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Abstract
In the search of topological superconductors, nailing down the Fermiology of the normal state
is as crucial a prerequisite as unraveling the superconducting pairing symmetry. In particular,
the number of time-reversal-invariant momenta (TRIM) in the Brillouin zone enclosed by
Fermi surfaces is closely linked to the topological class of time-reversal-invariant systems, and
can experimentally be investigated. We report here a detailed study of de Haas van Alphen
quantum oscillations in single crystals of the topological semimetal CaSn3 with torque
magnetometry in high magnetic fields up to 35 T. In conjunction with density functional
theory based calculations, the observed quantum oscillations frequencies indicate that the
Fermi surfaces of CaSn3 enclose an odd number of TRIM, satisfying one of the proposed
criteria to realize topological superconductivity. Nonzero Berry phases extracted from the
magnetic oscillations also support the nontrivial topological nature of CaSn3.

Keywords: quantum oscillations, topological superconductors, topological semimetals, de
Haas van Alphen

(Some figures may appear in colour only in the online journal)

1. Introduction

Topological superconductors (TSCs) hosting Majorana
fermions on the boundaries have recently attracted much
attention because of potential application in quantum comput-
ing and other areas [1]. Although extensive studies to explore
TSCs, such as metal-intercalated Bi2Se3 [1–4] and half
Heusler systems [5, 6], have been conducted, unambiguous

∗ Author to whom any correspondence should be addressed.

experimental identification of topological superconductivity
is still lacking.

According to a theory proposed by Fu and Berg [7], a
time-reversal-invariant centrosymmetric superconductor is a
topological superconductor, if it possesses the following prop-
erties: (1) odd-parity pairing symmetry with a full super-
conducting gap and (2) an odd number of time-reversal-
invariant momenta (TRIM) in the Brillouin zone, enclosed by
its Fermi surfaces. Together with the study of the supercon-
ducting gap structure in the superconducting state, detailed
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Figure 1. Temperature dependent oscillatory magnetic torque in
CaSn3. Oscillatory part of magnetic torque as a function of 1/B at
θ = −1.7◦, where θ is the angle between the magnetic field and the
[100] axis while rotating the field from [100] to [010] in the (001)
plane as illustrated in the lower inset. The oscillation amplitudes
decrease with increasing temperatures. Upper inset: magnetic torque
as a function of the magnetic field B for θ = 8.3◦ at T = 1.5 K.

investigation of Fermiology in the normal state is crucial
for identifying topological superconductivity in topological
materials.

Recently, the binary stannide semimetal CaSn3 has been
proposed to be a promising candidate for realizing topo-
logical superconductivity, as it is predicted to be a topo-
logically nontrivial semimetal [8]. The nontrivial electronic
band structure harbors topological nodal lines in the absence
of spin orbit coupling (SOC). Upon turning on SOC, the
nodal lines evolve into topological point nodes [8]. More
notably, superconductivity has experimentally been confirmed
[9, 10], and the possible nontrivial Berry phase associated
with the topological nature of CaSn3 has been obtained from
a recent quantum oscillation study in the normal state. How-
ever, it is still unclear that this system satisfies the pro-
posed criterion for topological superconductors, i.e. an odd
number of Fermi surfaces enclosing TRIM in the Brillouin
zone.

Here we present a detailed study of de Haas van Alphen
(dHvA) oscillations in CaSn3 with torque magnetometry in
high magnetic fields up to 35 T. dHvA measurements pro-
vide comprehensive information about Fermi surfaces, as
does angle-resolved photoemission spectroscopy, which has
been used successfully to reveal band structures of topolog-
ical materials [11]. In addition, from dHvA oscillations we
can extract topological properties of materials. In CaSn3, we
observe four fundamental dHvA frequencies associated with
the Fermi surfaces as well as strong Zeeman splitting. With
the aid of our band structure calculations, we assign the mea-
sured frequencies to the Fermi surfaces of CaSn3, unveiling
that an odd number of TRIM is enclosed by the Fermi surfaces.
Combined with the observation of nontrivial Berry phases, this
finding suggests that CaSn3 is a promising material to realize
topological superconductivity.

