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Lattice model for the Coulomb interacting chiral limit of magic-angle twisted bilayer graphene:
Symmetries, obstructions, and excitations
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We revisit the localized Wannier state description of the twisted bilayer graphene, focusing on the chiral
limit. We provide a simple method for constructing such two-dimensional exponentially localized—yet valley
polarized—Wannier states, centered on the sites of the honeycomb lattice, paying particular attention to main-
taining all the unobstructed symmetries. This includes the unitary particle-hole symmetry, and the combination
of C2T and the chiral particle-hole symmetry. The C2T symmetry alone remains topologically obstructed and is
not represented in a simple site-to-site fashion. We also analyze the gap and the dispersion of single particle and
single hole excitations above a strong coupling ground state at integer fillings, which we find to be dominated by
the on-site and the nearest-neighbor terms of a triangular lattice hopping model, with a minimum at the center
of the moiré Brillouin zone. Finally, we use the insight gained from this real-space description to understand the
dependence of the gap and the effective mass on the range of the screened Coulomb interaction.
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I. INTRODUCTION

There is a not-uncommon sentiment that lattice models
are a priori unsuitable for the study of the narrow bands of
twisted bilayer graphene (TBG) due to the topological nature
of the narrow bands, and that an extended state basis, such
as Bloch or hybrid Wannier states, is preferable. On the other
hand, because the narrow bands [1–6] as a whole within each
valley carry a zero Chern number, the results of Brouder et al.
[7] guarantee that the exponentially localized Wannier states
can be constructed, unlike if the Chern number were nonzero.
The problem is very similar to the one studied by Soluyanov
and Vanderbilt [8], where they explicitly constructed exponen-
tially localized Wannier states for the Z2 nontrivial topological
insulator whose Chern number of course vanishes. They also
discovered that the nontrivial topological nature of the bands
does provide an obstruction to the exponential localization
of the Wannier states, if they also insist on simple on-site
representation of the time reversal symmetry. For the example
of the Kane and Mele model with two sites per unit cell and
two pairs of bands separated by a nontrivial gap, the expo-
nentially localized Wannier states for the two lower bands,
say, can be constructed. But if we insist that the action of the
time reversal on the Wannier states simply results in another
Wannier state within the orthonormal set spanning the isolated
Hilbert space, then the Wannier states cannot be exponentially
localized. If, instead, the two Wannier states are centered on
different sites of the unit cell and so do not transform into
each other under the time reversal, then there is no obstruction
to exponential localization. It is often stated that the price to
pay for the exponential localization is the breaking of the
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symmetry, which in the case of the two-dimensional (2D)
Z2 topological insulator is the time reversal symmetry. But
because the transformation between the Bloch states and the
Wannier states is perfectly unitary, no information can be lost.
This information includes symmetry. Thus, strictly speaking,
time reversal symmetry cannot be broken by such a unitary
transformation, but rather it is not explicit (or on-site) in such
Wannier representation. In practice, this means that acting
with a time reversal symmetry operator on an exponentially
localized Wannier state will lead to a linear combination of
Wannier states from its vicinity, with coefficients that decay
exponentially with distance [9].

The situation is similar in the continuum models of magic-
angle twisted bilayer graphene, whose narrow bands are taken
to be completely valley decoupled, in which case they are
topologically nontrivial [10–12]. In this case, exponentially
localized states can be constructed [13,14], but if we insist
on the explicit (on-site) implementation of both the valley
U (1) and C2T symmetry for the narrow bands, then we find
an obstruction. This obstruction was originally thought to be
fragile and removable by the addition of trivial remote bands
[15]. But, as was recently shown in Ref. [16], inclusion of
the particle-hole symmetry P of the continuum Hamiltonian
makes the topology stable, in that it is impossible to add
trivial remote bands and maintain explicit representation of all
approximate emergent symmetries while keeping exponential
localization. In the chiral limit [17], there is an additional chi-
ral particle-hole symmetry C which will also play a role in our
Wannier construction and the representation of a spin-valley
U(4) symmetry.

Although we agree that there is a clear utility of the Bloch
[18–24] (or hybrid Wannier [25–27]) description, one of the
goals of this paper is to demonstrate the practical benefits
of the Wannier states as a complementary description of the
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strong coupling physics of the narrow bands [28,29]. In partic-
ular, we use them to explain the (exact) dispersion of a single
particle or a single hole added to a correlated insulator at an
integer filling in the strong coupling limit [30,31] of the chiral
limit model [17]. As was recently shown [30], the chiral limit
is approached within the renormalization group treatment of
the Coulomb interacting Bistritzer-MacDonald model (BM)
[1] of the magic-angle twisted bilayer graphene.

Even though the C2T symmetry is not explicit in our
Wannier basis, we construct the Wannier basis such that the
combination of the chiral particle-hole symmetry C and C2T is
explicit, as is P. The possibility to explicitly represent PCC2T
was insightfully pointed out by Bernevig et al. in Ref. [32].
As we demonstrate below, the strong coupling spin-valley
U (4) symmetry, explicit in our Wannier basis, is indeed tied
to PCC2T as stated in Ref. [32]. To this end, we use the
projection method [33] to construct the exponentially local-
ized Wannier states by identifying suitable trial states, whose
symmetry is then imprinted in the Wannier states. Usually, one
follows the projection method with a maximal localization
procedure that minimizes 〈δr2〉, but for our trial states, it is not
obvious that this second step provides a sufficient advantage
and therefore we omit it.

The strong coupling dispersion curves can certainly be
obtained numerically without much difficulty using the Bloch
basis, but it is not easy to understand their shape. Our goal
is to demonstrate that the real-space Wannier description
provides a complementary way to understand it as a result
of a tight-binding model on a moiré triangular lattice, with
rapidly decaying hopping amplitudes as the hopping range is
increased [34]. Note that the centers of the Wannier states
are still on the honeycomb lattice sites AB and BA as in
Refs. [13,14]. The triangular lattice tight-binding description
of the one-particle strong coupling dispersion is a result of de-
coupling of the two (triangular) sublattices of the honeycomb
lattice in the chiral limit.

The negative sign of the nearest-neighbor hopping am-
plitude, which can also be understood from the real-space
description, then explains why the minimum of the dispersion
is at the � point [center of the moiré Brillouin zone (mBZ)]. In
addition, this method allows us to understand the dependence
of the shape of these bands on the range of the interaction,
controlled by the distance ξ to the grounded metallic screen-
ing layers, one placed above and another symmetrically below
the twisted bilayer graphene. We find that once ξ � Lm, where
Lm is the moiré period, the effective mass of the excitations
is nearly ξ independent even though the excitation gap still
grows with increasing ξ (see Fig. 2). This can be understood
by analyzing the effective electrostatics of the exchange and
the direct contribution to the single particle dispersion. The
direct term corresponds to an electrostatic energy of a lo-
calized “fidget spinner,” whose shape is shown in Fig. 4(a),
interacting with a moiré periodic charge distribution, thus
probing the interaction potential Vq only at (nonzero) discrete
reciprocal lattice wave vectors. Because the smallest such
wave vector has a length |g1,2| = 4π/(

√
3Lm) ≈ 7.26/Lm,

the factor of tanh |g1,2|ξ
2 in the two gate screened interaction

Vq = 2πe2

ε|q| tanh( |q|ξ
2 ) is not very sensitive to ξ for ξ � Lm. This

explains the ξ insensitivity shown in Fig. 2(b) for ξ � Lm. In

contrast, the exchange term corresponds to the electrostatic
energy of two localized charge distributions, and thus probes
the interaction at a continuum of wave vectors, not just at the
discrete reciprocal lattice. By normalization, only the Wan-
nier states centered on the same site—with the fidget spinner
shape—contain a monopole charge contribution which does
not vanish at small wave vectors [see Fig. 6(a)]. The contribu-
tion of two fidget spinners to the exchange energy is therefore
sensitive to small wave vector behavior of the interaction,
which is the reason for the ξ dependence of the on-site term in
the tight-binding expansion of the strong coupling dispersion
seen in Fig. 7(a). On the other hand, the contribution to the
hopping must contain at least one product of two Wannier
states centered at different sites, whose multipole expansion
generically starts with a dipole [see Figs. 4(b)–6(f)], vanishing
at small wave vectors [see Figs. 6(b) and 6(c)]. The elec-
trostatic energy is therefore much less sensitive to the small
wave vector part of the interaction, and is therefore nearly
independent of ξ once ξ � Lm.

Another goal of this paper is to elucidate the connection
between the strong coupling U(4) × U(4) symmetry [21] in
the chiral limit, the spin-valley U(4) symmetry away from
the chiral limit [21] but assuming P (dubbed nonchiral flat in
Ref. [32]), and the local spin-valley U(4) symmetry explicit in
the Wannier basis [35]. We demonstrate that the last two U(4)
symmetries are indeed different subgroups of U(4) × U(4), as
also pointed out in Ref. [32].

