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ABSTRACT: The biogeochemical cycling of soil organic matter
(SOM) plays a central role in regulating soil health, water quality,
carbon storage, and greenhouse gas emissions. Thus, many studies
have been conducted to reveal how anthropogenic and climate
variables affect carbon sequestration and nutrient cycling. Among
the analytical techniques used to better understand the speciation
and transformation of SOM, Fourier transform ion cyclotron
resonance mass spectrometry (FTICR MS) is the only technique
that has sufficient mass resolving power to separate and accurately
assign elemental compositions to individual SOM molecules. The
global increase in the application of FTICR MS to address SOM
complexity has highlighted the many challenges and opportunities
associated with SOM sample preparation, FTICR MS analysis, and
mass spectral interpretation. Here, we provide a critical review of recent strategies for SOM characterization by FTICR MS with
emphasis on SOM sample collection, preparation, analysis, and data interpretation. Data processing and visualization methods are
presented with suggested workflows that detail the considerations needed for the application of molecular information derived from
FTICR MS. Finally, we highlight current research gaps, biases, and future directions needed to improve our understanding of organic
matter chemistry and cycling within terrestrial ecosystems.

KEYWORDS: Dissolved organic carbon (DOC), mineral-associated organic matter, sorptive fractionation, metabolomics,
microbial carbon metabolism, organic nitrogen, organo-metal complexation, carbon sequestration

■ INTRODUCTION TO FTICR MS FOR
ENVIRONMENTAL SCIENTISTS

Soil organic matter (SOM) is the accumulated, decaying debris
of biota in the soil. It is both the largest active reservoir of
terrestrial organic carbon1 and fuel for microbial activity and
plant nutrient production, “giving life” to soil through its
decay.2 SOM affects soil structure, moisture retention, ion
exchange capacity, and other properties, and it can be studied
from many diverse perspectives, from soil health to
contaminant transport. Most recently, urgent attention has
been given to its relationship to atmospheric CO2 concen-
trations and climate change.3,4

The sources of SOM are vast and various, including
extracellular compounds likeroot exudates, enzymes, polymeric
substances,5,6 decomposition products from above-ground
plant litter, root litter, microbial necromass,7−10 and abiotic
reaction byproducts. The succession of biotic and abiotic
reactions and the disparate conditions across both spatial and
temporal scales11,12 create mixtures with chemical diversity
that is far more complex than the original biological source

materials.13,14 Recent observations also show that SOM is
heterogeneous at high spatial resolution15,16 and that physical
separations (i.e., water extractable, particulate, and mineral-
associated organic matter) reflect the formation, persistence,
and function of SOM in the environment better than
operational fractions produced by solubilities under different
pH conditions (i.e., humic acids, fulvic acids, and humins).17,18

A wide range of complementary analytical techniques are
required to study such a complex and dynamic mixture when it
is heterogeneously distributed among different physical
environments at nearly every measurable scale (i.e., nanometer
to kilometer).19
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The introduction of Fourier transform ion cyclotron
resonance mass spectrometry (FTICR MS) analysis estab-
lished a means to reliably detect and resolve individual SOM
molecules when studying its composition, distribution, or
transformation. FTICR MS achieves sufficient mass resolving
power over a wide mass range (from a hundred to several
thousand daltons) to identify a m/z difference of a single
electron, where m is ion mass in daltons (Da) and z is the ion
charge.20 This resolution is capable of separating the closely
spaced m/z peaks that are found in a typical SOM mass spectra
(Figure 1).

However, biases that originate from sample preparation and
the chosen analysis conditions make full characterization of any
SOM sample difficult, whatever the mass resolving power of
the FTICR MS. Due to the diversity of molecular components
that comprise SOM, any extraction method will only target a
specific fraction and must be tailored to a specific research
question to collect the desired fraction most effectively.
Ionization efficiencies vary greatly between molecules of

different chemical composition and sample matrices, which
complicates the quantitative comparison of SOM mass spectra.
Furthermore, once mass spectra are collected, data analysis
requires making assumptions to assign reasonable molecular
formula to masses, grouping features by calculated indices, and
creating visualizations that reflect chemical differences. Robust
interpretation relies on critical assessments of the uncertainties
introduced during each of these steps.
Importantly, FTICR MS is not, by itself, able to differentiate

between isomers, determine molecular structures, or identify
functional groups, meaning that FTICR mass spectra are still
simplified representations of SOM.21 FTICR MS provides a
qualitative view into a subset of SOM compositional space.
However, these data can be further examined using LC-MS
and other complementary approaches (section 2 of the
Supporting Information) to identify and characterize specific
isomers of interest and contextualize relationships between
peaks and samples.
There has been significant progress in overcoming the

challenges of organic matter analysis using FTICR MS,22−24

and the user base of FTICR MS analyses is growing rapidly as
techniques for SOM analysis become more standardized.
Herein, we aim to provide a comprehensive resource to
multidisciplinary researchers interested in applying FTICR MS
to obtain molecular level insight into SOM chemistry.
Workflows for FTICR MS based SOM analysis will be
presented from an experimental design perspective, and
potential biases from sample extraction, ionization, and
formula assignment methods will be highlighted. Data
visualization and exploration methods will also be discussed,
with suggested usage to avoid misinterpretations. Finally,
techniques complementary to FTICR MS for SOM analysis
will be presented with their specific strengths to support more
robust conclusions about SOM composition, microbial
decomposition pathways, and other relevant areas of study
(Figure 2).

■ SAMPLING AND EXTRACTION OF SOIL ORGANIC
MATTER

SOM sampling methodology depends primarily on the
scientific focus of the study and which fraction of SOM will
provide the most relevant information. The heterogeneity of
SOM, soil surfaces, and microenvironments make a single
extraction procedure for all SOM features impossible.25,26

SOM has been historically isolated into fractions operationally

Figure 1. FTICR mass spectra of a SOM extract displaying the
resolution needed to differentiate unique peaks. The peaks
(C20H23O15 and C21H28S2O10) differ by 0.00088 m/z, requiring a
resolution of ∼600 000 (resolution = m/Δm) to separate and assign.
The mass of an electron (Me

−) is provided as reference. Unpublished
data from the National Magnetic Field Lab.

