruited through the community via multi-
ple advertisement methods (e.g., posted fliers) and clinic-based 
methods.

2.2 | Participants

The UPLOAD-2 Study completed baseline data collection in 253 
community-dwelling adults between 45 and 85 years of age who 
self-identified as non-Hispanic Black/African American (NHB) or 
non-Hispanic White/Caucasian/European (NHW). Forty partici-
pants did not complete neuroimaging due to contraindications (e.g., 
claustrophobia, safety concerns). Additional participants were ex-
cluded for poor image quality, neuropathology, or missing covari-
ates (n = 14) or lack of pain at one or more body sites (n = 33). The 
final sample included 166 participants who reported experiencing 
pain at one or more body sites on more days than not, over the 
past 3 months, and who had completed the brain MRI. As the pri-
mary aim of the larger, ongoing parent study (UPLOAD-2) was to 
assess mechanisms underlying individual differences among those 
with/without knee pain, individuals were screened initially for the 
presence/absence of knee pain. Most participants reported pain at 
the knee (n = 135), but other pain sites were reported as well. To 
optimize the data available for the analysis of resilience, chronic 
pain, and the brain we included all people reporting chronic pain 
at any body site. Participants were excluded for systemic rheu-
matologic conditions including rheumatoid arthritis and fibro-
myalgia, knee replacement surgery, neurological diseases (e.g., 
Parkinson's disease, multiple sclerosis), chronic daily opioid use, 
uncontrolled hypertension, cardiovascular or peripheral arterial 
disease, psychiatric disorder requiring hospitalization within the 
past 12 months, and pregnancy or nursing. Participants were also 
excluded from the current study if they were unable to undergo 
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magnetic resonance imaging (MRI). The procedures described are 
limited to those relevant to the current investigation.

2.3 | Procedures

Initial eligibility was determined using a standardized telephone 
screening. Data acquired during screening included: sex, age, ethnic/
race identity, and a brief health history to assess eligibility based on 
study exclusion criteria. After initial eligibility was determined, par-
ticipants were invited to attend a health assessment session (HAS). 
Participants completed a health history questionnaire, which included 
sociodemographic information (e.g., education level) and behavioral 
habits (e.g., tobacco usage), followed by a pain history questionnaire, 
which inquired about pain location and intensity across multiple body 
sites. Anthropometric measurements were obtained, specifically 
waist and hip measurements (in centimeters), for calculating waist/
hip ratio. Participants were invited to return within approximately 
2 weeks following the HAS session to complete a brain imaging ses-
sion. Participants completed questionnaires assessing measures of 
psychological resilience, social support, and clinical pain following the 
HAS session and before the brain imaging session.

2.4 | Measures

2.4.1 | Clinical pain and functioning

Revised short-form McGill pain questionnaire (Dworkin et al., 2009)
The revised short-form McGill pain questionnaire (SF-MPQ-2) consists 
of 22 descriptors assessing pain qualities on a 0 (none) to 10 (worst 
possible) numerical rating scale. The SF-MPQ-2 yields four subscales 
(Continuous pain, Intermittent pain, Neuropathic pain, and Affective 
descriptors), and a total pain score. The total score is the mean of all 22 
items with scores ranging from 0 to 10. The four subscales are based 
on an average of subscale items with values also ranging from 0 to 10. 
Higher scores indicate more pain. Subscale and total scores have been 
demonstrated to be valid, reliable, and sensitive to change in clinical 
settings, and showed good internal consistency in the current sample 
(subscale α's = 0.88–0.93; total score α = 0.97). The SF-MPQ-2 has 
been shown to be a responsive measure assessing both neuropathic 
and non-neuropathic pain qualities across a wide array of chronic 
pain conditions (Dworkin et al., 2009). In the UPLOAD2 study, the SF-
MPQ-2 was collected specific to knee pain.

Graded chronic pain scale (Von Korff et al., 1992)
The graded chronic pain scale (GCPS) is a self-report questionnaire as-
sessing knee pain intensity and knee pain-related disability over the 
last 6 months (Von Korff et al., 1992). Participants were asked to rate 
their current, average, and worst knee pain on a 0–10 numeric rating 
scale (NRS). Ratings from the three items were averaged and multiplied 
by 10 to calculate a characteristic pain intensity score ranging from 0 
to 100, with higher scores indicating more pain (Von Korff et al., 1992). 

Participants also reported the degree to which their knee pain in-
terfered with daily activities during the past 6  months on the same 
scale. The responses were averaged and multiplied by 10 to generate 
a disability score (Von Korff et al., 1992). The GCPS has demonstrated 
good internal consistency in previous research (α = 0.74) (Von Korff 
et al., 1992), and in the current sample (α = 0.92). As the GCPS measure 
completed was specific to knee pain, analyses are limited to those who 
screened positive for knee pain in the study.

Western Ontario and McMaster universities osteoarthritis index 
(Bellamy et al., 1988)
The Western Ontario and McMaster universities osteoarthritis index 
(WOMAC) was administered to assess lower extremity (knee) pain 
and function in the past 48 hr (Bellamy et al., 1988). The WOMAC 
is a 24-item measure assessing pain, stiffness, and physical function 
rated on a 5-point Likert-type scale, with higher scores reflecting 
more clinical symptoms. Scores include a total score (0–96), a pain 
subscale (0–20), a stiffness subscale (0–8), and functional limita-
tions (0–68). The WOMAC is a well-validated measure of clinical 
symptoms in persons with OA (Bellamy et  al.,  1988), and demon-
strated good internal consistency in the current sample (subscale 
α's = 0.82–0.97; total score α = 0.97). As the WOMAC measure com-
pleted was specific to knee pain, analyses are limited to participants 
who screened positive for knee pain.

Total number of pain sites
Participants were asked to report where they experienced pain 
on more days than not over the past 3 months. Pain sites included 
hands, arms, shoulders, neck, head/face/jaw, chest, stomach, pelvic 
region, upper back, lower back, knees, legs, feet/ankles, and other. 
Either or both sides of the body could be endorsed for a total score 
ranging from 0 to 28.

PROMIS anxiety, depression, and sleep
The PROMIS Anxiety (7a) is comprised of seven items and measures 
symptoms of anxiety over the prior 7 days based on a 5-point Likert 
scale (1—never to 5—always). Higher scores indicate greater anxiety. 
The PROMIS Depression (Short Form 8b) is comprised of eight items 
and measures symptoms of depression over the prior 7 days based on 
a 5-point Likert scale (1—never to 5—always). Higher scores indicate 
greater depression. The PROMIS Sleep-Related Impairment (Short 
Form 8a) is comprised of eight items and assess sleep related impair-
ment over the prior 7 days based on a 5-point Likert scale (1—never to 
5—always). Higher scores indicate greater sleep disturbance. Based on 
scoring instructions, raw values are converted to T scores. The meas-
ures have been validated in chronic pain populations, including knee 
OA (Driban et al., 2015; Kroenke et al., 2014; Stone et al., 2016).

2.5 | Resilience index

As previously published, the biobehavioral/psychosocial resilience 
index consisted of a battery of validated biological behavioral, 
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psychological, and social measures (described below) that are 
recognized pain-related protective factors (Johnson et al., 2019): 
tobacco use, waist-to-hip ratio, optimism, positive and nega-
tive affect, active coping, perceived stress, and social support. 
Participant responses on each measure were coded as 0 (risk) or 1 
(resilience) based on established clinical norms or referenced val-
ues. A total resilience index was computed based on a summation 
of the risk or resilience score from each measure (0–8) (Johnson 
et al., 2019).

2.5.1 | Biobehavioral components

Tobacco use
Participants responded to a question regarding smoking status: 
“Have you smoked at least 100 cigarettes in your entire life?”(CDC, 
2017) “No” responses indicate resilience and were coded as 1. “Yes” 
responses were coded as 0 to indicate risk.

Waist-to-hip ratio
Participant's waist circumference and hip circumference were 
measured in centimeters using a standard measuring tape. Waist-
to-hip ratio (WHR) was calculated by dividing waist circumference 
by hip circumference. The World Health Organization defines ab-
dominal obesity as a WHR  >  0.85 for women and >0.90 for men 
(World Health Organization, 2011). Consistent with prior research, 
WHR < 0.90 for both men and women was coded as 1, indicating 
resilience. WHRs  ≥  0.90 were coded as 0 indicating risk (Johnson 
et al., 2019).

2.5.2 | Psychological components

Optimism
Dispositional optimism was measured using the Life Orientation 
Test-Revised (LOT-R) (Scheier et al., 1994). The LOT-R is a 10-item 
self-report questionnaire that consists of three items assessing 
optimism (e.g., “In uncertain times, I usually expect the best”), 
three items assessing pessimism (e.g., “If something can go wrong 
for me, it will”), and four filler questions (e.g., “It's important for me 
to keep busy”). Responses are based on a 5-point Likert-type scale 
ranging from 0 (strongly disagree) to 4 (strongly agree) (Scheier 
et al., 1994). Scores range from 0 to 24, with higher scores indicat-
ing optimism. The measure has demonstrated good internal valid-
ity and test–retest reliability (0.79) (Scheier et al., 1994). Internal 
consistency for the sample was adequate (α  =  0.79). Based on 
published normative data (Schou-Bredal et  al.,  2017), response 
totals ≥ 18 were coded as 1 (resilience); scores < 18 were coded 
as 0 (risk).