This paper is organized as follows: in Sec. II, we define the
starting model and spell out the action of its symmetries on the
energy and Chern Bloch basis of the narrow bands. In Sec. III,
we analyze the Coulomb interactions in the Bloch basis, dis-
play the (nonchiral flat) spin-valley U(4) and (first chiral) U(4)
× U(4) symmetries, and relate them. We also solve for the
strong coupling spectrum of either a single particle or a single
hole added to the strong coupling eigenstates at integer fillings
using the Bloch basis. In Sec. IV, we build the exponentially
localized Wannier states using the projection method and
analyze the action of symmetries on the Wannier states; we
also identify the spin-valley U(4) symmetry of the projected
density operator explicit in the Wannier basis and relate it to
the (first chiral) U(4) × U(4) symmetry. In Sec. V, we analyze
the strong coupling dispersion of either a single particle or a
single hole added to the strong coupling eigenstates at integer
fillings in the Wannier basis, and find the rapidly converging
tight-binding hopping amplitudes for this dispersion at each
integer filling ν. As shown in Figs. 2(a) and 2(b), the results
from the Bloch and Wannier analysis match. In Sec. VI, we
analyze the dependence of the tight-binding parameters on
ξ , the range of the interaction, and provide the electrostatics
analogy to understand the direct and exchange contributions.
Finally, Sec. VII is devoted to a summary and conclusions.

II. BISTRITZER-MACDONALD HAMILTONIAN
AND ITS SYMMETRIES

At the valley K, the effective continuum Hamiltonian is
[1,17]

ĤBM =
(

vF σ θ
2
· p T (r)

T †(r) vF σ− θ
2
· p

)
, (1)
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where the twisted Pauli matrices are σ θ
2

=
e− i

4 θσz (σx, σy)e
i
4 θσz ; they act in the sublattice space. The

interlayer hopping functions are T (r) = ∑3
j=1 Tje−iq j ·r,

where q1 = kθ (0,−1), q2,3 = kθ (±
√

3
2 , 1

2 ), kθ = 8π
3a0

sin θ
2 =

4π/(3Lm), a0 ≈ 0.246 nm, Lm is the period of the moiré
lattice, and

Tj+1 = w012 + w1

[
cos

(
2π

3
j

)
σx + sin

(
2π

3
j

)
σy

]
, (2)

where 1n is an n × n unit matrix. The Hamiltonian in the
valley K′ is related to K by spinless time reversal symmetry
implemented by the complex conjugation.

We can absorb the phase in σ± θ
2

into the eigenstates using
a unitary transformation [17] on the Hamiltonian,

Ĥ ′
BM =

(
e

i
4 θσz 0
0 e− i

4 θσz

)
ĤBM

(
e− i

4 θσz 0
0 e

i
4 θσz

)
. (3)

In the chiral limit, w0/w1 = 0, this has no effect on T (r). The
eigenstates of the Ĥ ′

BM can be written as

	n,k(r) =
∑

g

1√
NucAuc

(
An,g(k)

Bn,g(k)eiq1·r

)
eik·reig·r, (4)

where g = m1g1 + m2g2 for integer m1,2, g1 = q2 − q3, and
g2 = q3 − q1 (see Fig. 1); Nuc is the number of unit moiré
cells in the system (or, equivalently, the number of k points
in the regular mesh of the first Brillouin zone), and the
area of the unit cell is Auc = 8π2/(3

√
3k2

θ ). Note that with
this definition, k is measured relative to the upper layer
Dirac point. Therefore, inversion takes it to −k − q1. The
Fourier coefficients are normalized as

∑
g A†

n,g(k)An′,g(k) +
B†

n,g(k)Bn′,g(k) = δnn′ . The triangular moiré lattice is spanned

by the primitive lattice vectors L1 = Lm(
√

3
2 , 1

2 ) and L2 =
Lm(0, 1).

Symmetries

As emphasized by Po et al. [10], the ĤBM as well as Ĥ ′
BM

are invariant under the C2T symmetry, i.e.,

C2T : 12σxĤ ′∗
BM (−r)12σx = Ĥ ′

BM (r), (5)

where the two-by-two identity matrix 12 in 12σx acts in the
layer space. This transformation does not change k (or n), and
we choose the phase of 	n,k(r) such that it is an eigenstate of
C2T with an eigenvalue +1, i.e.,

C2T : 12σx	
∗
n,k(−r) = 	n,k(r). (6)

This fixes the 	n,k(r) up to an overall sign. For the purposes
of this paper, we will not need to fix the sign globally as we
did in Ref. [25].

At a general twist angle away from the magic angle, the
spectrum is nondegenerate everywhere in the mBZ except
at the Km and K′

m points even in the chiral limit [17] de-
fined as w0/w1 = 0. At a magic angle—at the first of which
w1/vF kθ = 0.585 663 558 389 55 (see Ref. [36])—and in the
chiral limit, the narrow bands of ĤBM are exactly flat [17].
When we include the Coulomb interaction coupling to the
remote bands within the renormalization group scheme, the

FIG. 1. (a) A unit cell of the triangular moiré lattice with the
schematic of the AA stacking regions. The constructed Wannier
states are centered on the AB and BA stacking regions, forming the
dual honeycomb lattice. (b) The high symmetry path of the moiré
Brillouin zone. (c) The narrow bands and a few remote bands in the
chiral limit when w0 = 0 and w1/(vF kθ ) = 0.586. The noninteract-
ing energy in (c) is calculated from the BM model and expressed in
units of vF kθ .

perfect sublattice polarization of the narrow band Hilbert
space remains, but the bands are no longer exactly flat [30].

For w0/w1 = 0, the ĤBM and Ĥ ′
BM enjoy the unitary chiral

particle-hole symmetry [17],

C : {12σz, Ĥ ′
BM} = 0. (7)

Therefore, if 	n+,k(r) is an eigenstate of Ĥ ′
BM with an

eigenvalue εn+,k, then 12σz	n+,k(r) is an eigenstate with an
eigenvalue −εn+,k = εn−,k; the two eigenvalues are distinct
unless we are exactly at a magic angle or k = Km, K′

m. This
means that the linear combinations


±,k(r) = 1√
2

(12σz ± 14)	n+,k(r) (8)

are perfectly sublattice polarized with 12σz eigenvalues ±1,
and thus carry the Chern indices of ±1, respectively [17].
Note that Eq. (8) is well defined for both signs because C2T
anticommutes with C, and we have already assumed (6). We
also have

C : 12σz	n+,k(r) = eiαC
k 	n−,k(r), (9)

where αC
k = ±π

2 , which can be obtained by acting on both
sides with C2T and using Eq. (6).

Because in the strong coupling limit, and near the magic
angle, the Coulomb interaction exceeds the narrow band-
width (containing two bands for each valley and spin), it

075143-3



OSKAR VAFEK AND JIAN KANG PHYSICAL REVIEW B 104, 075143 (2021)

will generally mix the two bands. Therefore, it is a matter
of convenience whether we choose the Chern basis 
±,k(r),
which diagonalizes 12σz for the narrow bands, or 	n±,k(r),
which diagonalizes Ĥ ′

BM .
As emphasized by Song et al. [11] and Hejazi et al. [37],

Ĥ ′
BM also enjoys another unitary particle-hole symmetry (see

also Refs. [21,38]),

P :

(
0 −12

12 0

)
Ĥ ′

BM (−r)

(
0 12

−12 0

)
= −Ĥ ′

BM (r). (10)

Therefore, if 	n,k(r) is an eigenstate of Ĥ ′
BM with an eigen-

value εn,k, then −iμy12	n,k(−r) is an eigenstate at −k − q1

with the eigenvalue −εn,k; the Pauli matrix μy acts in the layer
space. This symmetry is approximately present even away
from the chiral limit when the twist angle is small [12], and
becomes exact if we ignore the rotation of the Pauli matrices
in Eq. (1). Because the particle-hole symmetry P commutes
with C2T and because we already fixed the C2T eigenvalue to
+1 in Eq. (6), we have

P : −iμy12	n+,k(−r) = eiαP
k 	n−,−k−q1 (r), (11)

where αP
k = 0, π . We will find it convenient to fix the gauge

such that

αP
k = 0, ∀k ∈ mBZ. (12)

Then, at the M and � points, there are two independent ways
to arrive at 	n−,k starting from 	n+,k, either using Eq. (11) or
using Eq. (9). At the M point (k = − q1

2 ), numerically we find
that these are consistent if αC

M = −π
2 ; we find the same result

at the equivalent M points k = q2,3

2 . However, at the � point
(k = q1), we find αC

� = π
2 .