Figure 2. Workflow for analysis involving FTICR MS to provide meaningful conclusions about a set of samples.
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defined by their solubility at different pH.27 While this method
continues to be used,28,29 other fractions of interest can be
collected by targeting specific SOM sorption mechanisms.
SOM is bound to soil minerals and other organic matter via
different mechanisms, from weak electrostatic, hydrophobic,
and other nonspecific interactions to strong polar covalent
bonds produced by ligand exchange with carboxylic and
phenolic functional groups25,30 (Figure 3). The most
commonly used extraction methods include water, alkaline,
mineral dissolution, and organic extractions, and each method
has been shown to extract different fractions of SOM (Table
S2). Extracted fractions can be related and even complement
each other; however they cannot be assumed to be “complete”
or truly representative of total SOM as they, by design, only
target specific operational fractions defined by the targeted
stabilization mechanism.31 This review outlines the major
extraction methods and the key shortcomings of each that
must be considered when collecting samples for FTICR MS.
Water-Based Extraction. For approximately two decades,

water extraction has been used as a collection method for SOM
that is released to the soil solutions when equilibrium
conditions change.32 The resulting fraction, referred to as
water-extractable SOM (WEOM),33,34 is closely related to
dissolved organic matter (DOM), which is defined operation-
ally by filtration (i.e., passing through 0.4−0.6 μm pore sizes)35

of water-extractable or aquatic organic matter.36,37 These terms
describe complex natural organic matter (NOM) and have
been shown to be highly related through biomolecular origin
and degree of decomposition.37−40 Therefore, the following
discussion on preparation, ionization, and analysis can be
similarly applied.
WEOM is considered the most dynamic and bioavailable

fraction of SOM and therefore its analysis is highly applicable
to a variety of studies.41−45 The importance and broad
application of water extractable SOM are due to its roles in
aqueous photochemistry, nutrient cycling, ion distribution, and
pH buffering, in addition to acting as an energy and carbon
source for microbes.46−49 Water extraction is performed with
ultrapure water or salt solutions such as potassium sulfate (or
potassium chloride), which increases ionic strength, generally
improving SOM yield.32,50−53 Additional alteration of
extraction conditions, such as increasing temperature, pressure,
or time, have failed to produce significant improvement over
leaching or batch extractions at room temperature.45 Overall,
water extractions are easily performed but are generally unable
to extract SOM adsorbed to mineral surfaces, hydrophobic

molecules, or physically protected SOM, which are important
when considering carbon sequestration and mineral−organic
interactions.34,50

Alkaline Extraction. Alkaline extraction of SOM was first
described by Achard in 1786 and has remained relatively
unchanged to the current day.54−57 This extraction is widely
used due to its high organic carbon yield usually achieved
through the use of 0.1 M NaOH. Alkaline extractions are
expected to contain a more diverse range of SOM molecules
than WEOM, including molecules that are not hydrophilic
under the normal range of in situ equilibrium conditions.
Alkaline extractions function by deprotonation of acidic
functional groups present on SOM, greatly increasing SOM
polarity and aqueous solubility.58 This process’s effectiveness
relies on the extracting solution having a higher pH than the
acidity (pKa) of the targeted functional groups (Table S1,
Figure S1) and the abundance and distribution of those
functional groups in the SOM.50,58 The potential for base-
catalyzed hydrolysis of SOM collected by alkaline extractions
has been debated,58,59 but many of the extracted features do
appear to be identical to other methods.60−64 Importantly, any
extraction that shifts the in situ conditions of the SOM,
including alkaline extractions, may produce artifacts or side
effects that alter “native” SOM composition, so considering the
character and extent of such artifacts is essential to any
extraction method.38,58,59,65 Subject to these considerations,
alkaline extractions reach SOM that is inaccessible to water
extractions and provide a more comprehensive view of SOM
composition.59

Selective Mineral Dissolution. Study of the role of
mineral protection in SOM stability has increased considerably
in recent years as mineral−organic associations are thought to
increase protection from microbial degradation processes.38,66

For example, iron oxide minerals are effective sorbents for
organic matter through interactions that include co-precip-
itation and ligand exchange under more acidic conditions.67−69

To study these mineral−organic associations directly, mineral
dissolving solutions are used to selectively extract SOM
associated with those minerals.67 These extractions function by
either reduction, chelation, or dispersion of a mineral phase,
resulting in the release of SOM stabilized by that
mineral.34,44,70−72 Example mineral phases include short-
range order (SRO) Fe(III) oxides, crystalline Fe(III) oxides,
aluminum oxides, and aluminosilicate clays, among others.
Selection of appropriate extraction solutions has been
extensively studied in SOM−mineral or mineral cycling

Figure 3. Model soil particle depicting an Fe(III) mineral (brown) and clay (black) surface exhibiting various possible interactions with model
SOM. The variety of possible interactions will create fractions with varying extractability based on the extraction solution (e.g., acid/base, organic
solvent, and water), mineral surface, and intermolecular forces.
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studies.34,50,67,73−75 Not as well characterized is the potential
for SOM alteration by extraction conditions or interactions
between the DOM and dissolved minerals.75−77 After
dissolution, new SOM−mineral interactions can be inhibited
by inclusion of an appropriate buffering or stabilizing agent,
such as citrate for Fe2+, that can complex metal ions and
prevent re-adsorption or aggregation of extracted SOM.76,78,79

All mineral extraction will require a cleanup process to remove
the extracting chemicals and stabilizing agents that can affect
ionization, discussed below. Finally, mineral extractions have
the potential to extract compounds that overlap with water
extractions and should be noted when comparing extraction
yields and spectra.51,75,80

Organic Solvent Extraction. Soil organic matter is known
to contain hydrophobic domains,63 and laboratory studies have
indicated that nonselective sorption of DOM contributes
substantially to the overall presence of mineral−organic
associations.81 To study these interactions, it is useful to
have an extraction method that targets more hydrophobic
domains.
Organic solvents can be more efficient extractors than polar

solvents depending on the source material and target fraction
(e.g., the hydrophobic domain).82 Tfaily et al. showed that
extracted H/C and O/C ratios are influenced by solvent
polarity by performing a series of parallel extractions, and in a
subsequent study showed that low polar or nonpolar solvents
detect a greater number of low O/C peaks in FTICR-MS
analysis.41,83 Furthermore, Mckee and Hatcher84 demonstrated
that pyridine extractions of lake sediment isolate a larger range
of mass spectral and spectroscopic features compared to other
organic and aqueous extractions. Organic extractions can also
induce alterations to the SOM, such as esterification following
methanol and acetonitrile extraction, that should be considered
before usage and when comparing between samples prepared
differently.85 Extraction with organic solvents also dissolves
fewer inorganic salts that inhibit SOM ionization compared
with aqueous extractions. This is a potentially large benefit as
other extractions methods require cleanup that further bias
SOM composition.41