Positive and negative affect
The Positive and Negative Affect Schedule (PANAS) is a 20-item meas-
ure that consists of 10 positively valenced items (e.g., excited, proud) 

and 10 negatively valenced items (e.g., distressed, scared) (Watson 
et al., 1988). Items are self-rated on a 5-point Likert-type scale rang-
ing from 1 (very slightly or not at all) to 5 (extremely) and summed to 
produce total subscale scores for positive and negative affect rang-
ing from 10 to 50 with higher scores representing higher levels of 
each subscale (Crawford & Henry, 2004; Watson et al., 1988). The 
timeframe collected in this study was “to what extent you gener-
ally feel this way.” The internal consistency for the current sample 
was good (positive affect subscale, α  =  0.91; negative affect sub-
scale, α  =  0.91). High levels of trait positive affect and low levels 
of trait negative affect are considered resilience promoting (Hassett 
et  al.,  2008; Ong et  al.,  2020; Sibille, Kindler, et  al.,  2012; Strand 
et al., 2006; Zautra et al., 2005). Response totals for each subscale 
(i.e., positive affect  ≥  35 and negative affect  ≤  18.2), were coded 
as 1 to indicate resilience (Sibille, Kindler, et  al.,  2012; Watson 
et al., 1988).

Active coping
The Coping Strategies Questionnaire-Revised (CSQ-R) consists of 27 
items designed to assess six coping responses to pain including: 
Distraction, Catastrophizing, Ignoring pain sensations, Distancing 
from pain, Coping self-statements, and Praying (Abbott, 2010; Riley 
& Robinson,  1997; Riley et  al.,  1999; Rosenstiel & Keefe,  1983). 
Participants are asked to rate the frequency of their use of each cop-
ing strategy on a 7-point Likert-type scale, from 0 (never do that) to 6 
(always do that). Scores for each subscale are computed as the mean 
of responses to the corresponding items, with higher scores indicating 
greater use of that strategy.(Robinson et al., 1997) The mean scores 
of the Distraction, Ignoring pain sensations, Distancing from pain, 
and Coping self-statements subscales were averaged to signify total 
active coping (Robinson et al., 1997). The CSQ-R has demonstrated 
acceptable reliability (α's = 0.72–0.86) (Monticone et al., 2014; Riley 
& Robinson, 1997), and showed good internal consistency for each 
active coping subscale within our sample (α = 0.85–0.90). Consistent 
with previous study, response totals ≥ 2.87 indicated resilience and 
were coded as 1, while scores < 2.87 were coded as 0 to indicate risk 
(Johnson et al., 2019).

Perceived stress
The perceived stress scale (PSS) was used to assess participants’ per-
ceptions of stress (Cohen et  al.,  1983). The 10-item measure asks 
participants to rate statements about feelings and thoughts (e.g., 
“Felt that you were unable to control the important things in your 
life?”), during the last month on a 5-point Likert-type scale ranging 
from 0 (never) to 4 (very often). Positively worded items are reverse 
scored and a total score is computed by summing across all scale 
items (Cohen et al., 1994). The PSS is a reliable (α's = 0.84–0.86) and 
valid scale designed to measure the role of non-specific appraised 
stress (Cohen et al., 1983, 1994; Ezzati et al., 2014). Internal consist-
ency was adequate in the current sample (α = 0.60). Resilience cut 
points were based on normative values, with PSS scores < 14 coded 
as 1 to delineate resilience and scores >= 14 coded as 0 to indicate 
risk (Cohen & Janicki-Deverts, 2012; Cohen et al., 1983, 1994).
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2.5.3 | Social component

Social support
The multidimensional scale of perceived social support (MSPSS) is a 
12-item self-report measure used to assess the extent to which 
an individual perceives social support from family (FA; items 3, 
4, 8, and 11), friends (FR; items 6, 7, 9, and 12), and significant 
others (SO; items 1, 2, 5, and 10) (Zimet et al., 1988). Each item is 
rated on a 7-point Likert-type scale, ranging from 1 (very strongly 
disagree) to 7 (very strongly agree). A total scale score was com-
puted by summing across all items, ranging from 12 to 84, with 
higher scores indicating higher levels of perceived support. The 
MSPSS has been previously demonstrated to be a reliable meas-
ure (α's  =  0.81–0.98) (Osman et  al.,  2014; Zimet et  al.,  1990). 
Each subscale demonstrated high internal consistency in the cur-
rent sample (FA: α = 0.95; FR: α = 0.95; SO: α = 0.96). Based on 
published values, scores ≥ 49 were coded as 1 to indicate resil-
ience; total scores < 49 were coded as 0 to indicate risk (Zimet 
et al., 1988).

2.6 | Brain imaging

MRI data were acquired using a 3.0 Tesla Philips Achieva whole body 
scanner with a 32-channel head coil at the University of Florida and 
an 8-channel head coil at the University of Alabama – Birmingham). 
Anatomical images were acquired using a high resolution three-
dimensional (3D) T1-weighted MP-RAGE sequence and used for 
analyses (TR/TE/α = 7.0 ms/3.2 ms/8°, 1 mm3 isotropic voxels, FOV: 
240 × 240 × 176.).

2.6.1 | MRI processing

MP-RAGE files were processed (by trained professional [JJT]) 
using FreeSurfer 6.0 (Fischl, 2012). FreeSurfer is a set of software 
tools for the study of cortical and subcortical anatomy (Fischl 
et  al.,  2002, 2004; Fischl & Dale,  2000). Segmentation of sub-
cortical and related structures (including amygdaloid complex [re-
ferred to as the amygdala throughout for simplicity] and thalamus) 
was performed. The cerebral cortex was parcellated into units 
with respect to gyral and sulcal structure (Fischl et  al.,  2004b; 
Klein & Tourville, 2012; Salat et al., 2004). FreeSurfer's morpho-
metric procedures show good test–retest reliability across scan-
ner manufacturers and across field strengths (Han et  al.,  2006; 
Reuter et al., 2012).

2.6.2 | Brain structure

Recognized cortical and subcortical areas of the brain associ-
ated with chronic MSK pain based on a systematic review were 

included in the analyses (Coppieters et al., 2016). Mean thickness 
values in mm for each cortical region (DKT parcellation) and sub-
cortical volumes in mm3 were exported for analyses. Specifically, 
mean thickness for postcentral gyrus (somatosensory), insula, 
medial orbitofrontal (medial prefrontal), rostral and caudal an-
terior cingulate (ACC), and rostral middle frontal gyrus (dorso-
lateral prefrontal cortex [DLPFC]) were exported bilaterally and 
averaged by region across hemispheres. Amygdala and thalamus 
volumes were also exported and adjusted for estimated total in-
tracranial volume (Buckner et  al.,  2004). Based on established 
evidence (Baeken et  al.,  2014; Davidson,  2002) of subcortical 
laterality effects, we evaluated the left and right amygdala and 
thalamus separately.

2.7 | Data analyses

Data analyses were conducted in SPSS v. 26 (IBM). Data were 
checked for normality, outliers, missing data, and multicollinearity. 
All testing was two sided using a 0.05 level of significance. Chi-
square and Student's t test were used to examine ethnic/race and 
sex group differences in sociodemographic characteristics, pain 
outcomes, the resilience index, and individual resilience factors. 
Where applicable, covariates in the models included: age, site, ed-
ucation, sex, ethnicity/race, and total number of body pain sites. 
Due to the cognitive and affective components of pain self-report 
and the high positive correlations with resilience, total number 
of pain sites was entered as a covariate in the models to adjust 
for chronic pain severity, which is a well-supported approach 
(Bergman et  al.,  2019; McBeth et  al.,  2008; Viniol et  al.,  2013). 
Additionally, as the pattern of the relationship with resilience was 
not known (possibly non-linear), high and low resilience groups 
were also compared and are also presented (Bushnell et al., 2015; 
Maleki et al., 2013).

For Objective 1, regression analyses were conducted to de-
termine the associations between the resilience index and clinical 
pain and functioning measures. Unadjusted and adjusted models 
are reported for resilience and clinical pain and functioning. As the 
SF-MPQ-2, GCPS and WOMAC were assessed specific to knee 
pain, analyses involving those measures are limited to participants 
screened positive for knee pain (n = 135). All clinical pain and func-
tioning measures were entered as continuous variables in the analy-
ses. Covariates included age, site, education, sex, ethnicity/race, and 
total number of body pain sites. Further analyses as noted above, 
Objective 1—part 2, were completed with participants categorized 
as being “high” or “low” on the resilience index based on a group 
median split (Mdn = 5; 0–4 = low resilience; 5–8 = high resilience). 
Multivariate analyses of covariance (MANCOVAs) were used to 
compare differences in clinical pain and functioning measures be-
tween participants classified as “high” or “low” resilience, controlling 
for age, site, education, sex, ethnicity/race, and number of body pain 
sites.
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For Objective 2, to investigate the relationship between the 
resilience index and pain-related brain structures, multivariate mul-
tiple regressions were conducted. Covariates included age, site, 
education, sex, ethnicity/race, and total number of pain sites. For 
Objective 2—part 2, MANCOVAs were used to compare differences 
in pain-related brain structures between participants classified as 
“high” or “low” resilience, controlling for age, site, education, sex, 
ethnicity/race, and number of body pain sites.

For Objective 3, to explore potential differences in associates 
between resilience and brain structure based on sex and ethnic/
race groups, we conducted two multivariate multiple regressions 
(cortical regions of interest and subcortical regions of inter-
est) controlling for age, site, education, sex, ethnicity/race, and 
total number of pain sites to investigate relationships between 
resilience and brain structure with added resilience*ethnicity/
race, resilience*sex, and resilience*ethnicity/race*sex interaction 
terms. Post hoc analyses calculating and using a ratio of right to 
left amygdala volume was performed. Using this ratio variable, 
a Pearson correlation was run to assess correlations with hand-
edness and then an ANCOVA was conducted to assess amygdala 
volume asymmetry controlling for the covariates listed previously. 
Additionally, summary brain structure results (see Table  8) were 
adjusted for multiple comparisons using a false discovery rate 
(FDR) (Benjamini & Hochberg, 1995).

For Objective 3—part 2, we used MANCOVAs to compare dif-
ferences between individuals with high/low resilience comparing 
(e.g., low resilience males vs. low resilience females) and then strat-
ifying by sex (e.g., low resilience males vs. high resilience males) 
and ethnic/race group in pain-related brain structures, controlling 
for age, site, education, total pain sites, and sex or ethnicity/race 
when applicable.