We therefore use the remaining freedom to fix

αC
k = −π

2
, k 
= �, (13)

αC
k = π

2
, k = �. (14)

This locks the sign of 	n+,−k−q1 (r) to 	n+,k(r) according to

	n+,−k−q1 (r) = −μyσz	n+,k(−r), k 
= �, (15)

	n+,−k−q1 (r) = μyσz	n+,k(−r), k = �. (16)

Therefore,

C : 12σz
±,k(r) = ±
±,k(r), (17)

C2T : 12σx

∗
±,k(−r) = −
∓,k(r), (18)

P : −iμy12
±,k(−r) = ±eiαP
k e−iαC

−k−q1 
±,−k−q1 (r)

= ±e−iαC
−k−q1 
±,−k−q1 (r). (19)

In addition, Ĥ ′
BM is also invariant under the C′

2T and C3

symmetries [10,13,14],

C′
2T : μxĤ ′∗

BM (−x, y)μx = Ĥ ′
BM (x, y), (20)

C3 : e−i π
3 12σz e−i 2π

3 �̂z ĤBMei 2π
3 �̂z ei π

3 12σz = ĤBM , (21)

where �̂z = −i(x ∂
∂y − y ∂

∂x ). Because the spectrum is nonde-
generate everywhere except at the Km and K′

m points, the
action of these symmetries maps the Bloch states at the related
k points up to an overall phase.

The two valleys are related by (spinless) time reversal, i.e.,
by complex conjugation. The remaining symmetries can then
be generated by the combination of the ones stated above.

III. COULOMB INTERACTIONS

The electron-electron Coulomb interactions, projected
onto the narrow bands [30,32], are

Hint = 1

2

∫
d2rd2r′V (r − r′)δρ(r)δρ(r′)

= 1

2NucAuc

∑
q

Vq

∑
RR′

eiq·(R−R′ )δO†
R(q)δOR′ (q), (22)

where

δρ(r) = χ†
σ (r)χσ (r) − 2

∑
k

∑
n=n±

	
†
n,k(r)	n,k(r),

V (r) = 1

NucAuc

∑
q

Vqeiq·r, (23)

δOR(q) =
∫

Wig.−Seitz
d2re−iq·rδρ(R + r). (24)

In the above, we are keeping only Vq with |q| � |K|, and
thus neglecting the large wave vector transfer terms in the
Coulomb interaction which are smaller by a factor ∼Lm|K|
[39].

For a pure Coulomb interaction, we would have Vq =
2πe2/(εq) except at q = 0 where Vq=0 = 0; in the later sec-
tions, we also study the two gate screened interactions, in
which case Vq 
=0 = 2πe2

εq tanh qξ

2 . The projected field operators
in Eq. (23) are expanded in the narrow band basis fermion
annihilation operators dσ,K/K′,n,k as

χσ (r) =
(

ψσ (r)
φσ (r)

)
=

∑
k

∑
n=n±

(
	n,k(r)dσ,K,n,k

	∗
n,k(r)dσ,K′,n,−k−q1

)
. (25)

The subscript σ refers to the electron spin projection ↑ or ↓.
If we now explicitly write out the projected density oper-

ator, using C2T [Eq. (6)], P [Eq. (11)], and αP
k = 0, we find

that the terms from valley K and K′ are related according to

χ†
σ (r)χσ (r) =

∑
kk′

(d†
σ,K,+,k, d†

σ,K,−,k, d†
σ,K′,+,k, d†

σ,K′,−,k )

⎛
⎜⎜⎜⎜⎝

Akk′ (r) Bkk′ (r) 0 0

Ckk′ (r) Dkk′ (r) 0 0

0 0 Dkk′ (r) −Ckk′ (r)

0 0 −Bkk′ (r) Akk′ (r)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

dσ,K,+,k′

dσ,K,−,k′

dσ,K′,+,k′

dσ,K′,−,k′

⎞
⎟⎟⎟⎟⎠, (26)
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where Akk′ (r) = 	
†
n+,k(r)	n+,k′ (r), Bkk′ (r) =

	
†
n+,k(r)	n−,k′ (r), Ckk′ (r) = 	

†
n−,k(r)	n+,k′ (r) = B∗

k′k(r),

and Dkk′ (r) = 	
†
n−,k(r)	n−,k′ (r). The above matrix

commutes with 14, τz12, τyσ̃y, and τxσ̃y where the Pauli
matrices τ act in the valley space and σ̃ in the n± band space
[30]. Together with the spin SU(2) generators, they form the
16 generators of the global spin-valley U(4) symmetry first
pointed out by Bultinck et al. Ref. [21]. At this point, we have
not used the C symmetry, only C2T and P; therefore, this
U(4) symmetry is present even away from the chiral limit,
if we neglect the small angle rotation of the Pauli matrices

in ĤBM [Eq. (1)] [11]. We will adopt the nomenclature of
Ref. [32] and refer to this as the nonchiral flat spin-valley
U(4) symmetry.

The consequences of the C symmetry are more transparent
in the 
 basis [Eq. (8)]. Expanding the fields as

χσ (r) =
(

ψσ (r)
φσ (r)

)
=

∑
k

∑
λ=±

(

λ,k(r)eσ,K,λ,k

eiαC
k 
∗

λ,k(r)eσ,K′,−λ,−k−q1

)
,

(27)

and using Eqs. (17)–(19), we find

χ†
σ (r)χσ (r) =

∑
kk′

(e†
σ,K,+,k, e†

σ,K,−,k, e†
σ,K′,−,k, e†

σ,K′,+,k )

⎛
⎜⎝

Ākk′ (r) 0 0 0
0 D̄kk′ (r) 0 0
0 0 D̄kk′ (r) 0
0 0 0 Ākk′ (r)

⎞
⎟⎠

⎛
⎜⎝

eσ,K,+,k′

eσ,K,−,k′

eσ,K′,−,k′

eσ,K′,+,k′

⎞
⎟⎠, (28)

where Ākk′ (r) = 

†
+,k(r)
+,k′ (r) and D̄kk′ (r) =



†
−,k(r)
−,k′ (r). Clearly, in this basis, we can perform

a global spin-valley U(4) rotation in the Chern basis
(eσ,K,+,k, eσ,K′,+,k ) and an independent spin-valley U(4) rota-
tion in the opposite Chern basis (eσ,K,−,k, eσ,K′,−,k ), leading
to the spin valley U(4)× U(4) symmetry in the chiral limit first
pointed out by Bultinck et al. [21] (see, also, Refs. [30,32]).
Adopting the nomenclature of Ref. [32], we will refer to this
as the (first) chiral-flat U(4) × U(4) symmetry.

In Appendix B, we relate the generators of the nonchi-
ral flat U(4) to the generators of the (first) chiral flat U(4)
× U(4) (as was also done in Refs. [21,32]). Performing an
arbitrary nonchiral flat U(4) global rotation is equivalent to
rotating the Chern basis (eσ,K,+,k, eσ,K′,+,k ) by exp[i(ω0τ0 +
ωzτz + ω1τx + ω2τy)] while simultaneously rotating the oppo-
site Chern basis (eσ,K,−,k, eσ,K′,−,k ) by exp[i(ω0τ0 + ωzτz −
ω1τx − ω2τy)]. This can be thought of as a mirror reflecting
an axial vector �ω about the xy plane.

Note that if δρ(r) acts on the ν = 0 fully valley polarized
state, such as |�ν=0〉 = ∏

k,n=± d†
↑,K,n,kd†

↓,K,n,k|0〉, then δρ(r)
annihilates it. Because Hint is positive semidefinite, this is
therefore a ground state of Hint. Due to the U(4) × U(4)
symmetry, any state obtained by such global rotation is also
annihilated and is therefore degenerate with the valley polar-
ized state. Using P [Eq. (19)], C2T [Eq. (18)], and Eq. (8), we
have ∑

k

∑
n=±

	
†
n,k(r)	n,k(r) = 2

∑
k



†
+,k(r)
+,k(r) (29)

= 2
∑

k



†
−,k(r)
−,k(r). (30)

Therefore, for any integer filled Chern state |�ν〉, we have

δρ(r)|�ν〉 = δρ̄ν (r)|�ν〉, (31)

δρ̄ν (r) = ν
∑

k



†
+,k(r)
+,k(r) = ν

∑
k



†
−,k(r)
−,k(r)

= ν

2

∑
k

∑
n=±

	
†
n,k(r)	n,k(r). (32)

The last equality will be useful when we switch to the 2D
exponentially localized Wannier basis because it corresponds
to the sum over all states of the two narrow bands whose
total Chern number vanishes, for which the localized basis can
always be found [7].