Sequential Extraction. Extractants can also be applied
sequentially to soils to selectively collect SOM bound at
different degrees of stabilization. This can be very beneficial
when comparing the quantity and characteristics of SOM
stabilized by the different mechanisms mentioned above.
Lopez-Sangil and Rovira50 demonstrated this with seven
extracting solutions on four soils of varying pH and organic
carbon content. Each extractant collected a fraction of SOM,
but the majority of SOM was collected with sodium
tetraborate or sodium pyrophosphate, indicating that cation
bridging or chelating interactions predominated, respectively.
Tfaily et al.41 also showed that sequential extractions with
water followed by different organic solvents resulted in an
overall increase in peak counts by 2−4-fold. As above, it is
possible that extractants overlap in the SOM collected;
therefore each extraction should be performed several times
to ensure that as much of the target fraction is extracted as
possible before continuing with the next extractant. The
additional extracts collected will increase preparation time;
however a sequential extraction protocol can be tailored to
specific research questions based on the mineral−organic
associations of interest.
Sample Preservation and Cleanup (for FTICR-MS

Analysis). Once a soil sample has been collected, it is

important to perform an extraction as soon as possible or store
the sample to minimize biological degradation of SOM.86 If
extraction soon after sampling is impossible, it is recommended
that soil samples be treated as similarly as possible to maintain
their comparability, as no storage method can perfectly
preserve the in situ conditions.59,78 Before extraction, soil
sample storage by freezing or drying can introduce bias from
aggregation of the soil or SOM,78,87,88 which can alter the
structure of the soil matrix, reducing exposure to or contact
with the extracting chemicals,78,87,88 and has shown variable
carbon yield78,88 when compared to “wet” or in situ samples.
After extraction, long-term storage of SOM extracts is also

preferably avoided to minimize postextraction alteration. SOM
stability in the extract should be accounted for, but this is easily
addressed by sterile filtration, or immediate processing to
prepare the samples for FTICR MS. When the extract is
aqueous, freezing can provide long-term SOM stability if the
solution cannot be sterile filtered, but SOM aggregation can
occur, so analysis before long-term storage is ideal.89 The use
of acidification or biocides to sterilize sample extracts for
storage is also not recommended as there is evidence for
alteration of SOM properties.90,91

After extraction, SOM often requires concentration and salt
removal to make it suitable for FTICR MS analysis. This
process is most commonly performed by solid phase extraction
(SPE), which utilizes the difference in polarity between small,
highly polar inorganic salts and the less polar SOM for
separation.92,93 As SPE cartridges use a variety of nonpolar
packing material and acidic functional groups are common,
retention of the SOM is assisted by adjusting the extract to
around pH 2, resulting in protonation of acidic functional
groups, decrease in polarity, and improvement of stationary
phase binding; however acidification can cause compositional
changes in the SOM.90,94 Additionally, amino functional
groups and N-heterocycles can be protonated at low pH,
increasing their polarity and preference for cation exchange
sorbents.95

There are a wide variety of SPE cartridges that retain
targeted or broad molecular features and must be selected
based on the design of the experiment.96 The recovery of SOM
from this method is highly variable and depends greatly on the
cartridge being used, the origin of the SOM, and the elution
procedure,95,97,98 with recoveries varying between 20% and
90%.93,99 Addressing the source of variable yields is challenging
as there is often no reliable way to identify whether the
retention or elution were incomplete.31,93,100

Alternatives to SPE include ultrafiltration (UF), electro-
dialysis (ED), and reverse osmosis (RO). Techniques using
membranes (i.e., UF and RO) are susceptible to foul-
ing;101−103 however coupling these techniques with SPE can
increase carbon recoveries.104,105 When coupling SPE with RO
or ED methods, Green et al.98 reported near 100% carbon
recoveries for marine DOM samples. It is unclear how the
higher recovery would affect FTICR MS spectra, and the RO/
ED setup costs at least twice as much to perform than SPE.98

While the combination of methods is still subject to artifacts
from procedures in both methods, the improved recovery
warrants evaluation for similar performance in extracted SOM.

■ IONIZATION TECHNIQUES AND MATRIX EFFECTS
Characterization of SOM by any mass spectral technique
requires the conversion of nonvolatile analytes from solution to
gas phase ions by ionization. All soft ionization techniques are
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selective, and since OM contains a wide range of polyfunc-
tional species across a wide molecular weight range and range
of ionization potentials, ionization efficiency is determined
based on the analyte composition. Different ionization
mechanisms preferentially ionize certain components of OM
(i.e., functional groups), enhancing their signal and suppressing
the signal from other ions, since ionization efficiency depends
on acidity or basicity, hydrophobicity, molecular weight, and
degree of conjugation. Thus, experimental design begins with a
consideration of the selectivity of each ionization technique
including the potential need for using multiple techniques for a
better understanding of the formulas and features
present.106−108

Electrospray Ionization. Electrospray ionization (ESI) is
the most109 routinely applied ionization technique for WEOM
components. Ionization is achieved by infusing the analyte
(e.g., OM) solution through a positively or negatively charged
capillary that generates a fine mist of droplets. Solvent removal,
often assisted by heating, yields charged molecular ions. This
process is one of the softest methods of ionization and during
OM analysis is often assumed to produce intact analyte ions,
although some analytes may still undergo in-source fragmenta-
tion, particularly at high spray voltages.110−112

Ion formation by ESI depends largely on the pKa of the
analyte as well as the ionization polarity (e.g., negative or
positive mode). In negative mode, ions are generally formed by
deprotonation or formation of adducts with anions such as Cl−.
Negative ionization efficiency generally correlates inversely

with pKa and the extent of charge delocalization, such as in
conjugated and aromatic chemical structures.113 Common
acidic functional groups in SOM such as carboxylic acids and
phenolic groups tend to form negative ions. In positive mode,
ions form by protonation or adduct formation with cations
such as Na+, K+, NH4

+, or metal ions. Many functional groups
in SOM such as amines, alcohols, and carbonyls can be
protonated to form cations, and their ionization efficiency is
largely correlated with basicity (conjugate acid pKa).