3  | RESULTS

3.1 | Descriptive

Sociodemographic and clinical characteristics of the sample are 
shown in Table 1. Non-Hispanic Blacks (NHBs) were younger than 
non-Hispanic Whites (NHWs), p < 0.001. Most participants were fe-
male (66.3%). The representation of males and females was equiva-
lent across ethnic/race groups. Education differed by ethnic/race 
group (p = 0.019), but not by sex.

A majority (53.4%) of participants reported pain at five or more 
sites on most days over the past 3  months. The most frequently 
reported pain sites were knees (78.3%), low back (53.6%), hands 
(42.8%), shoulders (40.4%), neck (33.7%), and feet/ankles (36.1%). 
The pain experienced was reported as bilateral (80.7%), right side 
only (13.9%), and left side only (5.4%).

In individuals who screened positive for knee pain (n = 135), total 
number of pain sites was significantly correlated with the Revised 
Short-Form McGill Pain Questionnaire (SF-MPQ-2) total score 

(r = 0.24, p = 0.006), the Graded Chronic Pain Scale (GCPS) charac-
teristic pain intensity (r = 0.27, p = 0.002), the GCPS disability score 
(r = 0.20, p = 0.024), and WOMAC total score (r = 0.31, p < 0.001).

Means and standard deviations for pain and functional measures 
are reported in Table 1. Violin plots distributions of GCPS charac-
teristic pain intensity and GCPS disability scores in individuals with 
knee pain are presented in Figure 1. Total number of pain sites re-
ported did not differ significantly by ethnic/race group or sex. There 
were no significant sex differences on the clinical pain or functional 
measures. There were significant ethnic/race group differences on 
all clinical pain measures, with NHBs reporting significantly greater 
pain than NHWs, p's < 0.001.

3.2 | Associations between the resilience index and 
clinical pain and functioning

An inverse association emerged between the resilience index and clin-
ical knee pain as measured by the SF-MPQ-2 total score (unadjusted 
model: b  =  −0.35, p  <  0.001). This relationship remained statisti-
cally significant after controlling for age, site, education, sex, ethnic-
ity/race, and total number of pain sites (adjusted model: b = −0.26, 
p = 0.002). Partial correlations between the resilience index and each 
subscale of the SF-MPQ-2 were significant after controlling for all 
covariates (continuous: r = −0.21, p = 0.017; intermittent: r = −0.22, 
p = 0.013; neuropathic: r = −0.26, p = 0.003; affective: r = −0.32, 
p < 0.001), Table 2.

The resilience index was associated with GCPS characteristic 
knee pain intensity (unadjusted model: b  =  −0.28, p  =  0.001) such 
that higher levels of resilience were associated with lower character-
istic knee pain intensity. After controlling for age, site, education, sex, 
ethnicity/race, and total number of pain sites, the association did not 
remain statistically significant (adjusted model: b = −0.14, p = 0.068). 
Resilience was inversely related to GCPS knee disability score (unad-
justed model: b = −0.32, p < 0.001), and remained significantly asso-
ciated after controlling for all covariates (adjusted model: b = −0.26, 
p = 0.002), Table 2.

The resilience index was also inversely related to the WOMAC 
total score in the unadjusted (b  =  −0.26, p  =  0.002) and adjusted 
models (b  =  −0.17, p  =  0.037), Table  2. Partial correlations, con-
trolling for all covariates, demonstrated significant inverse relation-
ships between resilience and WOMAC stiffness subscale, (r = −0.20, 
p  =  0.028) and WOMAC physical function subscale, (r  =  −0.20, 
p = 0.028).

In all study participants (n = 166), the resilience index was also in-
versely related to the PROMIS Anxiety, Depression, and Sleep-Related 
Impairment measures in unadjusted, (Anxiety: b  =  −0.48, p  <  0.0001; 
Depression: b = −0.48, p < 0.0001; Sleep-Related Impairment: b = −0.36, 
p  <  0.0001) and adjusted models (Anxiety: b  =  −0.50, p  <  0.0001; 
Depression: b = −0.47, p < 0.0001; Sleep-Related Impairment: b = −0.34, 
p < 0.0001). As anticipated, higher resilience is associated with lower levels 
of recent symptoms of anxiety, depression, and sleep related impairment.
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TA B L E  1   Sociodemographic and clinical characteristics of participants across sociodemographic groups

Variable Overall N = 166 Female N = 110 Male N = 56 NHB N = 76
NHW 
N = 90

Age in years, M(SD)* 57.97(8.2) 57.57(8.3) 58.75(7.9) 56.26(6.5) 59.41(9.2)

Sex, N(%)

Female 110(66.3) … … 47(61.8) 63(70)

Male 56(33.7) … … 29(38.2) 27(30)

Ethnicity/Race, N(%)

NHB 76(45.8) 47(42.7) 29(51.8) … …

NHW 90(54.2) 63(57.3) 27(48.2) … …

Education, N(%)

Some high school 12(7.2) 6(5.5) 6(10.7) 8(10.5) 4(4.4)

High school degree* 61(36.7) 43(39.1) 18(32.1) 36(47.4) 25(27.8)

Associate degree 30(18.1) 23(20.9) 7(12.5) 13(17.1) 17(18.9)

Bachelor's degree* 35(21.1) 18(16.4) 17(30.4) 9(11.8) 26(28.9)

Master's degree 21(12.7) 16(14.5) 5(8.9) 8(10.5) 13(14.4)

Doctoral degree 7(4.2) 4(3.6) 3(5.4) 2(2.6) 5(5.6)

Site, N(%)

UF 103(62) 69(67) 34(33) 44(42.7) 59(57.3)

UAB 63(38) 41(65.1) 22(34.9) 32(50.8) 31(49.2)

No. pain sites, M(SD)

Range: 0–21 5.38(3.5) 5.66(3.8) 4.82(2.9) 5.78(3.7) 5.04(3.4)

PROMIS, M(SD)

Anxiety

Range:36.3–82.7 49.9(9.6) 49.8(9.1) 50.1(10.5) 49.7(10.0) 50.1(9.2)

Depression

Range:37.1–81.1 47.1(8.9) 46.7(8.5) 47.7(9.6) 47.8(9.4) 46.5(8.5)

Sleep

Range:30–76.9 49.9(10.6) 50.3(10.7) 49.1(10.5) 50.5(9.9) 49.4(11.2)

GCPS, M(SD)

Pain intensity*

Range: 10–100 53.8(23.5) 51.8(23.6) 57.5(23.0) 65.8(21.7) 42.7(19.2)

Disability*

Range: 0–100 44.5(31.1) 43.0(33.5) 47.0(26.3) 57.3(29.9) 32.5(27.3)

SF-MPQ−2, M(SD)

Total scale*

Range: 0–8.27 2.4(2.1) 2.3(2.2) 2.5(2.1) 3.4(2.2) 1.5(1.6)

Affective*

Range: 0–10 2.1(2.6) 2.0(2.7) 2.1(2.5) 3.0(2.8) 1.2(2.1)

Neuropathic*

Range: 0–7.67 1.5(1.8) 1.4(1.8) 1.7(1.8) 2.3(2.1) 0.8(1.1)

Intermittent*

Range: 0–10 2.7(2.5) 2.4(2.3) 3.2(2.9) 3.8(2.7) 1.7(1.9)

Continuous*

Range: 0–10 3.3(2.6) 3.2(2.7) 3.4(2.5) 4.5(2.5) 2.2(2.2)

WOMAC, M(SD)

Total scale*

(Continues)
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Variable Overall N = 166 Female N = 110 Male N = 56 NHB N = 76
NHW 
N = 90

Range: 0–87 34.3(19.8) 33.9(20.0) 35.0(20.0) 41.9(18.8) 27.1(18.1)

Pain*

Range: 0–20 7.4(4.4) 7.3(4.4) 7.6(4.4) 8.9(4.1) 6.0(4.1)

Stiffness*

Range: 0–8 3.1(1.9) 3.1(1.9) 3.2(2.0) 3.8(1.8) 2.6(1.8)

Physical function*

Range: 0–62.69 23.8(14.4) 23.4(14.5) 24.6(14.4) 29.6(13.8) 18.5(12.9)

Note: Pain questionnaires are limited to participants who screened positive for knee pain (N = 135; 87W/48M; 65NHB/70NHW).
Abbreviations: GCPS, Graded Chronic Pain Scale; NHB, non-Hispanic Black; NHW, non-Hispanic White; SF-MPQ-2, Revised Short-Form McGill Pain 
Questionnaire; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.
*p < 0.05 NHB versus NHW. 

TA B L E  1   (Continued)

F I G U R E  1   Violin plots distributions of GCPS characteristic pain intensity and GCPS disability scores in individuals with knee pain. The 
distribution indicates data from individuals who screened positive for knee pain, n = 135
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3.2.1 | High and low resilience and clinical pain and 
functioning measures

High and low resilience groups differed on self-reported clinical pain 
and functioning measures, Table 4. Clinical knee pain measures were 
significantly different between high/low resilience groups in the un-
adjusted analysis (p values = 0.012 to <0.001). After controlling for 
age, site, education, sex, ethnicity/race, and total number of pain sites, 
there remained significant differences between “high” and “low” re-
silience on GCPS disability, F(1,127) = 8.08, p = 0.005, and SF-MPQ 
total and subscales (Total: F(1,122)  =  6.4, p  =  0.012; Neuropathic: 
F(1,123) = 8.5, p = 0.004; Affective: F(1,124) = 9.29, p = 0.003), and 
WOMAC stiffness, F(1,126) = 8.21, p = 0.005, and physical function, 
F(1,127) = 4.27, p = 0.041, subscales.

Regarding functioning, the PROMIS Anxiety, Depression, 
and Sleep-Related Impairment measures were significantly 

different between high/low resilience groups in the unadjusted anal-
yses (p < 0.0001). After controlling for age, site, education, sex, eth-
nicity/race, and total number of pain sites, there remained significant 
differences between “high” and “low” resilience on PROMIS Anxiety, 
F(1,157) = 32.8, p < 0.0001; Depression: F(1,158) = 32.2, p < 0.0001; 
and Sleep-Related Impairment: F(1, 152) = 18.8, p < 0.0001. All differ-
ences were in the expected direction with participants characterized 
as “high” resilience reporting less clinical pain, anxiety, depression, and 
sleep-related impairment than those characterized as “low” resilience.