A. Excitations in the strong coupling

In the strong coupling, the energy of an operator X acting
on the Chern state |�ν〉 at integer filling ν can be obtained as

EX |�ν〉 = HintX |�ν〉. (33)

Substituting (22) and using (31), we readily find(
E − E (0)

ν

)
X |�ν〉

= 1

2

∫
d2rd2r′V (r − r′)[δρ(r), [δρ(r′), X ]]|�ν〉

+
∫

d2rd2r′V (r − r′)[δρ(r), X ]δρ̄ν (r′)|�ν〉, (34)

where E (0)
ν = 1

2

∫
d2rd2r′V (r − r′)δρ̄ν (r)δρ̄ν (r′) is a real

number, and δρ̄ν (r) was defined in Eq. (32). The key ob-
servation is that the commutators on the right-hand side of
Eq. (34) do not change the number of creation and annihilation
operators in X because δρ(r), defined in Eq. (23), is a charge
neutral bilinear. Therefore, we can just match the operator
coefficients on each side of the equation to find their spectra
(assuming again that X does not annihilate |�ν〉, in which case
it is trivial).

B. Single particle excitation using Bloch basis

To facilitate the calculation, we note that if we rearrange
the components as

dk =

⎛
⎜⎝

dσ,K,+,k
dσ,K,−,k
dσ,K′,−,k

−dσ,K′,+,k

⎞
⎟⎠, (35)

then we can write the projected density in Eq. (26) as

χ†
σ (r)χσ (r) =

∑
kk′

d
†
n,k,σ,κ	

†
n,k(r)	n′,k′ (r)dn′,k′,σ,κ , (36)
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where repeated subscripts are summed. The above expression
is explicitly U(4) symmetric.

To compute the energy spectrum of a single hole added
to the strong coupling ground state, we let X = dn,k,σ,κ .
For a single electron, we let X = d

†
n,k,σ,κ . Such spectra

were presented in Refs. [30,31]. In addition, spectra for

the charge neutral (excitonic) excitation were computed
in Refs. [30,31,40] and for the charge ±2 excitations in
Ref. [31]. We note in passing that in order to determine the
degeneracy, we also need to consider the nature of the ground
state to make sure X does not annihilate it.

Substituting into Eq. (34), and using the discrete transla-
tional invariance of the moiré lattice, we find

(
E − E (0)

ν

)
dn,k,σ,κ |�ν〉 = 1

2

∫
d2rd2r′V (r − r′)

∑
m

∑
m′p′

	
†
n,k(r′)	m′,p′ (r′)	†

m′,p′ (r)	m,k(r)dm,k,σ,κ |�ν〉

− ν

2

∫
d2rd2r′V (r − r′)

∑
m′p′

∑
m

	
†
m′,p′ (r′)	m′,p′ (r′)	†

n,k(r)	m,k(r)dm,k,σ,κ |�ν〉, (37)

(
E − E (0)

ν

)
d

†
n,k,σ,κ |�ν〉 = 1

2

∫
d2rd2r′V (r − r′)

∑
m

∑
m′p′

	
†
m′,p′ (r′)	n,k(r′)	†

m,k(r)	m′,p′ (r)d†
m,k,σ,κ |�ν〉

+ ν

2

∫
d2rd2r′V (r − r′)

∑
m′p′

∑
m

	
†
m′,p′ (r′)	m′,p′ (r′)	†

m,k(r)	n,k(r)d†
m,k,σ,κ |�ν〉. (38)

We see that the right-hand side is a linear combination of operators dn,k,σ,κ on the left-hand side, which means that the above
equation can be satisfied if we perform an appropriate unitary transformation on the operators on both sides. Because the
momentum k of the operators on both sides is the same, as are the spin σ and valley κ , to find the energy spectrum of the
single particle excitations, we just need to diagonalize a 2 × 2 matrix in the band indices n, m. The matrix is Hermitian due to
the interaction potential V (r − r′) being even under particle exchange, which, together with C2T [Eq. (6)], allows us to show
that this matrix differs for the hole and the particle only by the direct (Hartree) term,

Hh/p
nm (k) = 1

2

∫
d2rd2r′V (r − r′)

∑
m′p′

	
†
n,k(r)	m′,p′ (r)	†

m′,p′ (r′)	m,k(r′)

∓ ν

2

∫
d2rd2r′V (r − r′)

∑
m′p′

	
†
m′,p′ (r)	m′,p′ (r)	†

n,k(r′)	m,k(r′). (39)

The matrix Hh/p
nm (k) is diagonal in nm for each k. This is

because, according to Eq. (6), each 	n,k(r) is a C2T eigenstate
with an eigenvalue +1, and because we can use C to flip
between the signs of n utilizing Eq. (9). Moreover, C2T =
12σxK, while C = 12σz. Therefore, CC2T = i12σyK squares
to −1. It is clearly antiunitary and does not change k. There-
fore, at any k, CC2T guarantees that(

0 1
−1 0

)
nn′
H∗h/p

n′m′ (k)

(
0 −1
1 0

)
m′m

= Hh/p
nm (k). (40)

Because it is a Hermitian 2 × 2 matrix, the above guarantees
that Hh/p

nm (k) is proportional to the identity matrix 12 in the
chiral limit, i.e., the two eigenvalues are degenerate at each
k. The contribution from the first (exchange) and the second
(direct, divided by ∓ν) lines in Eq. (39) are shown in Fig. 2.
To obtain the actual degeneracies of the bands, we need to
consider whether acting with a particular linear combination
of d’s or d†’s annihilates the ground state [which, up to the
U(4) × U(4) transformation, is a product state of the Chern
states]. For example, for ν = 1, there are three ways to add a
(light) particle and five ways to add a (heavy) hole [34]. For a
general non-negative integer filling ν � 0, the particle branch
is (4 − ν)-fold degenerate (because there are 4 − ν ways to
add a particle without annihilating the many-body product
state) and the hole branch is (4 + ν)-fold degenerate (because

there are 4 + ν ways to add a hole). The degeneracies for
negative integer filling ν < 0 are related by the particle-hole
transformation: the hole branch is (4 − |ν|)-fold degenerate
and the particle branch is (4 + |ν|)-fold degenerate.

Away from the chiral limit, C is no longer exact. However,
to a good approximation [16], even away from the chiral limit
we still have P. Because PC2T is also antiunitary and squares
to −1, and because it changes k to −k − q1, Hh/p

nm (k) must be
diagonal at all momenta left invariant under P, namely, � and
M. Away from these k points, the spectrum is split, as shown
in Refs. [30,31,34]. For a range of angles near the magic,
evaluating the spectrum in the Bloch basis requires numerical
determination of the wave functions 	n,k(r), although exactly
at the magic angle and the chiral limit, one should only need
the numerical determination of the wave functions at Km [17].
Nevertheless, the reason for the shape of the spectrum thus
obtained is somewhat obscured in the Bloch basis. To better
reveal its character, we now switch to the Wannier basis.

IV. WANNIER STATES IN THE CHIRAL LIMIT

We now turn to the main part of the paper, where we use the
projection method [33] to construct the exponentially local-
ized Wannier states in the chiral limit. There are two Wannier
states per unit cell in the valley K, namely, wR, j (r) with
j = 1 ≡ AB and j = 2 ≡ BA. For a fixed triangular moiré
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FIG. 2. (a) The exchange and (b) the direct contributions to the
single particle dispersion in the strong coupling limit along the high
symmetry path shown in Fig. 1(b) for different values of ξ , the dis-
tance between the TBG and the metallic gates. Lm is the period of the
triangular moiré lattice and the energy is expressed in Coulomb units,
e2/(εLm ). The solid colored curves are given by Eq. (39) using Bloch
states. The dots and other symbols denote the dispersion obtained
from the Wannier based tight-binding model on a triangular lattice
with hopping distances no longer than 2Lm [Eqs. (63), (68), and (69)].
Note that unlike the exchange contribution, the direct contribution in
(b) is almost independent of ξ for ξ � Lm.

lattice vector R = m1L1 + m2L2 with integer m1,2, they are
distinguished by the position of their center on the dual hon-
eycomb lattice which is either AB or BA [see Fig. 1(a)]. The
exponentially localized Wannier states can be obtained from

the Fourier transform of an appropriate linear combination of
the Bloch states 
±,k distinguished by their sublattice polar-
ization (8) as

wR, j (r) = 1√
Nuc

∑
k

e−ik·R
̃ j,k(r), (41)


̃ j,k(r) =
∑
m=±


m,k(r)Um j (k), (42)

Um j (k) = UP

[∫
d2r
†

m,k(r)h j (r)

]
. (43)

In the above, UP stands for “unitary part” and h j (r) are the
trial functions (at each valley there are two trial functions; the
trial functions at valley K′ are related to the trial functions at
K by spinless time reversal symmetry, i.e., complex conjuga-
tion). The most practical method for constructing the UP of
the k-dependent 2 × 2 matrix,

Am j (k) =
∫

d2r
†
m,k(r)h j (r), (44)

is via singular value decomposition (SVD), and replacing the
diagonal part of the SVD with an identity matrix [33]. This
procedure is justified provided none of the singular values
of Am j (k) vanish at some k; otherwise, there would be an
obstruction to the exponential localization of Wannier states
[33].