114 Thus,
positive and negative polarity modes may detect distinct
components from a SOM mixture.
Analyte hydrophobicity and molecular size influence ESI

efficiency. Hydrophobicity often correlates with higher
ionization efficiencies, particularly in aqueous solutions, due
to enhanced affinity for the surface of droplets where
molecules have a greater probability of being desolvated and
charged.115 ESI sensitivity is often also increased when the
analyte is already ionized in solution (i.e., acidic conditions for
basic analytes and basic conditions for acidic analytes),116

although specific pH effects vary depending on analyte
chemistry.117,118

Solvent composition influences the relative solubility and
droplet surface affinity for polar and nonpolar components and
therefore ionization efficiency.115,116 Novotny et al.119

demonstrates that different solvent compositions, including
neat solvents, efficiently ionize specific fractions and influence
the representativeness of a sample spectra. Solvent mixtures
commonly used for ESI include water, methanol, and

Figure 4. FTICR mass spectra of DOM from Lake Drummond (Great Dismal Swamp National Forest, VA, USA). Samples were prepared using
C18 solid phase extraction, and spectra were obtained with atmospheric pressure ionization sources: (+)APPI (top) and (+)ESI (bottom). Spectra
display peaks assigned with <1 ppm mass error, where insets indicate molecular formulas unique to each ionization source assigned over 444.16−
444.22 m/z. Produced with data obtained from Hockaday et al.107
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acetonitrile and can improve ionization efficiency of target
molecules115 and reproducibility of mass spectra120 by altering
the proportion of organic solvent.
Additives, contaminants, salts, and metals can also enhance

or suppress ionization by ESI (i.e., introduce matrix effects)
and can also dilute feature signals across multiple adducts,
discussed further below. Additives can extend the range of
compositional features collected121,122 and enhance the
ionization of specific molecular features.123 In contrast, there
are numerous contaminants that can be introduced acciden-
tally during sample collection and preparation that will
suppress SOM ionization. This is especially true for surfactants,
which preferentially ionize due to their amphiphilic nature and
ionizable head groups (Figure S2).81 While the bulk SOM
characteristics and most ionizable species will likely still be
observable, ionization suppression will limit the number of
other peaks that can be detected and assigned near the limit of
detection. This can dramatically influence heteroatomic
assignments and peak count overall; therefore, it is crucial
that materials used for sampling, filtration, and processing prior
to collection and sample analysis are tested.
The use of micro- or nano-ESI reduces ion suppression from

salts and other species and improves the ionization efficiency
of compounds with less surface affinity, because droplet sizes
are reduced and desolvation is enhanced compared to
electrospray at higher flow rates.124 However, high proportions
of surfactants or other contaminants can still influence the
number of SOM peaks that can be detected and assigned
because it remains desirable to limit the number of trapped
ions during SOM analysis to prevent adverse effects from space
charging125 (discussed below).
Ionization Techniques for Nonpolar and Water-

Insoluble Soil Organic Matter. While ESI remains the
most common ionization technique used for OM analysis,
atmospheric pressure photoionization (APPI) offers different
ionization mechanisms and selectivity. Using APPI extends the
analytical window of FTICR MS to less polar analytes,
evidenced by direct comparisons with ESI that display
ionization of formulas with lower oxygen content and higher
carbon unsaturation.106,107,126 This will affect heteroatom
abundance and peak assignments (Figure 4), as less polar
nitrogen-containing compounds can be preferentially ionized
using positive ion APPI,127 yet sulfur atoms presumed in polar
functional groups are diminished.106 For positive ion APPI,
radical cation (M+•) and protonated [M + H]+• species are
formed based on ionization energies of the analyte with respect
to the dopant. For negative APPI, analyte ions differ based on
electron affinity and include M−•, [M − H]−, [M − X + O]−,
and [M + A]− where A is an anion (typically a halogen) and X
is H, Cl, or NO2. Developments and mechanistic discussions of
APPI have recently been reviewed.128

The main benefit of APPI over ESI is the simultaneous
formation of gas phase ions from both polar and nonpolar
compounds. Other benefits include less suppression from salt
and solvent effects as charge acquisition occurs differently than
in ESI.129 Comparisons of these methods for lipid analysis
suggest that APPI is far more sensitive than ESI and is
particularly useful for studies focusing on condensed aromatics
and hydrocarbons within NOM.130 However, the additional
ionization mechanisms also increase the number of peaks in
APPI compared to ESI,107 increasing the complexity of the
mass spectrum and requiring even higher mass resolving power
to separate the increased number of isobaric species. The

amount of sample required for APPI is also generally higher as
injection flow rates can be orders of magnitude larger than in
ESI.106,107,126

Solid phase samples can also be ionized through desorption
techniques, including desorption atmospheric pressure photo-
ionization (DAPPI), laser desorption ionization (LDI), and
matrix-assisted laser desorption ionization (MALDI). These
techniques allow ordinarily insoluble SOM components to be
analyzed directly, such as with the application of DAPPI to
pyrolyzed carbon.131,132 Similar to APPI, LDI and MALDI
have been shown to compliment ESI-FTICR MS by ionizing
more conjugated and aromatic DOM constituents.133,134

Mechanisms and substrate selection for LDI and MALDI are
reviewed by Zenobi et al. and Dreisewerd.135,136

Importantly, while using multiple techniques will provide a
larger window into the OM compositions present, it is not
feasible to use every technique nor can the use of every
technique unequivocally ionize every organic residue present in
injected samples. Technique and polarity mode should
therefore be chosen based on a priori knowledge of the
sample and target fraction, as ionization parameters can greatly
influence sample representation. Additionally, the intensity and
m/z distribution are sensitive to instrumental parameters,
meaning FTICR MS is not well suited for resolving
controversies regarding the size distribution of SOM.

■ ANALYSIS AND INTERPRETATION OF SOIL
ORGANIC MATTER USING FTICR MS

When analyzing natural organic matter (NOM), FTICR MS
typically detects and resolves many thousands of peaks in the
m/z range from 150 to 1000 m/z. Molecular formula
assignment involves calibrating the mass spectra, computing
formulas that fit each mass within the applicable mass error
window, and choosing an appropriate assignment when there
are conflicts using all available information (e.g., elemental
content and chemical or structural relationships with other
formulas).137 Uncertainty in assignments rises dramatically
with mass and the number of elements138 as the number of
possible formulas increases. While automated assignment
procedures often select the formula with lowest mass error
or smallest number of nonoxygen heteroatoms (i.e., atoms in
the ring of a cyclic compound other than carbon or hydrogen
atoms), these approaches can sometimes yield incorrect
results.139 Accordingly, various methods, including m/z vs
error140 and DBE minus O plots,139 can be used to further
evaluate dubious or conflicting formula assignments.141

Following formula assignment, several assumptions will be
present in data visualizations and should be carefully
considered to avoid misinterpretations. Additional methods,
both online and offline to FTICR MS, will be discussed that
can provide additional insights into SOM composition,
microbial decomposition pathways, and other relevant areas
of study.