3.2.2 | Resilience index and sociodemographic group 
differences

Components of the resilience index are shown in Table 3 with Table 4 
showing component scores separated by median split resilience 

TA B L E  2   Linear regression models examining resilience index and clinical pain

Variable

GCPS Pain intensity GCPS Disability score SF-MPQ−2 Total scale WOMAC Total scale

b(SE) t b(SE) t b(SE) t b(SE) t

Age −0.22(0.2) −3.0** −0.20(0.3) −2.4* −0.14(0.0) −1.77 −0.15(0.2) −1.9

Site 0.01(3.4) 0.17 −0.03(4.9) −0.4 0.06(0.3) 0.84 0.08(3.1) 1.0

Education −0.11(1.3) −1.5 −0.02(1.9) −0.18 −1.0(0.1) −1.21 −0.08(1.2) −1.0

Sex −0.06(3.7) −0.74 0.04(5.3) 0.5 0.04(0.4) 0.44 0.03(3.4) 0.3

Ethnicity/race −0.38(3.4) −5.3** −0.33(4.9) −4.1** −0.35(0.3) −4.5** −0.28(3.1) −3.6**

No. pain sites 0.18(0.5) 2.4* 0.10(0.7) 1.3 0.14(0.0) 1.78 0.23(0.5) 2.8**

Resilience −0.14(1.0) −1.8 −0.26(1.4) −3.2** −0.26(0.1) −3.2** −0.17(0.9) −2.1*

Note: Adjusted model; reference category for sex = male; reference category for ethnicity/race = non-Hispanic Black. Data are limited to participants 
who screened positive for knee pain (n = 135).
Abbreviations: b, standardized coefficient; GCPS, graded chronic pain scale; SE, standard error; SF-MPQ-2, Revised Short-Form McGill Pain 
Questionnaire; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.
*p < 0.05;  **p < 0.01. 

TA B L E  3   Measures of the resilience index by clinical criteria presented by sociodemographic groups

Variable
Overall M or N 
(SD or %)

Male M or N 
(SD or %)

Female M or N 
(SD or %)

NHB M or N 
(SD or %)

NHW M or N 
(SD or %) Resilience value

LOT-R 18.2(5.1) 17.4(5.3) 18.7(5.0) 18.0(4.8) 18.4(5.4) ≥18

PANAS-PA 35.4(8.0) 34.2(8.8) 36.1(7.6) 36.0(8.1) 35.0(8.0) ≥35

PANAS-NA 15.7(6.3) 16.3(7.0) 15.3(6.0) 16.3(7.0) 15.2(5.7) <18.2

CSQ-R-Active coping* 2.5(1.2) 2.5(1.1) 2.6(1.2) 2.8(1.2) 2.3(1.1) ≥2.87

PSS 13.4(6.5) 13.5(5.9) 13.4(6.8) 13.8(6.4) 13.0(6.6) <14

MPSS 64.8(18.7) 62.2(17.5) 66.2(19.2) 65.3(19.9) 64.5(17.7) ≥49

Tobacco useǂ  84(51%) 16(29%) 68(62%) 38(50%) 46(51%) <100 cigarettes/lifetime

WHRǂ  0.90(0.10) 0.97(0.08) 0.87(0.09) 0.90(0.10) 0.90(0.09) <0.90

Resilience Indexǂ  4.6(1.8) 3.8(1.8) 5.0(1.7) 4.5(1.8) 4.7(1.9)

Note: N = 166; M-Mean and SD-Standard Deviation or N-Number by %.
Abbreviations: CSQ-R, Coping Strategies Questionnaire – Revised; LOT-R, Life Orientation Test-Revised; MPSS, Multidimensional Scale of Perceived 
Social Support; PANAS-NA, Positive and Negative Affect Schedule–Negative Affect; PANAS-PA, Positive and Negative Affect Schedule–Positive 
Affect; PSS, Perceived Stress Scale; WHR, waist/hip ratio in centimeters.
*p < 0.05 NHB versus NHW; 
ǂp < 0.05 male versus female difference. 
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groups. Given patterns of findings presented below and in Figures 3 
and 4, we completed additional descriptive statistics including sam-
ple size, resilience index ranges, and clinical pain measures for NHB 
females, NHW females, NHB males, and NHW males for an improved 
appreciation of findings (see Table 5).

3.3 | Associations between the resilience index and 
pain-related brain structures

3.3.1 | Resilience and pain-related cortex

In the omnibus model, prior to inclusion of the interaction terms, 
there was no relationship between resilience and the cortical regions 
of interest (F(5,154) = 0.10, p = 0.993; partial η2 = 0.003; univariate 
p values > 0.675), controlling for study site, age, site, education, sex, 
ethnicity/race, and total number of pain sites.

With the inclusion of resilience interaction terms, the omni-
bus model demonstrated significant two-way interactions: resil-
ience*ethnicity/race (F(5,151)  =  2.68, p  =  0.024) and resilience*sex 
(F(5,151)  =  2.38, p  =  0.044). The three-way interaction (resil-
ience*ethnicity/race*sex) was not significant (p  =  0.149). From a 
univariate standpoint, the postcentral gyrus demonstrated two-way 
(resilience*ethnicity/race) and three-way interactions. Specifically, 

for the three-way interaction, the relationship between resilience 
and postcentral gyrus differed within males by ethnicity/race (NHB 
and NHW) and within ethnicity/race by sex (NHB males and NHB fe-
males) (see Table 6 and Figure 2). The other cortical ROIs did not have 

TA B L E  4   Adjusted group comparison of high and low resilience 
on pain and functioning measures

High 
resilience

Low 
resilience

p valueM (SD) M (SD)

Functioning (N = 90) (N = 76)

PROMIS Anxiety 46.2 (7.6) 54.4 (9.8) <0.0001

PROMIS Depression 43.4 (6.6) 51.4 (9.4) <0.0001

PROMIS Sleep 46.6 (10.0) 54.0 (9.8) <0.0001

Pain (N = 70) (N = 65)

GCPS Pain Intensity 48.6 (22.5) 59.4 (23.3) 0.376

GCPS Disability 34.9 (29.8) 54.7 (29.3) 0.005

SF-MPQ-2 Total 1.7 (1.7) 3.1 (2.4) 0.012

Continuous 2.7 (2.3) 4.0 (2.8) 0.088

Intermittent 2.0 (2.0) 3.5 (2.8) 0.068

Neuropathic 0.9 (14) 2.2 (2.0) 0.004

Affective 1.2 (1.8) 3.0 (3.1) 0.003

WOMAC Total 29.3 (17.3) 39.4 (21.0) 0.060

Pain 6.5 (3.8) 8.4 (4.7) 0.237

Stiffness 2.6 (1.7) 3.7 (1.9) 0.005

Physical Function 20.1 (12.8) 27.8 (15.1) 0.041

Note: Covariates in the model: site, age, gender, education, ethnicity/
race group, and total number of pain sites. Pain data are limited to 
participants who screened positive for knee pain (n = 135).
Abbreviations: GCPS, Graded Chronic Pain Scale; SF-MPQ-2, Revised 
Short-Form McGill Pain Questionnaire; WOMAC, Western Ontario and 
McMaster Universities Osteoarthritis Index.

TA B L E  5   Low/high resilience index by stratified 
sociodemographic groups and clinical knee pain measures

Low (0–4) High (5–8)

N N

NHB male 22 6

NHW male 11 9

NHB female 15 22

NHW female 17 33

Low resilience 
(0–4)

High 
resilience 
(5–8)

M (SD) M (SD)

NHB male SF-MPQ-2 
total

3.99 (2.1) 2.33 (1.8)

WOMAC 
total

44.04 (21.0) 32.67 (14.6)

GCPS pain 
intensity

67.73 (19.9) 72.78 (14.1)

GCPS 
disability

59.02 (26.9) 49.44 (22.4)

NHW male SF-MPQ-2 
total

1.56 (1.5) 0.84 (0.6)

WOMAC 
total

27.64 (17.9) 23.11 (14.2)

GCPS pain 
intensity

44.85 (20.7) 37.78 (17.3)

GCPS 
disability

45.45 (16.1) 18.15 (13.4)

NHB female SF-MPQ-2 
total

4.28 (2.5) 2.47 (2.0)

WOMAC 
total

49.33 (18.4) 37.05 (16.3)

GCPS pain 
intensity

73.78 (19.1) 56.67 (24.4)

GCPS 
disability

71.56 (26.6) 48.03 (34.0)

NHW female SF-MPQ-2 
total

2.01 (2.3) 1.40 (1.5)

WOMAC 
total

32.35 (20.7) 25.34 (17.8)

GCPS pain 
intensity

45.49 (20.7) 41.82 (19.0)

GCPS 
disability

40.39 (33.7) 28.13 (27.3)

Note: Data are limited to participants who screened positive for knee 
pain (n = 135).
Abbreviations: GCPS, Graded Chronic Pain Scale; SF-MPQ-2, Revised 
Short-Form McGill Pain Questionnaire; WOMAC, Western Ontario and 
McMaster Universities Osteoarthritis Index.
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evidence of significant relationships with resilience or the interaction 
terms. Additionally, the postcentral gyrus thickness was lower in NHBs 
compared to NHWs (p < 0.001) and was inversely associated with the 
number of pain sites (p  =  0.038). ACC was thicker in females than 
males irrespective of ethnicity/race (p = 0.002).

3.3.2 | Resilience and pain-related subcortical 
structures: Amygdala and thalamus

In the omnibus model prior to inclusion of interaction terms, the re-
silience index was associated with subcortical volume (multivariate 
F(4,155) = 3.19, p = 0.015; partial η2 = 0.076). Adjusting for covariates, 
univariate results were significant for right amygdala (F(1,158) = 3.83, 
p = 0.018; partial η2 = 0.035; FDR p = 0.072) but not left amygdala or 
bilateral thalamus (p values ≥ 0.186).