Figure 2. FFT spectrum of oscillatory magnetic torque and peak
splitting in CaSn3. (a) FFT spectrum of oscillatory magnetic torque
for θ = −1.7◦ at T = 1.5 K (field range 5–35 T). Four fundamental
frequencies, Fα, Fβ , Fγ , and Fδ , with splittings are observed. Inset:
peak splitting in the α orbit at T = 1.5 K. We observe beating due to
two oscillatory components associated with (b) the β orbit with the
periodicity of 0.0027 T−1 (F ∼ 370 T) for θ = −1.7◦ at T = 1.5 K,
and (c) the α orbit with the periodicity of 0.0195 T−1 (F ∼ 50 T) for
θ = 38.3◦ at T = 1.5 K. Arrows indicate nodes in the beating
patterns. Plus and minus signs indicate the positions of the maxima
and minima of the oscillations, respectively.

2. Methods

Single crystals of CaSn3 were grown by a Sn self flux method.
The starting elements with a ratio of Ca:Sn = 1:9 were
placed in an alumina crucible, which in turn was sealed in
a quartz tube. The mixture was heated up to 800◦C, kept
for 24 h, and cooled slowly down to 300◦C at a rate of
2◦C h−1. The excess of Sn flux was decanted by centrifuga-
tion. We confirmed the cubic AuCu3-type structure with space
group Pm3̄m with the lattice constant of a = 4.7331(5) Å via
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Figure 3. Angular dependence of dHvA oscillation frequencies. (a) Angular dependence of the oscillatory part of magnetic torque as a
function of 1/B. Reflecting the cubic crystal structure, the oscillations are symmetric with respect to θ ∼ 45◦. (b) Angular dependence of
dHvA oscillation frequencies. The observed frequencies Fα, Fβ , Fγ , and Fδ are nearly independent of angle θ. (c) Theoretical results
obtained from DFT calculations using the SKEAF code for band 25 (blue) and band 26 (red).

powder x-ray diffraction. No Sn impurities were observed
unlike the previous reports [9, 10]. Torque magnetometry was
performed using a capacitive cantilever in a 35 T resistive mag-
net at the National high magnetic field laboratory, Tallahassee,
FL.

The band structure and Fermi surfaces are calculated by
means of density functional theory (DFT) employing the
projector-augmented wave pseudopotential method [12, 13]
and a plane-wave basis set as implemented in the Vienna
ab initio simulation package [14, 15]. Exchange correla-
tion effects are included via the generalized-gradient approx-
imation in the form of Perdew–Berke–Enzerhoff (PBE)
exchange–correlation functionals [16, 17]. We set a cutoff
energy of 500 eV for plane-wave expansion, and adopt the
DFT + U approach [18] to mitigate the lack of electron
correlation in the PBE functionals. The effective Hubbard
U parameter is chosen to be 2.55 eV to produce a lattice
parameter 4.741 Å, close to a value of 4.742 Å that was
determined experimentally [9] and not far from our measured
value, a = 4.7331(5) Å. All electronic iterations converged
with 0.01 meV threshold. We use a Gaussian smearing of
0.1 eV and sample the Brillouin Zone with a 15 × 15
× 15 Γ-centered grid. SOC is incorporated in the calcula-
tions of electronic band structure of the system. We calcu-
late eigenvalues for all k-points of a 41 × 41 × 41 uniform
grid.

3. Results and discussion

3.1. Quantum oscillations in CaSn3

Our torque magnetometry data exhibit clear dHvA oscilla-
tions. Upon applying magnetic field at θ = 8.3◦, where θ is

the angle between the applied magnetic field and the [100]
axis in the (001) plane, the oscillations in the magnetic torque
τ are discernible above ∼5 T at 1.5 K (figure 1 inset). The
magnitudes of the oscillatory part of the magnetic torque
Δτ decrease rapidly with increasing temperature (figure 1).
While the fast oscillations are completely suppressed above
20 K, the slow oscillations can be observed up to at
least 80 K.