A particularly appealing choice for the trial functions in the
chiral limit w0/w1 = 0 is

h1(r) =

⎛
⎜⎝

i
0
0

−ε∗

⎞
⎟⎠δ(r − rAB), (45)

h2(r) = ε∗C′
2T h1(r) =

⎛
⎜⎝

0
−1

−iε∗
0

⎞
⎟⎠δ(r − rBA), (46)

where rAB = 1
3 (L1 + L2), rBA = 1

3 (2L2 − L1), ε = e2π i/3 =
e−iq1·rAB = e−iq1·rBA , and δ(r) is the 2D Dirac δ function. With
this choice, the singular values of Am j (k) are degenerate,
never vanish, and are relatively weakly k dependent (see
Fig. 3). This immediately implies that the Wannier states are
2D exponentially localized.

Moreover, not only do we guarantee the on-site represen-
tation of C′

2T —which is incorporated by construction—but,
remarkably, we simultaneously obtain simple representation
of P, CC2T , and C3. We demonstrate this in Appendix A.
The C2T alone remains obstructed and cannot be represented
on-site.

Action of the symmetries on the Wannier states

As detailed in Appendix A, the action of the particle-hole
symmetry (10) on the Wannier states (41) is

P : −iμy12wR,1(−r) = −ε∗eiq1·Rw−R−L2,2(r), (47)

−iμy12wR,2(−r) = ε∗eiq1·Rw−R−L2,1(r). (48)
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FIG. 3. The (degenerate) singular values of the matrix Am j (k)
defined in Eq. (44) with the trial functions in Eqs. (45) and (46).

Similarly, we derive the action of C2T followed by C in
Appendix A to be

CC2T : i12σyw
∗
R,1(−r) = −iw−R−L2,2(r), (49)

i12σyw
∗
R,2(−r) = iw−R−L2,1(r). (50)

Time reversal followed by the in-plane twofold rotation along
the y axis gives

C′
2T : μx12w

∗
R,1(−x, y) = εw−Rx,Ry,2(x, y), (51)

μx12w
∗
R,2(−x, y) = εw−Rx,Ry,1(x, y), (52)

which follows using the similar arguments detailed in the
Appendix and the definition of h2 via the action of C′

2T on
h1 in Eq. (46). Finally, the action of threefold rotations about
the axis perpendicular to the plane on the Wannier states gives

C3 : e−i π
3 12σz e−i 2π

3 �̂zwR,1(r)

= e−i π
3 w(− 1

2 Rx−
√

3
2 Ry,− 1

2 Ry+
√

3
2 Rx )−L1,1

(r), (53)

e−i π
3 12σz e−i 2π

3 �̂zwR,2(r)

= ei π
3 w(− 1

2 Rx−
√

3
2 Ry,− 1

2 Ry+
√

3
2 Rx )−L2,2

(r). (54)

Combining P and CC2T , we have an unobstructed symme-
try [16] and

wR, j (r) = iμyσyε
∗eiq1·Rw∗

R, j (r). (55)

Therefore, if we let

R̃, j (r) = ei π
12 e− i

2 q1·RwR, j (r), (56)

then

w̃R, j (r) = μyσyw̃
∗
R, j (r), (57)

and we therefore reach an important conclusion, namely,

w̃
†
R, j (r)w̃R′, j′ (r) ∈ Reals. (58)

This is because expanding the fields in the w̃ basis,

χσ (r) =
∑

R

∑
j=1,2

(
w̃R, j (r) fσ,K, j,R
w̃∗

R, j (r) fσ,K′, j,R

)
, (59)

then gives the projected density operator,

χ†
σ (r)χσ (r) =

∑
R,R′

∑
j, j′

w̃
†
R, j (r)w̃R′, j′ (r)

× ( f †
σ,K, j,R fσ,K, j′,R′ + f †

σ,K′, j,R fσ,K′, j′,R′ ), (60)

which is explicitly invariant under a spin-valley U(4) ro-
tation. Here, the fermion operator fσ,κ, j,R annihilates the
Wannier state at site R, sublattice j, spin σ , and valley
κ = K, K′. In Appendix B, we relate this U(4) subgroup,
dubbed chiral nonflat U(4) in Ref. [32], to the (first) chiral-flat
limit U(4) × U(4) symmetry. Performing an arbitrary chiral
nonflat U(4) global rotation is equivalent to simultaneously
rotating the aforementioned Chern bases (eσ,K,+,k, eσ,K′,+,k )
and (eσ,K,−,k, eσ,K′,−,k ) by the same transformation, say,
exp[i(ω0τ0 + ωzτz + ω1τx + ω2τy)]. This is unlike in the
nonchiral flat U(4), where the axial vector �ω was reflected
about the xy plane.

Because these overlaps in Eq. (58) will be used in deter-
mining the form of the projected interactions, it will be helpful
to visualize them. This is done in Fig. 4.

Finally, note that the exactly flat band dispersion of the
kinetic energy at the magic angle of the chiral limit is trivially
satisfied because the action of the kinetic energy operator on
the Wannier states annihilates them.

V. SINGLE PARTICLE EXCITATIONS IN THE STRONG
COUPLING IN THE WANNIER STATE BASIS

In order to rewrite Hh/p(k) in the Wannier basis, we first
note that

F (r, r′) ≡
∑
mp

	m,p(r)	†
m,p(r′) (61)

=
∑
mp


̃ j,p(r)
̃†
j,p(r′) =

∑
j,R

wR, j (r)w†
R, j (r

′),(62)

where in the first line we used the fact that the transformation
from 	m,p(r) to 
̃ j,p(r) is unitary (as, of course, is the final
transformation to w’s).

Using the same sequence of unitary transformations, we
can then rewrite Eq. (39) in the Wannier basis as

Hh/p
nm (k) → H̃h/p

j j′ (k) = E (F )
j j′ (k) + E (H )

ν, j j′ (k), (63)

E (F )
j j′ (k) = 1

2Nuc

∑
RR′

e−ik·(R−R′ )
∫

d2rd2r′

×V (r − r′)w†
R, j (r)F (r, r′)wR′, j′ (r′), (64)

E (H )
ν, j j′ (k) = ∓ ν

2Nuc

∑
RR′

e−ik·(R−R′ )
∫

d2rd2r′

×V (r − r′)w†
R, j (r

′)wR′, j′ (r′)TrF (r, r). (65)
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FIG. 4. The real-space plot of the combination of the Wannier orbitals entering into Eqs. (72) and (73), e−i 3
2 q1·Rw̃†

R, j (r)w̃R′, j′ (r), where
w̃R, j (r) is related to wR, j (r) in Eq. (56). As shown in Sec. IV A, PCC2T symmetry guarantees that these overlap functions are purely real.
The Wannier centers, determined by R and j, are illustrated by the white dots; (a) the familiar three peak “fidget spinner” structure for on-site
overlap (i.e., R = R′ and j = j ′). As shown in (d), the overlap for the nearest neighbors on the triangular lattice is predominantly negative near
the AA sites. As illustrated in Fig. 7(a), the on-site tight-binding parameter t (F )

0 is dominated by the electrostatic self-interaction of a “monopole”
(a) and self-interaction of each of the “dipoles” (b),(c); it is clearly positive. The nearest-neighbor hopping parameter t (F )

L1
is dominated by two

terms: the electrostatic interaction between the (a) monopole and the (d) dipole, as well as the electrostatic interaction between the (b) dipole
and the (c) dipole. It is obvious that both of these terms will lead to the negative t (F )

L1
.

where F (r, r′) was defined in (61). The indices j and j′ now
label the two sublattices of the moiré honeycomb lattice at
which the Wannier states are centered.

We will now show that H̃h/p
j j′ (k) is also proportional to δ j j′

in the chiral limit. CC2T guarantees that

12σyw
∗
R, j (−r) = (−iλy) j j′w−R−L2, j′ (r), (66)

where λy = (0 −i
i 0 ). In addition, F (r, r′) =

12σyF∗(−r,−r′)12σy. Using these relations and V (r) =
V (−r), we find that

H̃h/p
j j′ (k) = (λy) j�H̃∗h/p

��′ (k)(λy)�′ j′′ . (67)

This means that the 2 × 2 matrix H̃h/p
j j′ (k) must be propor-

tional to δ j j′ for each k. Therefore, despite the Wannier centers
coinciding with the AB and BA sites forming the moiré hon-
eycomb lattice, the spectrum of H̃h/p

j j′ (k) and therefore of
Hh/p(k) can be understood as originating from the hopping
on the triangular moiré lattice. In other words, the hopping
occurs on the AB triangular sublattice of the honeycomb moiré
lattice independently of the hopping on the BA triangular
sublattice. Because the Wannier states are exponentially lo-

calized, the expansion in the range of the hopping is expected
to converge fast.

Using (41), we find that E (F )
j j′ (k) gives a triangular lat-

tice hopping model with the hopping constants which indeed
decay rapidly with distance. We can thus write E (F )

j j′ (k) =
δ j j′E (F )(k), where

E (F )(k) =
∑

R

t (F )
R ei(k−q1 )·R. (68)

The result for the hopping amplitudes t (F )
R for the Coulomb

interaction is shown in Fig. 5(a), using the central site as the
reference. Because the nearest-neighbor hopping constant is
negative (and because the hopping amplitudes decay rapidly
with distance), the minimum of the dispersion is at the � point.