With the inclusion of interaction terms, the omnibus model demon-
strated significant relationships between resilience*ethnicity/race 
(F(4,152) = 3.91, p = 0.005, partial η2 = 0.093), and the three-way inter-
action, resilience*ethnicity/race*sex (F(4,152) = 3.13, p = 0.017, partial 
η2 = 0.076). Resilience*sex was not significant (p = 0.398; Table 7). In the 
univariate models, all ROIs demonstrated two-way (resilience*ethnicity/
race) interactions and three-way interactions were demonstrated for all 
ROIs except the left amygdala (see Table 7 and Figure 3). Specifically, for 
the three-way interaction, the relationship between resilience and sub-
cortical structure differed within females by ethnicity/race (NHB and 
NHW) and within ethnicity/race by sex (NHB males and NHB females). 
Of note, among NHB females, resilience was positively associated with 
subcortical volumes, while the other groups exhibited weaker or inverse 
relationships between resilience and subcortical volumes (Figure  3). 
Subcortical ROIs also had significant ethnicity/race and sex effects (see 
Table 8 and Figure 4). Figure 5 provides a visual summary of resilience 
and brain two-way group analyses.

Post hoc analyses were completed to investigate the pattern of 
larger right compared to left amygdala and, in a subsample of partici-
pants with reported dominant hand data (n = 111), possible associa-
tions with handedness (Zald, 2003). The overall group mean for the 
right amygdala was larger than the left amygdala by 11%. Greater 
right/left amygdala volume asymmetry, however, was positively asso-
ciated with resilience (F(1,156) = 5.25, p = 0.023, partial η2 = 0.032), 
see Figure 6. The difference observed was not significantly associated 
with handedness (p = 0.691) in the subsample. To assist with interpre-
tation, we provide median split resilience group comparisons below.

3.4 | Sociodemographic group differences in high/
low resilience and pain-related brain structures

3.4.1 | Between sex group differences

Pain-related cortical areas
Sex differences were indicated for pain-related cortical areas in 
the overall model. With further investigation specific to resilience, TA
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low resilience men (n  =  37) and women (n  =  39) differed in 
cortical thickness across the investigated regions of interest 
(F(5,65) = 4.10, p = 0.003, partial η2 = 0.240). There were univari-
ate differences (women > men) in ACC (F(1,69) = 17.76, p < 0.001), 
DLPFC (F(1,69)  =  7.26, p  =  0.009), and insula (F(1,69)  =  7.13, 
p  =  0.034) with the other areas not significantly different (p 
values ≥ 0.132).

High resilience men (n  =  19) and women (n  =  71) did not dif-
fer in cortical thickness across the investigated regions of interest 
(F(5,79) = 0.92, p = 0.472, partial η2 = 0.055). Significant univariate 
differences were not found (p values ≥ 0.182).

Pain-related subcortical areas
Sex differences were indicated for pain-related subcortical areas in 
the overall model. With further investigation specific to resilience, 
low resilience men (n = 37) and women (n = 39) differed in subcorti-
cal volume across all investigated regions of interest (F(4,66) = 7.22, 
p  <  0.001, partial η2  =  0.305). There were univariate differences 
(women > men) in all areas (left and right amygdala and thalamus; p 
values ≤ 0.006). High resilience men (n = 19) and women (n = 71) dif-
fered in subcortical volume across all investigated regions of interest 

(F(4,80) = 4.80, p = 0.002, partial η2 = 0.193). There were univariate 
differences (women > men) in all areas (amygdala and thalamus; p 
values ≤ 0.003).

3.4.2 | Within sex group differences

Men
Pain-related cortical areas. There was no indication of differences 
between men with high (n  =  19) versus low (n  =  37) resilience 
(F(5,45) = 1.50, p = 0.208, partial η2 = 0.143). All univariate regions 
of interest were not significant (p values > 0.121).

Pain-related subcortical areas. There was no indication of differ-
ence between men with high versus low resilience (F(4,46) = 0.69, 
p = 0.605, partial η2 = 0.056).

Women
Pain-related cortical areas. There was no indication of differences 
among women with high (n  =  71) versus low (n  =  39) resilience 
(F(5,99) = 0.92, p = 0.475, partial η2 = 0.044). No areas were signifi-
cant using univariate statistics (p values > 0.174).

F I G U R E  2   Sociodemographic group relationships between resilience and cortical thickness. X axes are unstandardized residuals of 
resilience with age, site, education, and pain sites regressed out. Y axes are scaled the same to allow for direct thickness comparisons 
between regions. Circles and solid lines are NHB, triangles and dashed lines are NHW. Postcentral gyrus (in red) has significant 
Resilience*Ethnicity/Race and Resilience*Ethnicity/Race*Sex interactions (p values < 0.05). The other regions (in blue) did not show 
significant associations with resilience or resilience interactions (see Table 6) [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Pain-related subcortical areas. In a multivariate model there 
were differences for subcortical areas (amygdala and thalamus) be-
tween high and low resilience women (high > low; F(4,100) = 3.67, 
p = 0.008; partial η2 = 0.128). From a univariate standpoint, right 
amygdala volumes differed between groups (F(1,103)  =  8.41, 
p  =  0.018, partial η2  =  0.075). There was insufficient evidence 
of differences in left amygdala or bilateral thalamus volumes (p 
values > 0.068).

Between ethnic/race group differences
Pain-related cortical areas. Ethnic/race group differences were indi-
cated for pain-related cortical areas in the overall model. Low resil-
ience NHB (n = 38) and NHW (n = 38) participants differed in cortical 
thickness across the investigated regions of interest (F(5,65) = 4.73, 
p = 0.001, partial η2 = 0.267). There were univariate differences in 
cortical thickness in the insula (NHB < NHW, p = 0.026) with no evi-
dence of differences in the other regions (p values ≥ 0.074).

F I G U R E  3   Sociodemographic group relationships between resilience and subcortical volume. X axes are unstandardized residuals of 
resilience with age, site, education, and pain sites. Circles and solid lines are NHB, triangles and dashed lines are NHW. Refer to Table 5 
for a summary of which interactions are significant. Also refer to Figure 4 for two-way interaction graphs [Color figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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F I G U R E  4   Relationships between resilience and stratified sociodemographic variables. X axes are unstandardized residuals of resilience 
with age, site, education, and pain sites with ethnicity/race and sex as appropriate. Y axes are subcortical volumes adjusted for total 
intracranial head size [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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TA B L E  7   Multivariate multiple linear regression models examining biobehavioral/psychosocial resilience in relation to subcortical regions 
of interest

Variable

Omnibus 
Model Left Thalamus Right Thalamus Left Amygdala Right Amygdala

F b(SE) t b(SE) t b(SE) t b(SE) t

Age 9.48** −0.38(0.06) −6.06** −0.33(0.07) −5.16** −0.24(0.07) −3.71** −0.26(0.07) −3.94**

Site 1.84 −0.07(0.06) −1.15 −0.04(0.06) −0.70 0.06(0.06) 0.92 0.04(0.06) 0.69

Education 0.16 0.00(0.06) 0.07 0.01(0.07) −0.13 −0.02(0.07) −0.27 −0.03(0.07) −0.43

Sex 11.67** 0.38(0.06) 5.88** 0.35(0.07) 5.32** 0.42(0.07) 6.28** 0.33(0.07) 4.96**

Ethnicity/race 4.64** −0.27(0.06) −4.15** −0.28(0.07) −4.17** −0.23(0.07) −3.39** −0.20(0.07) −3.04**

No. pain sites 0.30 0.02(0.06) 0.37 0.01(0.06) 0.18 −0.02(0.06) −0.36 0.01(0.06) 0.11

Resilience 4.18** 0.07(0.06) 1.05 0.11(0.07) 1.69 0.10(0.07) 1.43 0.20(0.07) 3.00**

Resilience*Ethnicity/Race 3.91** −0.15(0.06) −2.46* −0.17(0.06) −2.76** −0.20(0.06) −3.17** −0.25(0.06) −3.89**

Resilience*Sex 1.02 0.02(0.06) 0.24 0.05(0.06) 0.78 0.07(0.06) 1.08 0.08(0.06) 1.19

Resilience*Ethnicity/Race*Sex 3.13* −0.15(0.06) −2.42* −0.14(0.06) −2.22* −0.13(0.07) −1.92 −0.21(0.06) −3.19**

Note: Adjusted model; thalamus and amygdala volumes are adjusted for estimated total intracranial volume; b, standardized coefficient; SE, standard 
error; reference category for sex = male; reference category for Ethnicity/Race = non-Hispanic Black.
See Figure 3.
*p < 0.05; **p < 0.01. 

F I G U R E  5   Resilience and brain patterns by sociodemographic groups. NHBF, non-Hispanic Black female; NHBM, non-Hispanic Black 
male; NHWF, non-Hispanic White female; NHWM, non-Hispanic White male. Five cortical and two subcortical areas were investigated: 
ACC, DLPFC, insula, medial orbitofrontal, postcentral gyrus, amygdala, and thalamus. Areas in dark gray have correlation p values > 0.20, 
yellow indicates 0.10 > p > 0.05, orange p < 0.05, red p < 0.01. Figure generated using BrainPainter (Marinescu et al., 2019) [Color figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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High resilience NHB (n = 38) and NHW (n = 52) participants 
differed in cortical thickness across the investigated regions of in-
terest (F(5,79) = 11.40, p < 0.001, partial η2 = 0.419). Postcentral 
gyrus differed between ethnic/race groups (NHB  <  NHW; 
p < 0.001) with a trend for DLPFC (NHB < NHW; p = 0.059). The 
other regions of interest did not have evidence of difference (p 
values > 0.110).

Pain-related subcortical areas. Ethnic/race group differences were 
indicated in the pain-related subcortical areas in the overall model. 