Fast Fourier transform (FFT) allows us to determine the fre-
quencies of oscillation components measured at θ = −1.7◦

[figure 2(a)]. We find four fundamental frequencies Fα, Fβ ,
Fγ , and Fδ . Each of them in fact consists of two frequen-
cies close to each other [figure 2(a) and the inset], identified
to be Fα1 = 56 T, Fα2 = 63 T, Fβ1 = 380 T, Fβ2 = 422 T,
Fγ1 = 655 T, Fγ2 = 729 T, Fδ1 = 2845 T, and Fδ2 = 2890 T.
This paring of close frequencies is corroborated by clear beat-
ing patterns in the magnetic torque as a function of 1/B. As
indicated by arrows in figures 2(b) and (c), nodes in the beat-
ing patterns produce π phase shifts in the oscillations. While
the frequencies of Fα, Fβ , and Fγ are in good agreement with
those previously reported [10], Fδ that is prominent above
30 T (or 1/B < 0.033 T−1) is newly identified by the present
work.

The observed frequencies F are associated with extremal
cross sectional areas, S, of the Fermi surfaces in the momen-
tum space by the Onsager relation F = (�/2πe)S. Tracking
the extremal cross sectional areas in rotating magnetic fields
about the crystallographic axes, we can trace the Fermi surface
topology of CaSn3. The angular dependence of dHvA oscilla-
tions in CaSn3 about the [001] axis is plotted in figure 3(a).
As expected for the cubic structure of CaSn3, we observe
symmetric behavior in the magnetic torque with respect to
θ ∼ 45◦, similar to the previous report [10]. The dHvA

3



J. Phys.: Condens. Matter 33 (2021) 17LT01

Figure 4. Electronic band structure and Fermi surfaces of CaSn3.
(a) Band structure of CaSn3 calculated by DFT. The local minimum
of the electron band (shown in orange) at the M point is very close
to the Fermi energy EF, suggesting that the sizes of Fermi pockets at
the M points are extremely sensitive to EF. Inset: high symmetry
points in the Brillouin zone. (b) Fermi surfaces of band 25 (hole). A
large hole pocket is located around the Γ point, surrounded by
numerous tiny hole pockets. (c) Fermi surfaces of band 26
(electron), consisting of cross-shaped electron pockets around the X
points, triangle-shaped electron pockets between the Γ and R points,
and small electron pockets around the M points. Calculated dHvA
orbits for (d) δ, (e) β, (f) γ, γ ′, and γ′′. Corresponding frequencies
are plotted in figure 3(c).

frequencies extracted from the FFT analysis exhibit nearly
isotropic angular dependence for the α, β, γ, and δ orbits, as
shown in figure 3(b).

3.2. Fermi surfaces of CaSn3

To compare with the experimental observations, we show the
calculated band structure of CaSn3 in figure 4(a). The predicted
bands consist of a hole band (band 25) and an electron band
(band 26). Band 25 comprises a large hole pocket around the
Γ point in the Brillouin zone, surrounded by numerous small
hole pockets [figure 4(b)], and band 26 has cross-shaped elec-
tron pockets around the X points and triangle-shaped electron
pockets located between the Γ and R points, along with tiny
electron pockets around the M points [figure 4(c)]. The calcu-
lated band structure agrees with the one previously reported
in reference [8]. Figure 3(c) shows theoretical quantum oscil-
lation frequencies generated from the DFT calculations using
the supercell K-space extremal area finder (SKEAF) code [19].

On comparing the theoretical oscillation frequencies with
the observed ones, we can allocate the frequencies to cor-
responding Fermi surfaces of CaSn3. The δ orbit with
Fδ ∼ 2900 T corresponds well to the large hole pocket around
the Γ point [figure 4(d)]. The β orbit with Fβ ∼ 400 T is close
to the frequency branch of triangle-shaped electron pockets