For the second (direct) term in (63), we similarly have
E (H )

ν, j j′ = ∓δ j j′E (H )
ν (k), where

E (H )
ν (k) = ν

∑
R

t (H )
R ei(k−q1 )·R, (69)

and the hopping amplitudes also decay rapidly with distance,
as displayed in Fig. 5(b).
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FIG. 5. The hopping constants, defined in Eq. (68) for the (a) exchange term, and Eq. (69) for the (b) direct term, on the triangular sublattice
of the honeycomb moiré lattice with the screening gate separation ξ = 5Lm. In both panels, t (F/H )

R ’s are shown at the position of R relative to
the center of the cluster. Note that the hopping constants are negligibly small for |R| > 2Lm and that the values of the (non-negligible) off-site
hopping amplitudes are very similar.

Combining the above results, we find that the dispersion
from Eq. (39) is

Eh(k) = E (F )(k) − E (H )
ν (k), (70)

E p(k) = E (F )(k) + E (H )
ν (k). (71)

Note that the numerical values of the nearest-neighbor
hopping constants from the exchange t (F )

L1
and the direct t (H )

L1

are nearly identical. Therefore, for ν = 1, the hole excitations
will have a nearly flat dispersion, while the dispersion for the
particle steepens by a factor of ≈2. Similarly, at ν = −1, the
flattening happens when a particle is added, and the approxi-
mate bandwidth doubling happens when a hole is added. We
see that the effective mass of the excitations that bring the
filling closer to the charge neutrality point (holes for ν = 1

and particles for ν = −1) is much larger than the effective
mass for the complementary excitations that move the filling
away from the charge neutrality point.

For ν = 2 and ν = 3, the hole bands are completely in-
verted due to this effect and the electron bands get steeper
[31,34]. The effective mass is still very large on the hole side.

VI. DEPENDENCE OF THE DISPERSION ON THE RANGE
OF THE COULOMB INTERACTION

In order to gain a better understanding of our results, it
is useful to rewrite them in terms of w̃ defined in Eq. (56).
This is partly because then we can take advantage of the
Wannier product w̃

†
R, j (r)w̃R′, j′ (r) being purely real, as shown

in Eq. (58), and partly because our Wannier states are 2D
exponentially localized.

To this end, we have

E (F )
j j′ (k) =

∑
RR′

e−i(k−q1 )·(R−R′ )
∑

i

1

2

∫
d2rd2r′V (r − r′)

[
e−i 3

2 q1·Rw̃
†
R, j (r)w̃0,i(r)

][
w̃

†
0,i(r

′)w̃R′, j′ (r′)ei 3
2 q1·R′]

, (72)

E (H )
ν, j j′ (k) = ∓ν

∑
RR′

e−i(k−q1 )·(R−R′ )
∑

i

1

2

∫
d2rd2r′V (r − r′)w̃†

0,i(r)w̃0,i(r)w̃†
R, j (r

′)w̃R′, j′ (r′)e−i 3
2 q1·(R−R′ ), (73)

where w̃0,i(r) corresponds to the Wannier state centered inside the origin unit cell (R = 0) either at the AB or BA sites depending
on i. Note that at the � point, k = q1 and the phase factor before the integrals becomes 1. The phase factors e−i 3

2 q1·R, which we
intentionally absorbed inside the integrals, are actually purely real and equal to (−1)m1 for R = m1L1 + m2L2, where m1,2 are
integers. By comparing with Eqs. (68) and (69), we obtain the formula for the hopping constants,

t (F )
R =

∑
R′

1

2

∫
d2rd2r′ V (r − r′)

∑
i

[
e−i 3

2 q1·R′
w̃

†
R′,1(r)w̃0,i(r)

][
w̃

†
0,i(r

′)w̃R′+R,1(r′)ei 3
2 q1·(R′+R)], (74)

t (H )
R = ei 3

2 q1·R
∑

R′

1

2

∫
d2rd2r′ V (r − r′)

∑
i

[w̃†
0,i(r)w̃0,i(r)][w̃†

R′,1(r′)w̃R′+R,1(r′)]. (75)
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FIG. 6. The plot of |OR, j;R′, j′ (q)|, where OR, j;R′, j′ (q) = ∫
d2r w̃†

R, j (r)w̃R′, j′ (r)e−iq·r is the Fourier transform of the product of two
Wannier orbitals centered at R, j and R′, j ′. The relation between w̃R, j (r) and wR, j (r) is given in Eq. (56). (a) The Fourier transform of
a “monopole”(R = R′ = 0 and j = j ′ = 1) is peaked around �. When centered on different sites, the orthogonality of the Wannier states
guarantees that OR, j;R′, j′ (q) vanishes as q → 0. “Dipoles” (b) (R = R′ = 0, j = 1 and j ′ = 2) and (c) (R = −L1, R′ = 0 and j = j ′ = 1)
contain two main peaks separated by approximately the primitive reciprocal lattice vector with length ∼|g1,2|; note that the dipoles vanish
at �.

The key insight is to think about each term contributing
to the hopping amplitude on a particular bond separately as
an electrostatics problem with different charge density dis-
tributions. In this way, let us first consider the contribution
to E (F )

j j′ (k) from R = R′ (we already established that j = j′
is the only nonzero contribution, so we will assume this
implicitly). This is the exchange contribution to the on-site
term in our effective tight-binding description of the strong
coupling single particle dispersion. Thus, within the sum
over all terms for which R = R′, we have one term when
R = R′ = 0 and j = i which is equivalent to the electrostatic
energy of two coinciding, and 2D localized, “fidget spin-
ners” [see Fig. 4(a)]. The multipole expansion of the (purely
real) charge distribution w̃

†
0,i(r)w̃0,i(r) therefore contains a

monopole term. In momentum space, this contribution then
has the form

∫
d2qVqρm(q)ρm(−q). Because ρm(q) is peaked

at small q [see Fig. 6(a)], this integral will be sensitive to
the small q behavior of Vq. This is indeed what we see in
Fig. 7(a), where we show the dependence of this contribu-
tion on the distance to the screening gates ξ , symmetrically
positioned above and below the twisted bilayer graphene in
which case Vq = 2πe2

εq tanh qξ

2 for q 
= 0, otherwise at q = 0 it
vanishes. Note that even when the gates are ∼5Lm away from
the twisted bilayer, the on-site term is still visibly ξ depen-
dent. The remaining contribution to the on-site R = R′ term
comes from either R = R′ 
= 0 or i 
= j. Our electrostatics
problem now deals with charge distributions for which the
two Wannier states are not centered on the same site, which
means they are orthogonal when w̃

†
R, j (r)w̃0,i(r) is integrated

over all r; note that e−i 3
2 q1·Rw̃

†
R, j (r)w̃0,i(r) is also purely real

for any r. This means that the monopole contribution must be
absent.

As shown in Fig. 4, the distributions e−i 3
2 q1·Rw̃

†
R, j (r)w̃0,i(r)

indeed look dipolar. In Fourier space, ρd (q) must therefore
vanish as q → 0 linearly in q · d, where d is the direction
of the dipole moment. As a result, the contribution from∫

d2qVqρd (q)ρd (−q) is much less sensitive to the small q
behavior of Vq. This is indeed seen in Fig. 7, where the
dependence on ξ from these contributions saturates at a sig-

nificantly smaller ξ than for the monopole contributions. Note
that because our Wannier states are exponentially localized,
the contribution to the on-site term in our tight-binding ex-
pansion from Wannier states separated by more than

√
3Lm is

negligibly small, and therefore only bonds in the vicinity of
the central site need to be considered.

The contribution to the R 
= R′ hopping terms in our
tight-binding description must therefore contain at least one
nonmonopole distribution. All such contributions are signif-
icantly less sensitive to the small q behavior of Vq than the
monopole-monopole term. This translates to the quicker satu-
ration of the hopping constants with increasing ξ , as shown
in Fig. 7(c). In addition, by visually inspecting the charge
distribution contributing to the nearest-neighbor hopping dis-
played in Fig. 4, we see that the contributions coming from the
monopole-dipole terms and the nearest-neighbor bond dipole-
dipole terms are clearly negative. Since these contributions
dominate, this explains why the minimum of the triangular
lattice dispersion is at the � point. Further hopping constants
are also clearly falling off fast with the range of the hopping.

The contribution of the direct term E (H )
ν, j j′ (k) can also be

understood using this electrostatics analogy. The sum over
R and R′, while holding R − R′ fixed, of w̃

†
R, j (r

′)w̃R′, j′ (r′)
leads to a charge distribution which is periodic in space.
Therefore, only reciprocal lattice momenta g contribute to
the electrostatic energy. The q = 0 term vanishes because
Vq=0 vanishes, and the contributions start from |q| = |g1,2| =

4π√
3Lm

. This probes length scales which are shorter than Lm,
which explains the relative insensitivity of the contribution to
the tight-binding amplitudes from the direct term shown in
Fig. 2(b).