Low resilience NHB (n = 38) and NHW (n = 38) showed no evidence 
of difference in subcortical volume across all investigated regions of 
interest (F(4,66) = 0.80, p = 0.533, partial η2 = 0.046). Univariate p 
values ≥ 0.132.

High resilience NHB (n = 38) and NHW (n = 52) participants dif-
fered in subcortical volume across all investigated regions of interest 
(F(4,80) = 7.75, p < 0.001, partial η2 = 0.279). There were univariate 
differences (NHB > NHW) in all areas (left and right amygdala and 
thalamus; p values < 0.001).

TA B L E  8   Summary of resilience-related brain findings

Mean (SD) Resilience Resilience*Ethnicity/Race Resilience*Sex
Resilience*Ethnicity/
Race*Sex

ACC 2.56 (0.14) p = 0.976 p = 0.456 p = 0.058 p = 0.920

DLPFC 2.26 (0.10) p = 0.830 p = 0.054 p = 0.166 p = 0.741

Insula 2.87 (0.14) p = 0.851 p = 0.571 p = 0.295 p = 0.735

Medial orbitofrontal 2.28 (0.12) p = 0.654 p = 0.246 p = 0.390 p = 0.820

Postcentral gyrus 2.00 (0.11) p = 0.627 p = 0.003* p = 0.171 p = 0.015 *

Left Thalamus/TICV 0.51 (0.09) p = 0.295 p = 0.015* p = 0.808 p = 0.017 *

Right thalamus/TICV 0.49 (0.08) p = 0.094 p = 0.006* p = 0.439 p = 0.028 *

Left amygdala/TICV 0.12 (0.02) p = 0.155 p = 0.002* p = 0.282 p = 0.056

Right amygdala/TICV 0.14 (0.03) p = 0.003* p < 0.001* p = 0.200 p = 0.002*

Note: Bolding indicates p < 0.05 with FDR set at 0.05. The omnibus cortical model had significant Resilience*Ethnicity/Race (p = 0.024) and 
Resilience*Sex (p = 0.044) interactions. Neither resilience (p = 0.984) nor the three-way interaction were significant (p = 0.149). All values are 
unadjusted mean (standard deviation). The omnibus subcortical model had significant Resilience (p = 0.003) and Resilience*Ethnicity/Race 
(p = 0.005) and Resilience*Ethnicity/Race*Sex (p = 0.017) interactions. Resilience*Sex was not significant (p = 0.398). Cortical means are thickness 
values in mm. Subcortical values are the ratio between the region of interest volume and estimate total intracranial volume (TICV).
Abbreviations: ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; SD, standard deviation.
*Unadjusted p < 0.05. 

F I G U R E  6   Relationship between resilience index and a ratio measure between the right and left amygdala. The resilience residual on the 
X axis controls for age, study site, sex, pain sites, education, and ethnicity/race. The Y axis is the ratio of right:left amygdala volume. This 
relationship is significant (p = 0.023). The lines represent a linear least squares fit with 95% confidence intervals
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3.4.3 | Within ethnic/race group differences

Non-Hispanic Black
Pain-related cortical areas. There were no multivariate differences 
between NHB participants with high (n = 38) versus low (n = 38) re-
silience (F(5,65) = 1.45, p = 0.218, partial η2 = 0.10). There was a uni-
variate difference (high > low) in postcentral gyrus cortex (p = 0.011) 
and a trend for DLPFC (high >  low; p = 0.077). There was no evi-
dence of differences in other regions (p values ≥ 0.777).

Pain-related subcortical areas. Multivariate differences were 
found between NHB participants with high versus low resilience 
(high >  low; F(4,66) = 5.31, p = 0.001, partial η2 = 0.243). From a 
univariate standpoint, all volumes were different between groups 
(high > low): left thalamus (p = 0.009, partial η2 = 0.095); right thala-
mus (p = 0.003, partial η2 = 0.120); left amygdala (p = 0.004, partial 
η2 = 0.137); right amygdala (p < 0.001, partial η2 = 0.221).

Non-Hispanic White
Pain-related cortical areas. There were no differences between NHW par-
ticipants with high (n = 52) versus low (n = 38) resilience (F(5,79) = 1.48, 
p = 0.207, partial η2 = 0.085; univariate p values ≥ 0.118).

Pain-related subcortical areas. There were no differences be-
tween NHW participants with high (n = 52) versus low (n = 38) re-
silience (F(4,80) = 0.46, p = 0.763, partial η2 = 0.023; univariate p 
values > 0.677).

4  | DISCUSSION

The current study aimed to determine the association of a previously 
investigated biobehavioral and psychosocial resilience index (Johnson 
et  al.,  2019) with clinical pain measures and pain-related brain struc-
ture, and whether associations differ by sex and ethnicity/race. First, 
as hypothesized, higher levels of resilience were associated with lower 
levels of clinical pain and functional limitations. Second, a relationship 
between resilience and pain-related brain structure emerged, higher re-
silience was associated with larger right and more right-lateralized amyg-
dala volumes. Third, further investigations with consideration for sex and 
ethnicity/race showed: (a) males had a lower resilience index and smaller 
subcortical volumes than females after adjusting for intracranial volume; 
(b) ethnic/race groups did not differ on the resilience index; and (c) sig-
nificant interactions between sex, ethnicity/race, and resilience were in-
dicated, particularly in subcortical volumes for pain-related areas of the 
brain. Our findings align with a strong foundation of animal and human 
research demonstrating complex relationships between sociodemo-
graphic factors, chronic pain, resilience, and brain structure.

4.1 | Associations between the resilience index and 
clinical pain and functioning measures

Resilience factors have been consistently associated with less clini-
cal pain and greater functioning (Ferreira & Sherman, 2007; Hassett 

& Finan, 2016; Karoly & Ruehlman, 2006; Newton-John et al., 2014; 
Ong et al., 2010; Strand et al., 2006). Studies have previously inves-
tigated either protective psychosocial or behavioral/lifestyle factors 
(Brown et al., 2003; Eisenberger et al., 2007; Geneen et al., 2017; 
Lambert et al., 1990; Lee et al., 2016; López-Martínez et al., 2008; 
Macfarlane et  al.,  2017; Master et  al.,  2009; Messier et  al.,  2013; 
Sibille et al., 2016, 2018). From a clinical perspective, investigations 
that consider the additive benefit of multiple protective factors are 
needed. Macfarlane and colleagues demonstrated an additive ben-
efit with combined protective factors reducing excess mortality risk 
in individuals with chronic widespread pain (Macfarlane et al., 2017). 
Additionally, we reported an additive benefit between the same 
biobehavioral and psychosocial resilience index implemented in 
the present study and telomere length in individuals with or at risk 
for knee OA (Johnson et al., 2019). Importantly, the current study 
extends previous findings by demonstrating a linear relationship 
between greater resilience and lower clinical pain, functional limita-
tions, and disability.

A comprehensive approach to investigating resilience has clini-
cal relevance (Bartley, Palit, et al., 2019; Liu et al., 2017; Puterman 
& Epel,  2012). Risk factor indexes are well recognized and fre-
quently utilized for assessing risk for various health conditions. 
An important component of a risk factor index is the inclusion 
of established clinical values that are additive in nature (Dufouil 
et al., 2017; Lindstrom & Tuomilehto, 2003; Nickson et al., 2018; 
Zhang et al.,). The development of a “chronic pain resilience index” 
could be similarly constructed, that is, a measure predicting im-
proved health outcomes based on clinically validated values. The 
current formulation of the resilience index is based on validated 
and recognized measures that have been associated with lower 
levels of clinical pain (Table  2). Current findings suggest there is 
an additive benefit of resilience factors with lower levels of clini-
cal pain. Frequently, resilience research in chronic pain is focused 
on relative values limited by study sample representation, reduc-
ing the ability to evaluate clinically relevant phenotypes and as-
sociated physiological correlates. Values derived from validated 
measures indicate population-based norms and clinically relevant 
ranges. Identifying and compiling a validated and normed chronic 
pain resilience index that is predictive of improved pain-related 
outcomes would have significant clinical utility.

4.2 | Associations between the resilience index and 
pain-related brain structures

In cortical areas of the brain previously related with chronic pain 
(Coppieters et  al.,  2016), we showed associations with resilience 
that differed based on sociodemographic variables (ethnicity/race 
and sex). This implies that these cortical areas are important for re-
silience, but such relationships might be unclear without assessing 
the influence of sociodemographic variables. Of note, the postcen-
tral gyrus (primary somatosensory cortex) demonstrated two-way 
(resilience*ethnicity/race) and three-way (resilience*ethnicity/
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race*sex) interactions. The relationship between resilience and cor-
tical thickness in the postcentral gyrus differed among NHB males 
compared to the other three groups. In this group, higher resilience 
was associated with thinner somatosensory cortex. Previous re-
search in other populations has revealed relationships between re-
silience and ACC, insula, and orbitofrontal regions in adults (Kong 
et  al.,  2015, 2018; Son et  al.,  2019). Beyond resilience, findings 
show sex differences in ACC thickness (Male  <  Female, p  <  0.01; 
see Table  4) and ethnicity/race differences in insula and postcen-
tral gyrus thickness (NHB  <  NHW, p values  <  0.01). These same 
areas of the brain have also been indicated in experiences of so-
cial pain which share similar areas of activation with physical pain 
(Eisenberger, 2012; Macdonald & Leary, 2005). Our results suggest 
that relationships between volumes of pain-related brain regions 
and resilience vary by sociodemographic variables; such variables 
should be considered in future analyses.