Mass Calibration. Molecular formula assignment relies on
mass error windows, so mass calibration is a critical part of the
formula assignment process.142 External calibration cannot
provide better mass accuracy than a few parts per million
because the number of ions in the ICR cell varies from sample
to sample.143 As a result, complex organic mixture FTICR
mass spectra benefit from internal calibration, wherein the ion
cyclotron resonance frequency ( f) is converted to ion mass-to-
charge ratio (m/z) by fitting experimental data spanning the
entire detected m/z range (e.g., multiple homologous series) to
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the relation m/z = A/f + B/f,2 to yield root-mean-square mass
error as low as ∼10−200 ppb.144

Savory et al. developed a calibration protocol in which the
spectrum is divided into dozens of adjoining segments, with
separate calibrations applied to each, to eliminate systematic
error with respect to m/z, and introduced a third calibration
term to minimize systematic error with respect to ion
abundance.140 In addition, Dittmar et al. recently reported
improved mass accuracy by averaging mass spectral data from
independent environmental samples and increased mass
precision through peak alignment during post-detection data
processing.145

The minimum resolution requirements to adequately
analyze a sample composition will change depending on
signal-to-noise (S/N) thresholds, the dynamic range of the
instrument measurements, digital resolution, and isotopic fine
structure.146 Ideally, the instrument and resolving power
should be considered based on a priori information as
additional constraints, such as inclusion or exclusion of specific
heteroatoms, which can substantially change the minimum
resolving power required.22 Increasing magnetic field strength
will increase mass resolution, dynamic range, and peak
noncoalescence.20,147 Increasing the time-domain acquisition
period will also increase resolution; however if sample signal
magnitude is low (i.e., sample ions are very low in abundance),
instrument noise can also erroneously be assigned.20 Increasing

ion accumulation times can increase sensitivity; however high
ion densities in the ICR cell can produce space charge effects
that coalesce peaks or alter ion frequencies, adversely affecting
both formula assignment and mass accuracy.20,125,148,149 The
limited ion capacity during FTICR MS measurement also
means that intensity and m/z distributions are sensitive to
instrumental parameters. Molecular weight distributions are
better determined in low resolution MS systems like linear ion
trap and time-of-flight that also capture lower molecular
weights (<200 m/z) efficiently.150,151 Thresholds for S/N will
also strongly affect peak detection and reproducibility.
Discussions by Sleighter et al.152 indicate how S/N affects
minimum common peak assignments and describe methods to
evaluate meaningful differences between samples.

Automated Molecular Formula Assignment. There are
a range of tools available for automated molecular formula
assignment, including in-house programs (PetroOrg/Envir-
oOrg at the National High Magnetic Field Laboratory),153

open-source programs (Formularity, UltraMassExplorer, and
ICBM-OCEAN), and publicly available R or Matlab scripts
(MFassignR, CIA, and TRFu).137,154,155 The Compound
Identification Algorithm (CIA) developed by Kujawinski et
al. computes elemental compositions for low molecular weight
compounds (<500 m/z), where the potential for conflicting
solutions is minimal,156 and uses a “formula extension”
approach to connect the assigned formulas with higher

Figure 5. 21T FTICR mass spectrum of Pahokee Peat extracted with pyrophosphate with formula assignment conducted using PetroOrg
software153 to assign 15506 molecular formulas. Two series are highlighted (orange and purple) that represent CH2 Kendrick mass defect (KMD)
series (0.55857 and 0.65806) and are present in each of the plots to illustrate their appearance and patterns through different visualizations: (A)
mass spectra displaying semigaussian abundance distributions, (B) nominal oxidation state carbon (NOSC),163 (C) CH2 KMD series over the
entire mass spectrum, and (D) van Krevelen diagram in which sections plot regions indicating oxygen content (LO = low-oxygen, MO = mid-
oxygen, HO = high-oxygen content) and degree of saturation (ARO = aromatic,162 MS = midsaturated, and ALI = aliphatic182). Formulas are
colored based on abundance quartiles. Unpublished data from the Borch Lab.
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molecular weight compounds via established chemical and
functional group relationships (e.g., CH2, CH4 − O, H2, CO2
and NH). The existence of these relationships has also been
separately established by mass difference and network analyses,
discussed in section 3 of the Supporting Information.157,158

Indeed, some version of formula extension is used in almost
every formula assignment algorithm. The CIA algorithm has
been incorporated into the freely available Formularity
software platform, which includes an associated database and
formula filters based on the “Seven Golden Rules”.159 The CIA
component is restricted to C, H, N, O, S, and P, but a separate
isotopic pattern algorithm (IPA) is available to identify other
elements, particularly when they present a strong isotopic
signature (e.g., Br, Cl, or Hg).160

ICBM-OCEAN is a server-based tool that integrates
published and novel approaches for standardized processing
of ultrahigh resolution mass spectrometry data from complex
molecular mixtures.161 Importantly, ICBM-OCEAN incorpo-
rates diagnostic and validation tools for each step in data
processing, including noise and systematic error reduction and
spectra recalibration and alignment, and it has been tested and
applied to both FTICR MS and Orbitrap MS for more than
1000 NOM samples.
After automated formula assignment, equivocal assignments

(i.e., peaks above S/N with multiple feasible compositions) will
generally remain. Molecular formula assignment for equivocal
assignments can be highly subjective; therefore different
calculated indices and empirical evidence should be used to
increase the reliability of manually distinguished assignments
wherever applicable. For instance, the selection of heteroatoms
during assignment can dramatically alter the number of
equivocal assignments (Figure S3); however prematurely
excluding elements can also result in erroneous assignments.21

Kendrick mass defect analysis can be used to study patterns in
OM assignments, discussed below. Double-bond-equivalents-
minus-O (DBE-O) plots are also used that compare equivocal
and unequivocal assignments using heteroatoms and oxygen
content (Figure S4).138

Visualization and Data Analysis. Once elemental
compositions have been assigned, several parameters can be
calculated using the stoichiometry of the assigned molecular
formulas. These include rings-plus-double-bonds equivalents
(RDBE), aromaticity indices (AImod),

159,162 and the average
nominal carbon oxidation state (NOSC) (Figure 5B).163

NOSC has been used to examine chlorinated disinfection
byproduct formation,164 water solubility,165 and the bio-
geochemical reactivity of SOM.166 Indeed, NOSC makes it
possible to calculate the Gibbs free energy (ΔG) provided by
the oxidation of a particular compound (ΔGCox° ) given the
available electron acceptors and environmental condi-
tions.167−169 Thus, NOSC and ΔGCox° have been used to
provide a thermodynamically relevant metric for approximating
the energy stored in organic matter or whether microbial
oxidation of OM is thermodynamically favorable under a given
set of redox conditions.170

Kendrick mass defect (KMD) analysis171 was initially
adopted by the organic matter community as the standard
means for visualizing complex mass spectra prior to formula
assignment.172−176 Kendrick plots are generated by plotting
nominal mass as a function of KMD, most commonly based on
a methylene (CH2) subunit (Figure 5C). In effect, each m/z is
normalized by the accurate mass of the subunit (e.g., 14/
14.01565 for CH2 subunits, common to lipid (Figure S1),

sugar, and lignin derivatives177). Afterward, compounds whose
elemental compositions only differ by the number of subunits
possess the same KMD value and line up horizontally in the
associated KMD plot. KMD analysis on SOM is useful for (i)
molecular formula assignment by assisting in assigning
molecular formulas at higher m/z ions when there are more
formulas that match an exact m/z value, (ii) identifying
multiply charged ions, and (iii) multiply charged polymer ions
of plant origin in soils.178−181