We therefore reach an interesting conclusion: the strong
coupling single particle dispersion in the chiral limit is
well approximated by the triangular lattice hopping model,
with hopping amplitudes which decay rapidly with distance
past 2Lm. The excitation gap, being sensitive to the on-
site monopole-monopole term in the exchange contribution,
grows with the range of the Coulomb interactions even when
ξ � 5Lm; this is consistent with the recent experiment in
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FIG. 7. The exchange contributions to the on-site (above) and the nearest-neighbor hopping (below) terms of the tight-binding model on the
triangular lattice. Both the on-site (R = 0) and the nearest-neighbor (R = L1) hopping parameters are obtained by summing the contributions
from different R′ in Eq. (74). The black curve in (a) shows t (F )

R=0 resulting from the sum over all R′ for different values of ξ . The other
colored curves plot the sum over a restricted set of R′s illustrated in (b) using the same color. The two open squares in (b) illustrate the term
w̃0,i(r)w̃†

0,i(r
′) appearing in Eq. (74) for i = 1 (right open square) and i = 2 (left open square). Each term contributing to the sum over R′

and the sum over i for R = 0 is then represented by connecting one of the open squares to one of the colored solid dots in (b), with the
corresponding charge distributions illustrated in Fig. 4. Similarly, the colored curves of t (F )

R=L1
in (c) correspond to those contributions to the

sum over R′ and i in Eq. (74) that are obtained by connecting one of the open squares to the two ends of each colored bond (R′, R′ + L1)
in (d).

which the excitation gap becomes larger as the small momen-
tum part of the interaction Vq increases [41]. On the other
hand, the remaining hopping constants are largely insensitive
to the range for ξ � Lm, implying that the effective mass
depends on the range of the interaction much more weakly
for realistic placement of the screening gates.

VII. SUMMARY

In this paper, we provided a detailed analysis of the strong
coupling dispersion in the chiral limit w0/w1 = 0. We did
so first in the Bloch basis and then using 2D exponen-
tially localized Wannier states which transform simply under
valley U(1) symmetry, time reversal symmetry, the unitary
particle-hole symmetry P, the combination of the chiral
particle-hole symmetry, twofold rotation about the axis per-
pendicular to the plane of the twisted bilayer, and time
reversal CC2T , as well as C′

2T [in-plane twofold axis shown in
Fig. 1(a) followed by the time reversal] and threefold rotation
about the perpendicular C3 symmetries. The C2T symmetry
remains obstructed; this should not be taken to mean that it
is absent, given that the transformation from Bloch to 2D

exponentially localized Wannier states is perfectly unitary.
Rather, the C2T symmetry is not explicit. It can, in principle,
be recovered exponentially fast along the lines outlined in
Ref. [9].

The 2D exponentially localized Wannier description al-
lows us to understand why the strong coupling single particle
dispersion in the chiral limit is well described by the nearest-
neighbor hopping problem on the triangular lattice, with a
gate distance sensitive on-site term. The negative nearest-
neighbor hopping term, which is expected from the real space
shape of the overlaps shown in Fig. 4, explains why the mini-
mum of this spectrum is at the � point. These features are not
easy to understand directly in the Bloch basis.

This work, therefore, highlights not only the ability to, in
principle, construct the 2D localized Wannier basis for the chi-
ral limit of the magic-angle twisted bilayer graphene narrow
bands, but also their practical utility in understanding nontriv-
ial features of the strong coupling excitation spectra. Thus,
complementing the Bloch basis calculations with the Wannier
basis analysis provides a more powerful way to understand
the complexity of the correlated electrons in topologically
nontrivial narrow bands.
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APPENDIX A: DETAILED DERIVATION OF THE SYMMETRIES OF THE WANNIER STATES

The exponentially localized Wannier states are

wR, j (r) = 1√
Nuc

∑
m,k

e−ik·R
m,k(r)UP

[∫
d2r′
†

m,k(r′)h j (r′)
]
, (A1)

where the triangular moiré lattice is spanned by R = m1L1 + m2L2, with integer m1,2, and UP stands for the “unitary part” of
the 2 × 2 matrix Am j (k) [Eq. (44)]. As defined in the main text,

h1(r) =

⎛
⎜⎝

i
0
0

−ε∗

⎞
⎟⎠δ(r − rAB), h2(r) = ε∗C′

2T h1(r) =

⎛
⎜⎝

0
−1

−iε∗
0

⎞
⎟⎠δ(r − rBA), (A2)

where rAB = 1
3 (L1 + L2), rBA = 1

3 (2L2 − L1), ε = e2π i/3 = e−iq1·rAB = e−iq1·rBA , and δ(r) is the 2D Dirac δ function.

1. Action of the symmetry operation P

This symmetry operation was discussed in detail in Sec. II. Its action on the Wannier state is

−iμywR, j (−r) = 1√
Nuc

∑
m,k

e−ik·R(−iμy)
m,k(−r)UP

[∫
d2r′
†

m,k(r′)h j (r′)
]

(A3)

= 1√
Nuc

∑
m,k

e−ik·R(−iμy)
m,k(−r)UP

[∫
d2r′
†

m,k(−r′)iμy(−iμy)h j (−r′)
]

(A4)

= 1√
Nuc

∑
m,k

e−ik·R
m,−k−q1 (r)UP

[∫
d2r′
†

m,−k−q1
(r′)(−iμy)h j (−r′)

]
(A5)

= 1√
Nuc

∑
m,k

ei(k+q1 )·R
m,k(r)UP

[∫
d2r′
†

m,k(r′)(−iμy)h j (−r′)
]
. (A6)

Going from (A4) to (A5), we used Eq. (19) and the fact that any k-dependent phase factors acquired by 
 are canceled by those
coming from 
† because they can be taken outside the UP (as is readily seen when considering SVD). Substituting our trial
function (45) and (46), we have

(−iμy)h1(−r′) =

⎛
⎜⎝

0
ε∗
i
0

⎞
⎟⎠δ(r + rAB) =

⎛
⎜⎝

−ε∗ 0 0 0
0 −ε∗ 0 0
0 0 −ε 0
0 0 0 −ε

⎞
⎟⎠h2(r + L2), (A7)

(−iμy)h2(−r′) =

⎛
⎜⎝

iε∗
0
0

−1

⎞
⎟⎠δ(r + rBA) =

⎛
⎜⎝

ε∗ 0 0 0
0 ε∗ 0 0
0 0 ε 0
0 0 0 ε

⎞
⎟⎠h1(r + L2). (A8)

So,

−iμywR,1(−r) = − 1√
Nuc

∑
m,k

ei(k+q1 )·R
m,k(r)UP

⎡
⎢⎣∫

d2r′
†
m,k(r′)

⎛
⎜⎝

ε∗ 0 0 0
0 ε∗ 0 0
0 0 ε 0
0 0 0 ε

⎞
⎟⎠h2(r′ + L2)

⎤
⎥⎦, (A9)

−iμywR,2(−r) = 1√
Nuc

∑
m,k

ei(k+q1 )·R
m,k(r)UP

⎡
⎢⎣∫

d2r′
†
m,k(r′)

⎛
⎜⎝

ε∗ 0 0 0
0 ε∗ 0 0
0 0 ε 0
0 0 0 ε

⎞
⎟⎠h1(r′ + L2)

⎤
⎥⎦. (A10)
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Shifting the overlap integral and using the definition (4), we have

∫
d2r′
†

m,k(r′)

⎛
⎜⎝

ε∗ 0 0 0
0 ε∗ 0 0
0 0 ε 0
0 0 0 ε

⎞
⎟⎠h j (r′ + L2) =

∫
d2r′
†

m,k(r′ − L2)

⎛
⎜⎝

ε∗ 0 0 0
0 ε∗ 0 0
0 0 ε 0
0 0 0 ε

⎞
⎟⎠h j (r′) (A11)

= eik·L2

∫
d2r′
†

m,k(r′)

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiq1L2 0
0 0 0 eiq1L2

⎞
⎟⎟⎠

⎛
⎜⎝

ε∗ 0 0 0
0 ε∗ 0 0
0 0 ε 0
0 0 0 ε

⎞
⎟⎠h j (r′) = ε∗eik·L2

∫
d2r′
†

m,k(r′)h j (r′). (A12)

Substituting into (A9) and (A10), we finally have

−iμywR,1(−r) = −ε∗eiq1·Rw−R−L2,2(r), (A13)

−iμywR,2(−r) = ε∗eiq1·Rw−R−L2,1(r), (A14)

which match the result stated in the main text: Eqs. (47) and (48).