Figure 5. Spin-splitting of Fermi surface due to nonlinear Zeeman
effect. (a) Magnetic field dependence of the extremal cross-sectional
areas for spin-up and down Fermi surfaces Sup and Sdown due to the
linear Zeeman effect. The observed extremal cross-sectional area
Sobs = S(B) − BdS(B)/dB is identical to the zero-field limit of
cross-sectional area S(0), leading to Sobs

up = Sobs
down. (b) Magnetic field

dependence of the extremal cross-sectional areas for spin-up and
spin-down Fermi surfaces due to the nonlinear Zeeman effect. The
observed extremal cross-sectional area is given by the extrapolation
of dS(B)/dB to B = 0, yielding Sobs

up �= Sobs
down.

as shown in figure 4(e), and the γ orbit with Fγ ∼ 690 T is
comparable to the frequency associated with the cross-shaped
electron pockets around the X points [figure 4(f)].

However, there are important discrepancies between the
theoretical results and the measured dHvA frequencies: angle-
dependent branches and branches with frequencies less than
about 40 T are absent in the measured data, and the measured
frequencies exhibit slight splitting, which is absent in the the-
oretical ones. We observe nearly isotropic angular dependence
of dHvA frequencies, and the splittings of frequencies are also
isotropic. In the δ orbit, the observed splitting is ΔFobs

δ ∼ 45 T,
but the theoretical calculations predict no splitting in the
branch near ∼2900 T. In the β and γ orbits, the observed
splittings are ΔFobs

β ∼ 40 T and ΔFobs
δ ∼ 70 T. However, the

theoretical calculations indicate that the frequencies for the β′

and γ ′ orbits, stemming from the triangle-shaped and cross-
shaped electron pockets [figures 4(e) and (f)], respectively,
depend strongly on the angle θ as shown in figure 3(c), yield-
ing angular dependent splitting in the oscillation frequencies.
Moreover, the splittings of calculated frequencies ΔFcalc

β =

Fcalc
β′ − Fcalc

β = 150 T at θ = 45◦ and ΔFcalc
γ = Fcalc

γ′ − Fcalc
γ =

1200 T at θ = 0◦ and 90◦ are much larger than the observed
ΔFobs

β and ΔFobs
γ . We therefore conclude that the experi-

mentally detected β and γ orbits represent only parts of the
corresponding theoretical orbits. The absence of these angle-
dependent branches in our measurements can be attributed to
the suppression of oscillation amplitudes by the large curva-
ture factor Δτ ∝ |∂2S(k)/∂k2

‖|−1/2, suggested by the shape of
calculated Fermi surfaces.

The slight splitting of oscillation frequencies observed in
CaSn3 is reminiscent of the spin splitting of energy bands. For
instance, in noncentrosymmetric systems with strong SOC,
asymmetric SOC can induce the splitting of Fermi surfaces
even in the absence of a magnetic field [5, 20]. However,
since CaSn3 is a centrosymmetric system, asymmetric SOC
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Figure 6. Comparison between experimental and calculated dHvA frequencies. Angular dependence of average dHvA frequencies for (a)
the δ orbit, (b) the γ orbit, and (c) the α and β orbits. Black and red dashed lines represent theoretical dHvA frequencies without and with
Fermi-energy shifts, respectively. Fermi surfaces with shifting the Fermi energy by (d) +40 meV for the hole band around the Γ point, (e)
+110 meV for electron pockets around the M points, (f) +15 meV for electron pockets located between the R and Γ points, and −20 meV
for electron pockets around the X points. Green lines represent extremal orbits when the field is applied parallel to the [100] axis.

is absent. Instead, the observed splitting in CaSn3 can be
attributed to spin-up and down Fermi surfaces with field-
dependent extremal cross sectional areas S(B) due to the Zee-
man effect. Taking the Zeeman effect into account, the Onsager
relation can be rewritten as F = �(S(B) − BdS(B)/dB)/(2πe).
Hence, the measured F represents a back projection of field-
dependent cross-sectional area S(B), i.e. an extrapolation of
the tangent at B to B = 0 (figure 5) [21–24]. In the conven-
tional linear Zeeman effect, the back projection provides field-
independent Sobs = S(0), or field-independent dHvA frequen-
cies Fobs [figure 5(a)]. In this case, the observed frequencies for
spin-up and down Fermi surfaces are identical (Fobs

up = Fobs
down).