Van Krevelen (VK) diagrams183 are constructed with
assigned formulas using molar ratios of hydrogen-to-carbon
(H/C) on the y-axis and oxygen-to-carbon (O/C) on the x-
axis (Figure 5D). Points can be colored or a z-axis can be
added to provide additional information such as relative
abundances, molecular weights, or elemental classes (e.g.,
CHO vs CHNO). VK plots are widely used to make inferences
about predominant reaction pathways (e.g., methylation,
hydrogenation, condensation) and to estimate the abundance
of major compound categories based on the major
biogeochemical components of the source material (e.g.,
lignin-like, lipid-like, or carbohydrate-like), which have
characteristic H/C versus O/C ratios.184−186 However, the
boundaries of the compound classes vary among published
studies, and often overlap. Moreover, “lignin-like” components
may be derived from nonlignin source materials187 or even
reflect synthetic chemicals if anthropogenic impacts are present
(Figure S5), and lignin sources may generate some non-
“lignin-like” signatures.188 Accordingly, while the major
compound categories do signify molar ratios similar to well-
known biogeochemical classes, they are not reliable indicators
of source or structure without additional, complementary
information (e.g., on the prevalent reaction pathways;184

section 2 of the Supporting Information). Recent revisions
proposed by Rivas-Ubach et al.189 improve compound
classification in biological samples using C/H/O/N/P
stoichiometric ratios but were only tested on different
metabolite compositions and omitted “lignin-like” and
“condensed hydrocarbon” compounds that could be a major
component of soil organic matter.
Regardless of the VK plot limitations, this tool can still

provide useful insights into C cycling and changes in soil
organic matter composition with perturbation. Users are
advised to use O/C and H/C boundaries that are consistent
with the chemistry of their sample and carefully interpret their
results while acknowledging that these classifications are only
putative. Relative abundance values of different compound
classes can also be calculated from count values associated with
each observed biomolecule group normalized by the total
number of C molecules identified (i.e. , number-
weighted).190,191 When comparing multiple samples in side-
by-side comparisons or combined analyses, it is important to
ensure that systematic biases (e.g., ion suppression or
differences in SPE extraction efficiency) are minimized or
eliminated, particularly because many SOM constituents are
detected at signal intensities close to the detection limit.
Molecular weight distribution, heteroatom content, constituent
presence or absence, and VKD coverage can all be influenced
by these low-intensity signals. Past approaches to eliminate
systematic bias include extracting the same number of the most
intense signals from every sample192 or the formulas common
to every sample81,193 and then normalizing the extracted
signals based on total intensity.

Environmental Science & Technology pubs.acs.org/est Critical Review

https://doi.org/10.1021/acs.est.1c01135
Environ. Sci. Technol. 2021, 55, 9637−9656

9644

https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01135/suppl_file/es1c01135_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01135/suppl_file/es1c01135_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01135/suppl_file/es1c01135_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01135/suppl_file/es1c01135_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01135/suppl_file/es1c01135_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01135/suppl_file/es1c01135_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c01135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Other visualizations are common in the petroleum and
aerosol field for rapid visual comparisons to highlight
compositional differences or similarities between samples and
can be beneficial to SOM studies.163,194−196 These include (i)
plotting the number of carbons in each formula versus its
nominal mass (C versus M), where the molecules are classified
into different categories based on their sum of carbon and
oxygen atoms (i = C + O), (ii) contoured plots of RDBE vs
carbon number197 for members of a single heteroatom class,
(iii) relative abundance histograms for heteroatom classes, and
(iv) Kroll diagrams where NOSC is plotted as a function of
number of carbons (Figure 5B).193 Kroll diagrams are
especially useful when looking at changes in SOM composition
under different redox198 conditions.
When comparing multiple samples, such as DOM from

different sources, principle component analysis (PCA)193,199

and hierarchical clustering analysis (HCA)200 can be used to
group similar samples. PCA takes advantage of the fact that
many variables are correlated (e.g., H/C ratios and double
bond equivalents) and produces diagrams that group similar
samples and show correlations among variables. In one
example, PCA was used with intensity-weighted element
number, m/z, H/C, O/C, AImod, and DBE values to compare
the DOM in ten world rivers, associating the intensity-
weighted variables with different levels of anthropogenic
influence and other watershed characteristics (Figure 6).199

PCA is particularly useful for visualizing the relative similarities
and differences of multiple samples and for identifying the
variables that best explain their differences. Importantly,
compositional data, such as the %CHO of a DOM sample,
are generally not appropriate for PCA.201 In comparison, HCA
uses Bray−Curtis dissimilarity or another distance calculation
to perform a series of partitioning calculations that group
samples into clusters.100,202,203 The result is a tree-like
dendrogram, where common branches indicate greater
similarity.
Analysis of NOM-Associated Metals. Mineral associated

SOM and DOM are known to bind a range of metals and thus
control the biogeochemical cycling, mobility, and bioavail-
ability of both toxic metals (e.g., Hg, As, Cd) and essential
mineral elements (e.g., Fe, Mn, Zn).198,204 FTICR MS is

particularly well suited for elucidating the speciation of metals
and micronutrients that are complexed by or incorporated into
organic molecules that influence their solubility and reactivity.
In soils, these elements are often binned into operationally
defined fractions based on extraction protocols205,206 that seek
to differentiate water-soluble, mineral-associated, or bioavail-
able content. However, understanding the origin and dynamics
of these elemental pools requires knowledge of their chemical
identity. FTICR MS can resolve diagnostic isotopologues and
mass defects that are characteristic of many heteroatoms,
including trace metals (e.g., Fe,207−209 Zn, Cu,210 Ni, Hg211)
(Figure 7) and halogens (Cl, Br, I212), thus providing a means
to identify the particular SOM components that play a role in
the cycling of these elements.