2. Action of the symmetry operation CC2T

σzσxw
∗
R, j (−r) = 1√

Nuc

∑
m,k

eik·Rσzσx

∗
m,k(−r)UP

[∫
d2r′
†

m,k(r′)h j (r′)
]∗

(A15)

= 1√
Nuc

∑
m,k

eik·Riσy

∗
m,k(−r)UP

[∫
d2r′
T

m,k(−r′)(−iσy)iσyh∗
j (−r′)

]
(A16)

= 1√
Nuc

∑
m,k

eik·R
m,k(r)UP

[∫
d2r′
†

m,k(r′)iσyh∗
j (−r′)

]
, (A17)

iσyh∗
1(−r) =

⎛
⎜⎝

0
i
ε

0

⎞
⎟⎠δ(r + rAB) =

⎛
⎜⎝

−i 0 0 0
0 −i 0 0
0 0 −iε∗ 0
0 0 0 −iε∗

⎞
⎟⎠h2(r + L2), (A18)

iσyh∗
2(−r) =

⎛
⎜⎝

−1
0
0

−iε

⎞
⎟⎠δ(r + rBA) =

⎛
⎜⎝

i 0 0 0
0 i 0 0
0 0 iε∗ 0
0 0 0 iε∗

⎞
⎟⎠h1(r + L2), (A19)

σzσxw
∗
R,1(2)(−r) = ∓i√

Nuc

∑
m,k

eik·R
m,k(r)UP

⎡
⎢⎣∫

d2r′
†
m,k(r′)

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 ε∗ 0
0 0 0 ε∗

⎞
⎟⎠h∗

2(1)(r
′ + L2)

⎤
⎥⎦ (A20)

= ∓i√
Nuc

∑
m,k

eik·(R+L2 )
m,k(r)UP

⎡
⎢⎢⎣

∫
d2r′
†

m,k(r′)

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiq1·L2 0
0 0 0 eiq·L2

⎞
⎟⎟⎠

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 ε∗ 0
0 0 0 ε∗

⎞
⎟⎠h∗

2(1)(r
′)

⎤
⎥⎥⎦

(A21)
= ∓iw−R−L2,2(1)(r). (A22)

This matches the result in Eqs. (49) and (50).

APPENDIX B: RELATION BETWEEN DIFFERENT U(4) ROTATIONS

In order to make explicit the relation between different U(4) symmetries mentioned in the main text, we start by recalling the
definition of the fermion operators in different bases,

χσ (r) =
(

ψσ (r)
φσ (r)

)
=

∑
k

∑
n=n±

(
	n,k(r)dσ,K,n,k

	∗
n,k(r)dσ,K′,n,−k−q1

)
=

∑
k

∑
λ=±

(

λ,k(r)eσ,K,λ,k

eiαC
k 
∗

λ,k(r)eσ,K′,−λ,−k−q1

)

=
∑

R

∑
j=1,2

(
w̃R, j (r) fσ,K, j,R
w̃∗

R, j (r) fσ,K′, j,R

)
. (B1)
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The relation between the basis functions is


±,k(r) = 1√
2

(12σz ± 14)	n+,k(r) = 1√
2

[
eiαC

k 	n−,k(r) ± 	n+,k(r)
]
, (B2)

w̃R, j (r) = ei π
12 e− i

2 q1·RwR, j (r) = 1√
Nuc

ei π
12

∑
k

∑
m=±

e−i(k+ q1
2 )·R
m,k(r)Um j (k). (B3)

Let us start with the first equality and read off the coefficients using the orthogonality of 	 ′s,

dσ,K,n+,k = 1√
2

(eσ,K,+,k − eσ,K,−,k ), (B4)

dσ,K,n−,k = eiαC
k√
2

(eσ,K,+,k + eσ,K,−,k ), (B5)

dσ,K′,n+,−k−q1 = eiαC
k√
2

(eσ,K′,−,−k−q1 − eσ,K′,+,−k−q1 ), (B6)

dσ,K′,n−,−k−q1 = 1√
2

(eσ,K′,−,−k−q1 + eσ,K′,+,−k−q1 ), (B7)

where we used

	∗
n+,k(r)dσ,K′,n+,−k−q1 + 	∗

n−,k(r)dσ,K′,n−,−k−q1 = eiαC
k 
∗

+,k(r)eσ,K′,−,−k−q1 + eiαC
k 
∗

−,k(r)eσ,K′,+,−k−q1 , (B8)

⎛
⎜⎝

dσ,K,n+,k
dσ,K,n−,k
dσ,K′,n+,k
dσ,K′,n−,k

⎞
⎟⎠ = 1√

2

⎛
⎜⎜⎝

1 −1 0 0
eiαC

k eiαC
k 0 0

0 0 eiαC
−k−q1 −eiαC

−k−q1

0 0 1 1

⎞
⎟⎟⎠

⎛
⎜⎝

eσ,K,+,k
eσ,K,−,k
eσ,K′,−,k
eσ,K′,+,k

⎞
⎟⎠. (B9)

Now, if k = �, then eiαC
k = eiαC

−k−q1 = i. If k 
= �, then eiαC
k = eiαC

−k−q1 = −i.
By explicit calculation, we find that⎡

⎢⎢⎣Gnc−flat
U (4) ,

1√
2

⎛
⎜⎜⎝

1 −1 0 0
eiαC

k eiαC
k 0 0

0 0 eiαC
−k−q1 −eiαC

−k−q1

0 0 1 1

⎞
⎟⎟⎠

⎤
⎥⎥⎦ = 0, (B10)

where Gnc− f lat
U (4) is any of the nonchiral flat generators 14, τz12, τyσ̃y, or τxσ̃y. Writing out these matrices explicitly, we can

see that if we rotate the Chern +1 basis using α · (12, τz,−τx, τy), then we must simultaneously rotate Chern −1 using α ·
(12, τz, τx,−τy ). The spin SU(2) follows trivially from the tensor product.

The second equality implies

fσ,K, j,R =
∑

k

∑
λ=±

∫
d2rw̃†

R, j (r)
λ,k(r)eσ,K,λ,k, (B11)

fσ,K′, j,R =
∑

k

∑
λ=±

eiαC
k

∫
d2rw̃T

R, j (r)
∗
λ,k(r)eσ,K′,−λ,−k−q1 . (B12)

Therefore,

fσ,K, j,R = 1√
Nuc

∑
k

∑
λ=±

e−i π
12 ei(k+ q1

2 )·RU∗
λ j (k)eσ,K,λ,k, (B13)

fσ,K′, j,R = 1√
Nuc

∑
k

∑
λ=±

eiαC
k ei π

12 e−i(k+ q1
2 )·RUλ j (k)eσ,K′,−λ,−k−q1 (B14)

= 1√
Nuc

∑
k

∑
λ=±

eiαC
−k−q1 ei π

12 ei(k+ q1
2 )·RU−λ, j (−k − q1)eσ,K′,λ,k. (B15)

Now,

eiαC
−k−q1U−λ, j (−k − q1) = eiαC

−k−q1 UP

[∫
d2r
†

−λ,−k−q1
(r)h j (r)

]
. (B16)
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But,

eiαC
−k−q1 


†
−λ,−k−q1

(r) = −
T
λ,k(r)μyσy. (B17)

So,

eiαC
−k−q1U−λ, j (−k − q1) = −UP

[∫
d2r
†

λ,k(r)μyσyh∗
j (r)

]∗
, (B18)

and, for our choice of the trial states,

μyσyh∗
j (r) = ei π

6 h j (r). (B19)

Therefore,

eiαC
−k−q1U−λ, j (−k − q1) = −e−i π

6 UP

[∫
d2r
†

λ,k(r)h j (r)

]∗
= −e−i π

6 U∗
λ, j (k). (B20)

Therefore, we get

fσ,K, j,R = 1√
Nuc

∑
k

∑
λ=±

e−i π
12 ei(k+ q1

2 )·RU∗
λ j (k)eσ,K,λ,k, (B21)

fσ,K′, j,R = − 1√
Nuc

∑
k

∑
λ=±

ei π
12 ei(k+ q1

2 )·Re−i π
6 U∗

λ, j (k)eσ,K′,λ,k. (B22)

Or, expressed in a matrix form,(
fσ,K, j,R
fσ,K′, j,R

)
= 1√

Nuc

∑
k

∑
λ=±

e−i π
12 ei(k+ q1

2 )·RU∗
λ j (k)

(
1 0
0 −1

)(
eσ,K,λ,k
eσ,K′,λ,k

)
. (B23)

So, if we perform a valley U(2) rotation eiα·(1,τz,τx,τy ) on f ’s, then we are performing eiα·(1,τz,−τx,−τy ) rotation on e’s independent
of λ. Clearly, the two Chern numbers are rotated by the same angle. This is unlike in the previous example of the nonchiral flat
limit where the Chern +1 and Chern −1 were rotated by angle vectors which are related by mirror reflection about the z axis.
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