On the other hand, the nonlinear Zeeman effect can give rise to
nonlinear magnetic field dependence of extremal areas Sup(B)
and Sdown(B), yielding the disparity between the observed
extremal areas Sobs

up and Sobs
down, i.e. Fobs

up �= Fobs
down [figure 5(b)].

In this situation, averaging two splitting frequencies provides
the zero-field limit for each orbit: Fave

α = 60 T, Fave
β = 401 T,

Fave
γ = 692 T, and Fave

δ = 2868 T. Shifting the Fermi energy
upward by 15 meV for the β orbit, downward by 20 meV for
the γ and γ′ orbits, and upward by 40 meV for the δ orbit fully
reproduce their absolute frequencies [figures 6(a)–(c)]. Field-
dependent dHvA frequencies for spin-up and down Fermi
surfaces have also been reported for PrPb3 with the same
AuCu3-type cubic structure [25].

Whereas the Fermi pockets corresponding to the mea-
sured orbits β, γ, and δ are uniquely identified, the α orbit
with Fave

α = 60 T remains unassigned. We note that the hole
pocket around theΓ point and triangle-shaped electron pockets
between Γ and R points provide no extremal orbits other than
F ∼ 3000 T and ∼ 400 T at θ = 0, respectively [figures 4(d),

(e) and 6(d), (f )]. On the other hand, the cross-shaped elec-
tron pockets around the X points has extra extremal orbits
γ′′ with the frequency of ∼190 T (150 T) for the unshifted
(shifted) Fermi pockets [figures 4(f) and 6(g)] at θ = 0. Since
the calculated frequencies for the γ′′ orbit, with or without the
Fermi-energy shift, are larger by a factor of ∼3 than the mea-
sured frequency of 60 T, the α orbit cannot be ascribed to the
cross-shaped electron pockets.

Thus, we have two possible options to assign the α orbit:
tiny hole pockets around the large Fermi surface at the Γ

point and tiny electron pockets at the M points. However, the
isotropy of the dHvA frequencies for theα orbit suggests that it
is quite unlikely that the α orbit originates from the small non-
spherical hole pockets located off the high symmetry points in
band 25. The absence of these tiny hole pockets can be due
to the sensitivity of the pocket sizes to the Fermi energy, as
figure 4(a) suggests.

We therefore attribute the α orbit to the electron pock-
ets around the M points. In the band structure with the
unshifted Fermi energy, however, the cross sectional areas
of the electron pockets around the M points are very small
[figure 4(c)]. Nevertheless, as shown in the calculated band
structure [figure 4(a)], the sizes of the electron pockets are
extremely sensitive to the Fermi energy EF. Indeed, an upward
shift of EF by 110 meV yields perfect agreement in the absolute
frequency and its angular dependence [figure 6(c)] just like the
other Fermi pockets in CaSn3. This assignment to the α orbit,
with a shifted Fermi energy, leads to the intriguing conclu-
sion that three TRIM—namely, the Γ, X, and M points—are
surrounded by the Fermi pockets of CaSn3, which satisfies
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Figure 7. Effective masses and Berry phases of CaSn3. Effective masses of (a) the α and β orbits and (b) the γ and δ orbits in CaSn3,
obtained from temperature dependence of FFT amplitudes at θ = −1.7◦ [figure 2(a)] using the Lifshitz–Kosevich (LK) model with the
average inverse field 1/B̄ = (1/Bmin + 1/Bmax)/2, where Bmin = 5 T and Bmax = 35 T. A two component LK fit to the band-pass filtered
data for (c) the γ and (d) the δ orbits. The extracted Berry phase φB —0.7π for the γ orbit and 1.0π for the δ orbit—indicate nontrivial
topological nature of CaSn3.

one of the criteria theoretically proposed for the realization of
topological superconductivity.