Direct infusion FTICR MS analysis, however, is not well
suited to identifying metal-bound molecules in DOM due to
the number of peaks that result in unrelated species that mimic
mass differences and relative abundances of metals. Fur-
thermore, molecular formula assignments become more
ambiguous as heteroatoms are included in the assignment
algorithm (Figure S3).21 Boiteau et al.207 developed a method
for confident detection of metal−organic complexes by
comparing direct infusion FTICR MS spectra of samples
spiked with both natural and rare isotopes of metals of interest,
comparing the ratio of features across samples. This was
compared to another method based on separation using online
HPLC−FTICR MS and detection of isotopologues with
coherent elution profiles. While the isotope exchange method
required significantly shorter analysis time, nearly twice as
many metal−organic species were measured by HPLC−
FTICR MS. This highlights how ion suppression is one of
the key challenges in overcoming the detection of metal−
organic species in complex mixtures.
Techniques such as liquid chromatography−inductively

coupled plasma mass spectrometry (LC-ICPMS) have been
used to quantify the various metal species present in DOM
samples,210 and FTICR MS and other high-resolution mass
spectrometry techniques have been used to determine the
molecular formulas of these compounds. This approach has
been used to identify and quantify chelating agents of
biological origin in soil samples and the chemical form of
heavy metal or halogenated contaminants in terrestrial
environments.211 Thus, FTICR MS combined with metal

Figure 6. Ten rivers around the world were evaluated using FTICR
MS and compared with PCA to identify sample groupings. The largest
variance originated from the unsaturation/aromaticity and heter-
oatom content. Reproduced from Wagner et al.199

Figure 7. Mass spectra of a water extract of SOM that depicts the
isotope pattern for a siderophore−Fe complex, ferrioxamine B. Inset
displays the mass and abundance difference indicative of iron
complexation. Unpublished data from the Boiteau Lab.
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quantification provides insight into the processes that govern
the transport, fate, and ecological effects of nutrients and
contaminants in soils by providing unprecedented information
on elemental speciation.
Fragmentation, Separation, and Metabolomics.While

FTICR MS analysis can attribute chemical formulas to
molecules within complex SOM mixtures, identifying specific
molecular structures such as metabolites or their trans-
formation products requires pairing FTICR MS with
chromatographic and fragmentation analyses. Liquid chroma-
tographic separation prior to offline or online FTICR MS has
several benefits. The separation of molecules that must
otherwise compete for charge reduces the suppression of
poorly ionizing molecules, reducing matrix effects and enabling
the detection of a greater number of species.213−215 In
addition, separations can often resolve structural isomers that
appear as a single feature with direct infusion FTICR MS
(Figure 8).216 These structural variants may have distinct

sources, functional groups, and fates in soils, and thus
distinguishing between isomers by LC-FTICR MS could be
important to decipher processes that form, preserve, and
degrade SOM. The chromatographic separation modes
generally selected for these analyses are aimed at separating
low molecular weight molecules within the m/z range of
FTICR MS. Reverse phase liquid chromatography is typically
applied to organic matter extracts, often mimicking the mode
of retention used during solid phase extraction.207,213,215−219

Hydrophilic interaction chromatography (HILIC), a variant of
normal phase chromatography, is also well suited for the
separation of polar components of SOM.220,221 Both
separation and ionization are strongly impacted by the choice
of mobile phase. Methods commonly employ mass spectrom-
etry grade water, alcohols, and acetonitrile along with volatile
pH buffers (e.g., formic acid, acetic acid, ammonium formate,
ammonium acetate, or ammonium hydroxide) due to their
compatibility with ESI MS. The selectivity of different
chromatographic methods for separating DOM has recently
been reviewed by Sandron et al.222

Separation also facilitates the acquisition of tandem MS/MS
fragmentation spectra for individual compounds by reducing
the number of ions that may appear within a single MS
isolation window. Fragment analysis has been used to
determine the presence of specific functional groups or
structures within DOM and other complex mixtures such as
carboxylic acids,215 sulfates,223 aromatic archipelagos,224,225

and metal-binding moieties.210 MS/MS spectra provide a
diagnostic molecular fingerprint that can be compared to the
fragmentation spectra of known molecules to facilitate
structural elucidation. Libraries of MS/MS fragmentation
spectra collected with collision-induced dissociation are ever-
growing,226 and developing computational tools for predicting
spectra of molecular structures in silico is an active field of
research.227−229 Longnecker and Kujawinski230 coupled LC
FTICR MS/MS with in silico fragmentation computational
tools on Thalassiosira pseudonana to study novel intracellular
metabolites, finding that they were related through sulfoqui-
novosyl head groups. Another developing tool is feature-based
molecular networking, which links MS/MS spectra by their
spectral similarity, permitting the use of precursor masses and
structural information from compounds with library matches
to help determine the structures of spectrally similar
compounds with no library matches.231,232 Putative identi-
fications using tools such as in silico fragmentation or feature-
based molecular networking can be confirmed by comparing
retention time and MS/MS spectrum of an authentic
compound using the same analytical method used for the
soil sample.
Finally, while they play a significant role in microbial

growth,233−235 essential metabolites with a molecular weight
<200 Da such as acetate, pyruvate, amino acids, glucose,
fructose, and succinate are typically either outside the optimum
mass range of FTICR MS (i.e., 150−1000 m/z) or harder to
ionize among matrix effects.96 Gas chromatography mass
spectrometry (GC-MS),236 nuclear magnetic resonance
(NMR) spectroscopy,237,238 and liquid chromatography mass
spectrometry (LC-MS)221 are the preferred instrumentations
to identify these critical small metabolites and their structure in
SOM. Recently, Swenson et al.236 used GC-MS to estimate
microbial metabolite availability in soils, while Dalcin Martins
et al.238 used 1H NMR to measure acetate and methanol
metabolite concentrations using samples from the Prairie
Pothole Wetlands in North America. Using LC-MS/MS in
positive- and negative-ionization modes, Ladd et al.221 were
able to identify a wide range of compounds (e.g., amino acids,
plant/microbial metabolites, sugars, lipids) present in artic soil
DOM. Thus, combining multiple analytical techniques can
help improve detection and annotation of central and
secondary metabolites in SOM important for microbial
biogeochemical cycling in soil ecosystems.169

Coupling mass spectrometry with microbial techniques (e.g.,
metaproteomics,239 community composition profiling238) and
novel bioinformatics approaches such as correlation networks
and metabolite prediction tools240−243 (Figure S6) can also be
useful for determining microbial decomposition pathways of
OM and gaining insight into relationships between bacterial
communities and SOM composition.82,240,242,244−246 Using
FTICR MS, 1H NMR, and community composition, Dalcin
Martins et al.238 found that extremely high sulfate reduction
rates and methane fluxes in Prairie Pothole Wetlands were
driven by abundant carbon substrates. Graham et al.247 also
used FTICR MS, gene expression, and community composi-

Figure 8. Extracted ion chromatograms from an LC-FTICR MS
(21T) of a soil water extract. Mass ranges about each m/z were
±0.005 Da, where each trace represents the protonated monoisotopic
form of the molecular formula indicated. Peaks separated for each
formula represent different isomers. Unpublished data from the
Boiteau Lab.
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tion to gain mechanistic insight into hyporheic zone organic
matter processing. This multiomics coupled approach revealed
a pronounced phenotypic plasticity in the hyporheic zone
microbiome with similar microbiome structure, functional
potential, and expression across sediments with dissimilar
metabolic rates. Diverse nitrogenous metabolites and bio-
chemical transformations as inferred by FTICR MS appeared
to be the significant regulatory factor influencing hyporheic
zone organic matter processing.