In the subcortical areas of the brain, the right amygdala and bi-
lateral thalamus showed direct relationships with resilience or re-
silience/sociodemographic interactions. The cortico-limbic areas 
of the brain are well recognized as primary structures associated 
with chronic pain, particularly the medial prefrontal cortex, amyg-
dala, and thalamus (Apkarian,  2011; Davis et  al.,  2016; Hashmi 
et  al.,  2013). Previous research demonstrates relationships be-
tween chronic pain and thalamus volume (Apkarian et al., 2004). 
Stroke within the thalamus, particularly the pulvinar nucleus, can 
lead to a severe central pain syndrome (Vartiainen et al., 2016). In 
addition to pain, previous research has implicated the dorsome-
dial nucleus of the thalamus in resilience to mood disorders (Russo 
et al., 2012). Our results add to existing research by indicating the 
importance of the thalamus in relationship to resilience in chronic 
MSK pain.

The right amygdala stood out as the primary resilience-related 
structure across all analyses. The amygdala serves a vital role in the 
integration of sensory, emotional/affective, and cognitive responses 
including nociceptive input (Gandhi et al., 2020; Simons et al., 2014; 
Thompson & Neugebauer, 2017). Intricately connected with numer-
ous cortical and subcortical brain areas, the amygdala links internal 
and external stimuli with areas of the brain regulating cognition, 
affect, and physiological and behavioral responses (Abivardi & 
Bach, 2017; Bickart et al., 2012; Rizzo et al., 2018; Saygin et al., 2011). 
Within both the right and left side, nuclei within the amygdala have 
been classified into to sub-regions. Of these sub-regions, the cen-
tral nucleus of the amygdala has been identified as a key component 
in pain processing (Allen et  al.,  2020; Simons et  al.,  2014). Recent 
findings from rodents indicate the central nucleus serves a dual or 
bidirectional role with cells mediating inhibitory functions and oth-
ers serving a facilitating function (Hua et  al.,  2020; Neugebauer 
et al., 2020; Wilson et al., 2019).

Hemispheric asymmetries in structure and function between 
the left and right amygdala are well recognized (Baas et al., 2004; 
Baeken et  al.,  2014; Brierley et  al.,  2002; Davidson,  2002; Gotink 
et  al.,  2018; Zald,  2003). Structurally, we found the overall group 
mean for the right amygdala was larger than the left amygdala, 

which matches laterality findings of some but not all previous re-
search( Brierley et al., 2002; Gotink et al., 2018). While we did not 
assess function, a meta-analysis completed by Wager and colleagues 
indicated hemispheric laterality such that the left amygdala has 
a role in negative emotion processing (Baeken et al., 2014; Wager 
et  al.,  2003). A strong body of animal and human research shows 
that lateralization and specialized functioning also applies to pain 
(Allen et al., 2020; Thompson & Neugebauer, 2017). Investigations 
regarding hemispheric lateralization of amygdala function specific to 
pain in humans are in early stages and complicated by factors such 
as acute versus chronic, pain side (unilateral/bilateral), type of pain, 
affective aspects of pain, and sex differences (Allen et al., 2020). In 
a meta-analysis of human pain-related studies, a pattern of greater 
left amygdala activation was indicated in chronic pain studies while 
more frequent activation of the right amygdala was shown in exper-
imental pain studies (Simons et al., 2014). Three limiting factors of 
the meta-analysis were the small sample sizes across studies, crite-
ria for chronic pain phenotyping, and the greater representation of 
males in the experimental studies and females in the clinical studies 
(more about pain phenotyping and sex differences addressed fur-
ther below) (Simons et al., 2014).

The right amygdala has been associated with resilience in healthy 
participants. The relationship between self-reported resilience and 
brain structures associated with cortico-limbic inhibition was inves-
tigated in 48 healthy young adults (33 females and 15 males) (Gupta 
et al., 2017). Trait resilience scores were associated with morphol-
ogy in the parietal/posterior cingulate region and the amygdala. A 
subscale measuring resilience persistence was positively associated 
with gray matter volume in the right amygdala. In contrast, reduced 
right amygdala gray matter density was shown following an 8-week 
mindful meditation intervention study of 27 participants (41% males, 
average age 32.5 years) reporting high perceived stress at baseline 
(Hölzel et al., 2010). Greater reductions in the perceived stress scale 
were associated with greater decreases in right amygdala gray mat-
ter density. Notably, the perceived stress scale is a measure included 
in the resilience index investigated in the current study.

The right amygdala has also been related to persistent pain. In 
a prospective study of individuals with subacute low back pain, a 
smaller right amygdala at baseline was predictive of those who would 
transition to chronic pain, suggesting that trait-related or prolonged 
negative mood and negative affect are predisposing risk factors 
(Vachon-Presseau et al., 2016). Moreover, the persisting chronic pain 
group showed changes in amygdala shape and volume differences 
compared to healthy controls indicating amygdala atrophy over time, 
but those who recovered from subacute pain had stable volumes. 
Hence, in two prospective studies, opposing patterns were indicated. 
Namely, both the reduction of perceived stress and the persistence 
of chronic back pain associated with reduced right amygdaloid gray 
matter (Hölzel et al., 2010; Vachon-Presseau et al., 2016).

Most studies in rodents have been completed in the context of 
acute injury and indicate a pronociceptive role for the right amyg-
dala and an anti-nociceptive role for the left amygdala. The per-
sistence of chronic pain may influence right versus left amygdala 
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functioning patterns seen in human studies (Simons et  al.,  2014; 
Vachon-Presseau et al., 2016). Additionally, the amygdaloid pattern 
differences described above align with the theoretical model of al-
lostatic load which is represented by the hormesis, inverted “U” pat-
tern (Epel, 2020; Osório et al., 2017). Specifically, the young healthy 
adults were likely on the adaptive “stress load” side of the dose curve 
while those individuals with persisting chronic pain due to predis-
posing factors (e.g., mood-related) were on the “stress overload” 
side of the curve contributing to their increased risk for persisting 
chronic pain (Hölzel et al., 2010; Vachon-Presseau et al., 2016). Our 
findings reveal complex but highly relevant relationships among 
resilience, chronic pain, sociodemographic characteristics, and the 
right amygdala, bilateral thalamus, and postcentral gyrus.

A few factors warrant acknowledgment in advance of consider-
ing the above differing findings and further evaluation of our results. 
First, samples sizes in cited studies were limited and most were not 
sufficient to consider sex independently. Well-documented sex dif-
ferences in cortico-limbic functioning require consideration (Allen 
et  al.,  2020; Andreano et  al.,  2013; Cahill et  al.,  2001; Linnman 
et al., 2012a; McEwen, 2017). Second, the amygdala is highly respon-
sive to and shaped by a combination of factors (Allen et al., 2020; 
Davidson & McEwen, 2012; Eisenberger, 2012; Gandhi et al., 2020; 
McEwen,  2017; Neugebauer et  al.,  2020; Sambuco et  al.,  2020). 
Third, few studies have considered the influence of sociodemo-
graphic, cultural, and ethnicity/race factors in the relationships 
between chronic pain and brain structure. Fourth, the amygdala 
is activated both in the inhibition and amplification of pain experi-
ences; an improved understanding of this dual role is necessary in 
the evaluation of structural changes in individuals with chronic pain. 
Fifth, there is a substantial body of evidence showing inconsisten-
cies in research findings. Applying principles of neuroplasticity and 
careful pain phenotyping may improve interpretability of findings 
(Bushnell et al., 2015; Coppieters et al., 2016; Maleki et al., 2013). 
Finally, prospective studies will be essential to determine relation-
ships between pain-related resilience factors and brain structure 
differences. To effectively decipher the code of chronic pain in brain 
structure, consideration of sociodemographic factors and the neu-
robiological effects of stress and pain will be necessary and are ex-
plored further below.

4.3 | Sex differences in the resilience index and 
pain-related brain structures

Men had a lower resilience index than women in the current study. 
There has been a general understanding to suggest that men ex-
perience greater psychological resilience than women (Boardman 
et al., 2008). However, in the previously described study by Gupta 
and colleagues, the trait resilience measure did not differ by sex, and 
a recent meta-analysis on positive affect and chronic pain showed 
that the effects of positive affect on chronic pain were moder-
ated by gender, such that effect sizes were larger in studies with a 
greater proportion of women (Gupta et al., 2017; Ong et al., 2020). 

One factor distinguishing our study from prior investigations is that 
our resilience index includes biobehavioral factors (tobacco use and 
waist/hip ratio) both of which differed by sex in our sample.

Sex differences were observed in our cortical and subcortical 
analyses. There is strong and consistent evidence of sex differ-
ences in neurobiological functioning with indications of specific 
differences in cortico-limbic areas and cognitive and emotional pro-
cesses (Andreano et al., 2013; Cahill et al., 2001; Gruene et al., 2015; 
Hamann, 2005; Kogler et al., 2016; McEwen & Milner, 2017; Wellman 
et al., 2018). Wager and colleagues in a meta-analysis reported sex 
differences across cortical and sub-cortical regions related to emo-
tional processing (Baeken et al., 2014; Wager et al., 2003). Between 
and within sex differences in pain processing are also evident 
in preclinical and clinical pain studies (Allen et  al.,  2020; Da Silva 
et al., 2020; Linnman et al., 2012a, 2012b). Our findings also suggest 
within-sex-group differences (e.g., NHB males compared to NHW 
males in the postcentral gyrus and NHB females compared to NHW 
females in the subcortical regions) and warrant further investigation.

Additionally, in the comparison of resilience and pain-related 
brain structure by sex, males had lower subcortical volume com-
pared to females. One factor warranting caution with interpretabil-
ity of our findings is the lower number of males compared to females 
in the analyses, particularly males reporting high resilience across 
both ethnic/race groups. However, our findings add to a strong body 
of evidence of the importance of including females in animal and 
human pain research and that additional analyses specific to evalu-
ating sex differences is necessary.

4.4 | Ethnic/race differences in the resilience 
index and pain-related brain structures

Although NHB participants reported greater clinical pain compared 
to their NHW peers, the resilience index did not differ by ethnic/
race group. We have previously reported ethnic/race group differ-
ences in the relationship between risk and resilience factors and pain 
such that higher perceived stress and higher psychological resilience 
were associated with greater and lesser movement evoked pain (re-
spectively) in NHB participants but not NHW participants (Bartley, 
Hossain, et al., 2019; Booker et al., 2019). Additionally, a recent find-
ing shows the relationship between pain catastrophizing and brain 
structure also differs by ethnic/race group such that among NHB 
participants with knee pain, a trend for higher pain catastrophiz-
ing was associated with slightly thinner insula while catastrophizing 
was significantly related to thinner bilateral somatosensory cortex 
among NHWs (Terry et al., 2020).