3.3. Effective masses and Berry phases

To take a closer look at the effective mass and topological
nature of each band, we utilize the LK model that explains the
oscillatory part of magnetic torque in metals [21],

Δτ osc = Mosc
⊥ × B, (1)

Mosc
⊥ = − 1

F
dF
dθ

Mosc
‖ , (2)

Mosc
‖ ∝ −B

1
2

∣∣∣∣∣
∂2S(k)
∂k2

‖

∣∣∣∣∣
− 1

2

RTRD sin

[
2π

(
F
B
+ φσ

)]
. (3)

Here, RT = x/sinh x—with x = am∗T/meB and a = 2π2kB

me/e� = 14.69 T K−1—is the thermal damping factor, RD =
exp(−am∗TD/meB) is the Dingle damping factor, m∗ is the car-
rier effective mass, me is the free electron mass, and TD is
the Dingle temperature. The phase shift φσ (σ = up, down)
for a spin-up/down Fermi surface is given by φσ = −1/2 +
φσ

B/2π ± φσ
Z/2 + φ3D, where φσ

B is the Berry phase and φσ
Z =

gm∗/2me (g: g-factor) is a phase shift due to the linear Zee-

man effect. The phase shift determined by dimensionality of
the Fermi surface, φ3D, is 1/8 for extreme minima (maxima)
for electron (hole) pockets and−1/8 for extreme maxima (min-
ima) for electron (hole) pockets. Note here that instead of using
the spin damping factor RS = cos(πgm∗/2me) in the conven-
tional LK formula, we adopt the Zeeman phase shift φσ

Z to
describe the effect of spins due to the spin-dependent dHvA
frequencies (Fup �= Fdown). To extract a reliable Berry phase
from dHvA oscillations, φσ

Z, together with the sign of dF/dθ,
should be considered in the LK analysis.

To this goal, we first determine the effective masses m∗

through the thermal damping factor RT by fitting the observed
FFT amplitudes to the LK formula [21]. We find the effec-
tive masses m∗ are 0.040me, 0.042me, 0.10me, 0.10me, 0.21me,
0.25me, 0.17me, and 0.18me for the α1, α2, β1, β2, γ1,
γ2, δ1, and δ2 orbits, respectively [figures 7(a) and (b)].
These light masses are consistent with the previously reported
values [10].

Nontrivial topological nature of CaSn3 is confirmed by the
nonzero Berry phase. To determine the Berry phase, we fit
a two-component LK formula to band-pass filtered data for
the γ and δ orbits for θ = −1.7◦ at T = 1.5 K. We use the
oscillation frequencies obtained from the FFT analysis and the
effective masses extracted from the temperature dependence
of FFT amplitudes as fixed parameters. We assume that the
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spin-up and down Fermi surfaces have the same Berry phase,
i.e. φB = φup

B = φdown
B . Taking into account the signs of dF/dθ

(< 0 around θ = 0) for the γ and δ orbits [figures 6(a) and
(b)], we find the extracted Berry phases φB = 0.7π for the γ
orbit and φB = 1.0π for the δ orbit, which indicate the non-
trivial topological nature of these bands. The lower limits of
effective g-factors, obtained from the Zeeman phase shift, are
8.61 for the γ orbit and 11.6 for the δ orbit. Similar, siz-
able enhancement of g has been observed in various topo-
logical semimetals, including ZrSiS [26], ZrTe5 [27], Cd3As2

[28], and PtBi2−x [29], all consistent with the large Zeeman
splitting.

4. Conclusions

In summary, we have observed four fundamental dHvA oscil-
lation frequencies in CaSn3 via torque magnetometry in mag-
netic fields up to 35 T, determined to be Fave

α = 60 T,
Fave
β = 401 T, Fave

γ = 692 T, and Fave
δ = 2868 T. We have

identified the correspondence between the experimental quan-
tum oscillation frequencies and theoretically calculated orbits
in this topological superconductor candidate, revealing that an
odd number of Fermi pockets enclose the TRIM, prerequisite
to one of the theoretical criteria for topological superconduc-
tivity. The nonzero Berry phases are also confirmed by using
the LK model, supporting the nontrivial topological nature of
this system. These findings provide a new avenue to investigate
topological superconducting states stabilized in topological
semimetals.
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