■ FUTURE DIRECTIONS

The strength of FTICR MS as an analytical tool lies in its
unrivaled ability to detect individual organic molecules that
make up the tremendously complex mixtures found in soils.144

Despite this, challenges associated with selectivity and the
numerous equivocal peak assignments ultimately limit the
processing and comparison of samples between studies. The
utilization of complementary techniques that reinforce and
constrain FTICR MS data is often needed to fully interpret the
large and complex FTICR MS data sets. The use of
spectroscopy provides highly complementary data on molec-
ular origin or structure248 and is discussed in section 2 of the
Supporting Information.
Experimental design and sample preparation are critical

steps because data are mostly qualitative and poorly
reproducible across laboratories even on similar samples and
within the same experiment on the same instru-

ment.120,152,249,250 Thus, it is important to ensure standardized
protocols that minimize influences on dependent and
independent variables; numerous biases and considerations
are summarized in Table 1. Several future developments and
needs for the application of FTICR MS to SOM are discussed
below.

Unified Sample Preparation. The high chemical diversity
of organic compounds in SOM means there is no universal
technique for complete and comprehensive extraction, and the
resultant analysis and discussion should reflect the limitations
of the selected technique to avoid data misrepresentation.
Comparisons between studies using different preparations are
therefore limited as our understanding of how each preparation
alters and isolates the SOM content is still developing.95,97,98

Characterizing the effects on SOM during preparation would
aid in normalizing SOM content against artifacts from
preparation, supporting more effective comparisons between
data sets. Therefore, a more thorough understanding of the
biases introduced during preparation is needed to develop
unified sample preparation techniques specific to a target
fraction. Standardized protocols for specific sample environ-
ments are critical in establishing comparable samples between
laboratories and studies.

Automated Internal Calibration. While calibration
strategies continue to become more refined in ultrahigh-
resolution data, calibration remains dependent on instrument
conditions and is subject to user input, which ultimately

Table 1. Common Sources of Error or Bias during Sample Preparation and Analysis for FTICR MS with Aspects to Consider
and Recommendations

sources of error or
bias considerations and recommendations

sample collection and
preparation

sample uniformity ensure samples are well mixed when applicable; analyze pooled samples periodically throughout sample
batches to monitor instrument stability and sensitivity

contamination clean sampling equipment (e.g., combusted glass or medical grade polypropylene) prior to sampling
extraction methods using a priori knowledge, prepare polar, nonpolar, and mineral-bound extracts separately to avoid biases in

ionization
extraction conditions extraction and storage conditions (e.g., pH, temperature, volume of extractant, extraction time) should be

consistent across sample sets
artifacts (e.g., byproducts formed during extraction or storage) can be introduced from harsh conditions, so
conditions should be noted in following spectra and visualizations

solvent of choice should be compatible with FTICR MS

data collection and mass
spectrometry acquisition
modes

ionization method
selection

method and mode should target fraction selected during extraction. For bulk SOM, multiple modes provide
the largest window into SOM composition

sample matrix/
instrument
variability

quality control strategies and samples (e.g., pooled quality control and standard samples run per analysis
session)

S/N should be carefully considered based on the calibration performed (e.g., not set arbitrarily)

data preprocessing and
formula assignment

molecular formula
assignment
pipeline

heteroatoms included during assignment should be chosen based on a priori information

formula assignment
quality

exercise caution and manually assign and remove known artifacts (e.g., solvent clusters, extraction
byproducts) and contaminants (e.g., surfactants, solvent contaminants) in data postprocessing

assignments should be supervised with quality control strategies (e.g., error plots, continuity in calculated
indices and heteroatoms)

data visualization data
overinterpretation

data visualization approaches will influence the outcome of the results (e.g., grouping by biomolecular class
approximations)

methods using assigned formulas (e.g., VK diagrams, NOSC vs C) only approximate features and origin;
approximations need support from a priori information, experimental design, and complementary
analyses

formula assignment should not be assumed to represent bulk SOM; only a subset of SOM residues are
measured.

not all indices are appropriate for use in statistical technique
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contributes to the poor reproducibility across laboratories.152

Developing automated internal calibration strategies would
therefore aid in the consistency and removal of bias during the
analysis of FTICR MS samples, such as with the
implementation of the ICBM-OCEAN161 protocol; however
procedures remain unique to different laboratories. Stand-
ardized SOM processing methods are expected to increase
sample reproducibility and provide more opportunity for
comparison between data sets.
Investigation of Ionization Techniques. Negative ESI

remains the most commonly applied ionization polarity and
technique for SOM, and other techniques, such as APPI, are
capable of extending the range of ionizable features to less
polar and aromatic functionalities. These techniques can be
coupled to MS/MS systems for fragmentation; however
collecting MS/MS spectra free from coisolated precursor
fragments has remained a major challenge when fragmenting
complex mixtures. Charge acquiring leaving groups such as
COO− are abundant during fragmentation of SOM and result
in the loss of attributable daughter ions. Structurally
informative fragmentation requires the investigation of new
solution-based ionization techniques and methods that employ
functionality specific ionization. To this end, the development
of metal cationization or solvent pH modification methods for
specific precursor compounds may provide much higher
specificity in the ionizable fraction.
Unified Database Repository. Due to the significant

effort required to validate mass spectral features and the large
number of features in soil that do not match any fragmentation
spectra in databases, comprehensive identification of metabo-
lites in soils remains a major challenge. Therefore, the
implementation of a unified database repository using
standardized protocols with elemental compositions for SOM
data sets worldwide is of great interest for comparisons across
temporal and spatial scales in environmental samples. Such
repositories could be used to rapidly compare and identify
peaks as potential metabolites by linking known and unknown
compounds in correlation and network analysis, multiomics
techniques, and fragmentation spectra similarity in targeted
analysis.251 These advances would be critical in conducting
statistics using larger data sets, identifying stabilization
mechanisms and pathways, and informing multiomics
approaches in SOM analysis.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
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Predicted log P and pKa values for different biomolecules
to demonstrate the variety of features in SOM,
extraction methods with example conditions and target
fractions, comparison of spectra indicating the effect of
surfactant contaminants, the number of formula assign-
ments as heteroatoms are included in assignment
protocols, DBE vs O and DBE minus O plots to identify
confident formula assignments, peaks plotted in van
Krevelen plots with no relation to SOM, correlation
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