Participants in our ethnic/race groups differed in age and educa-
tion. Socioeconomic and environmental factors are strong contribu-
tors influencing neuroplasticity and shaping the brain (Davidson & 
McEwen, 2012). Investigations regarding the neurobiological interface 
of environment, culture, ethnicity/race, and sociodemographic factors 
are contributing to an improved understanding of individual differ-
ences in biobehavioral research (Chattarji et al., 2015; Han, 2015). Our 
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findings indicate that ethnicity/race contributed to the two- and three-
way interactions in the cortical and subcortical models. In our study, 
the pattern of higher resilience being related to greater right amygdala 
volume among NHB females aligns with the previously described re-
silience persistence findings (Gupta et al., 2017). However, the pattern 
of the other three groups is more similar to the findings described by 
Hölzel and colleagues (2010). Table 4 shows a pattern for lower clinical 
pain when comparing those with high and low resilience. Clinically rel-
evant differences are most apparent for the NHB women (Table 5). Our 
findings contribute to a growing body of evidence, which will help fur-
ther inform interpretations of ethnic/race group differences in clinical 
and experimental pain and identify potential targets to reduce health 
disparities and improve chronic pain prevention strategies (Campbell & 
Edwards, 2012; Kim et al., 2019; Letzen et al., 2020; Losin et al., 2020).

4.5 | Additional considerations: Stress and pain

The brain is the relay center for life experiences, perceiving and 
evaluating stress, and orchestrating all behavioral responses 
(McEwen, 2016, 2017). Adaptive in nature, stress serves as a stimulus 
promoting neurobiological change and growth through alterations in 
function and structure. In general, based on the principles of neuro-
plasticity, increases in activation are often associated with increases 
in brain structure. However, persisting stress with inadequate re-
covery results in functional dysregulation and eventual structural 
degradation (Lupien et al., 2009; McEwen, 2003, 2017, 2019). The 
timing of stress experiences also influences neuroplastic changes 
and functional alterations (Edmiston et al., 2011; Lupien et al., 2009; 
Romeo, 2017). Early life stressful experiences significantly influence 
brain development and function (Davidson & McEwen, 2012; Lupien 
et al., 2009; Tottenham et al., 2010). A general pattern of lower pre-
frontal volume, smaller hippocampal structure, and larger amygdala 
is associated with early life stress and low socioeconomic status 
(Davidson & McEwen, 2012; Tottenham et al., 2010). However, op-
posing patterns have also been described (e.g., smaller amygdala 
volume) (Edmiston et al., 2011; Gupta et al., 2017; Luby et al., 2013).

Several factors have been identified that likely contribute to the 
stress-related structural and functional incongruences reported 
(Lupien et al., 2009; Pagliaccio et al., 2015). Neurobiological alterations 
in response to life stress are greatly influenced by the age at which the 
experiences occur, genetic and personality trait predispositions, sex, 
the type, number, intensity, duration, frequency, and persistence of 
stressful experiences, and the environmental buffers available (Luby 
et al., 2013; Lupien et al., 2009; McEwen, 2010, 2016, 2017; Pagliaccio 
et al., 2015; Tottenham et al., 2010). Similar to the discordant findings 
with stress and brain structure, chronic pain and brain research are 
also hampered by inconsistencies (Bushnell et  al.,  2015; Coppieters 
et al., 2016). Simple classification of chronic pain is common in brain 
imaging research; however, such categorizations may not be suffi-
cient. There is a strong body of evidence showing that a combination 
of pain frequency, intensity, duration, and extent of painful body sites 
influences brain structure and function (Bushnell et al., 2015; Maleki 

et al., 2013; Vachon-Presseau et al., 2016). To account for the overall 
burden of pain, we controlled for number of pain sites, which is as-
sociated with chronic pain severity (Kutch et al., 2017). However, im-
proved pain phenotyping capturing “stages” of chronic pain severity 
may further inform interpretation of findings (Sibille et al., 2016, 2017; 
Vachon-Presseau et al., 2016).

Our study was comprised of community-dwelling adults report-
ing mild to moderate chronic musculoskeletal pain at one or more 
sites for 3 months or greater at varying intensities, frequencies, and 
durations. Thus, the influence of differing pain signals contrasted 
to possible resilience/inhibitory signals may contribute to the vari-
ability of patterns indicated in our sample. Additionally, persistent 
stress associated with chronic pain can also lead to a feed-forward 
cycle where engagement of limbic areas, such as the amygdala, 
can contribute to worsening of pain through the same or inter-
connected descending pain structure (e.g., periaqueductal gray) 
(Johnson & Greenwood-Van Meerveld, 2014). Resilience may play 
a role in short-circuiting the feed-forward loop. Additionally, our 
NHB and NHW participants differed by neurobiologically relevant 
sociodemographic variables. Environmental and socioeconomic 
factors are significant predictors of health disparities (Bagby et al., 
2019; Palmer et al., 2019). There is a body of evidence to suggest 
that environmental stress contributes to a greater allostatic load 
contributing toward eventual “overload” resulting in greater disease 
burden and worse health outcomes in underrepresented ethnic/
race groups (Epel, 2020; Mickle et al., 2020; Myers, 2009). Finally, 
given the amygdala's intricate role in emotion, cognition, sensory 
processing including bidirectional activation with nociception, and 
the morphological influences of stress and sex; all these factors 
contribute to the amygdala's structural alterations. Interpreting 
directionality will require consideration of several factors moving 
forward.

5  | STRENGTHS, LIMITATIONS, AND 
FUTURE DIREC TIONS

There are several strengths in the study. First, findings are bolstered 
by a large sample size with comparable representation of males/fe-
males and NHB/NHW participants. Second, a comprehensive array 
of data, questionnaires, and imaging were collected for each par-
ticipant within approximately a 2-week timeframe to address study 
questions. Third, the resilience index is replicated from a previous 
study demonstrating a positive, additive relationship between resil-
ience and telomere length (Johnson et al., 2019) and is comprised 
of validated measures, applying referenced norms. Fourth, imaging 
findings are based on identical protocols at both study sites with 
minor scanner differences (i.e., same make and model but different 
head coils), data processing was completed on one system at one site 
with well-validated processing methods, and study site was included 
as a covariate in the statistical models.

Several limitations are also important to note. First, while we tried 
to address the considerable disparities between our ethic/race groups 
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by including specific covariates in the analyses, we recognize such sta-
tistical modeling incompletely accounts for differences. Ethnic/race 
group differences are affected by and reflect cultural, environmental, 
health, psychological, and social factors. As such, we interpret our 
findings as based on sociodemographic factors. While these dispari-
ties exist in our sample, they are somewhat reflective of societal dis-
parities. This gives our study a measure of ecological validity. Second, 
our study is cross-sectional; prospective longitudinal analyses are an 
important next step to better understand the relationship between 
resilience and brain structure in individuals with chronic musculo-
skeletal pain. Importantly, we will have the opportunity to complete 
prospective analyses on the current sample. Third, all participants 
in the study met criteria for chronic pain at a minimum of one body 
site, the majority of whom endorsed knee pain. The three clinical pain 
measures analyzed in the study were specific to knee pain, and thus 
did not represent the pain experienced by the entire sample. It will be 
important to explore replication of findings in individuals grouped by 
specific chronic pain conditions. Additionally, although number of pain 
sites was included in the model to account for chronic pain severity, 
improved consideration for stage of pain severity will be an important 
consideration moving forward. Fourth, measures of mood (i.e., anx-
iety and depression), are important considerations in chronic pain. 
Inclusion of more comprehensive psychological measures will further 
inform understanding specific to how mood is related in the resilience 
and pain-related brain structure interface. Fifth, inclusion of amyg-
dala nuclei should improve comparisons between studies (Simons 
et al., 2014). Sixth, other areas of the brain may be relevant to consider 
in relation to resilience but were beyond the focus of our study aims. 
Seventh, based on our replication of findings with the resilience index, 
further development is warranted. If the current index is applied in 
future studies, the Coping Strategies Questionnaire-Revised (CSQ-R) 
active coping score should be excluded as there are no clear published 
norms available and the resilience value incorporated in the study 
was higher than the group mean. Additionally, the Waist–Hip Ratio 
(WHR) resilience value applied was specific to men, incorporation of 
the World Health Organization recommended range for women in fu-
ture studies could improve the resilience formulation. Also, tobacco 
use categorization might benefit from further evaluation to optimize 
classification (former smoker vs. less than 100 cigarettes in a lifetime) 
(CDC, 2017). Lastly, although our study benefited from a large sample 
size, our findings in combination with a strong body of evidence re-
garding sex differences in brain function and structure warrant ample 
representation of males and females and the consideration of relevant 
sociodemographic factors in future studies.

6  | CONCLUSIONS

In individuals with chronic MSK pain, resilience is associated with 
lower levels of clinical pain and functional limitations, and with 
pain-related brain structure (right amygdala, bilateral thalamus, and 
postcentral gyrus). Findings demonstrate a neurobiological correlate 
to resilience in individuals with musculoskeletal chronic pain and 

extend our previous work showing a positive and additive relation-
ship between resilience and telomere length (Johnson et al., 2019). 
Further and importantly, we show that the relationship between re-
silience and pain-related brain structure differs by sociodemographic 
factors. If efforts to decipher the code of chronic pain and associated 
protective factors in the brain are to be successful, results provide 
additional compelling evidence regarding the necessity to: (a) im-
prove chronic pain phenotyping, (b) include an equal representation 
of females in studies and incorporate analyses stratifying by sex, and 
(c) incorporate neurobiologically relevant sociodemographic factors 
into investigations.
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