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Realization of topological Mott insulator in a
twisted bilayer graphene lattice model

Bin-Bin Chen® 2, Yuan Da Liao34 Ziyu Chen 1 Oskar Vafek>®, Jian Kang 7B \Wei Lip 8% &
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Magic-angle twisted bilayer graphene has recently become a thriving material platform
realizing correlated electron phenomena taking place within its topological flat bands. Several
numerical and analytical methods have been applied to understand the correlated phases
therein, revealing some similarity with the quantum Hall physics. In this work, we provide a
Mott-Hubbard perspective for the TBG system. Employing the large-scale density matrix
renormalization group on the lattice model containing the projected Coulomb interactions
only, we identify a first-order quantum phase transition between the insulating stripe phase
and the quantum anomalous Hall state with the Chern number of £1. Our results not only
shed light on the mechanism of the quantum anomalous Hall state discovered at three-
quarters filling, but also provide an example of the topological Mott insulator, i.e. the
guantum anomalous Hall state in the strong coupling limit.
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wisted bilayer graphene (TBG) burst on the scene as a

tunable two carbon-atom layers thick system realizing a

remarkable multitude of interaction-driven macroscopic
quantum phenomena!~20. Although significant progress has been
achieved in understanding the nontrivial topology of the narrow
bands, as well as the correlated electron states in the magic-angle
TBG?'-42, many important questions remain open. One of the
most fascinating question is the origin and the mechanism of the
quantum anomalous Hall (QAH) state with Chern number
C= %157 at three-quarters filling of the system, aligned with the
hexagonal boron nitride (hBN), and the insulating state which
replaces the QAH in devices without the hBN alignment.

Currently, the prevailing opinion is that the QAH can be
obtained from narrow band models with large Coulomb
interactions?843-46, but that the nontrivial topology of the narrow
bands prevents a faithful construction of local “Hubbard-like”
tight-binding models that locally respect all the symmetries?3.
Although there exists no a priori Wannier obstruction, as the
narrow bands’ total Chern number vanishes, there is yet no clear
understanding of how the QAH could arise within such corre-
lated lattice model, even in principle, in the limit where the
Coulomb interactions dominate the kinetic energy.

Precisely such a state was sought by Raghu et al. in an entirely
different context?’, coining the term topological Mott insulator
(TMI), which we define to be a QAH in a strong coupling limit of
a local lattice model with a vanishing ratio of the bandwidth to
Coulomb interaction. However, the original proposal” was sub-
sequently shown not to host a QAH, and therefore not TMI
either®4%. More recent works have found the interaction-
induced QAH state in a different model, but it is stabilized by
the kinetic energy and necessitates sizable bandwidth>9->2,
Because it gives way to more conventional Mott insulators in the
strong coupling regime®2, these models do not host a TML

Here we show that the TMI is realized in a simple lattice model
introduced by two of the authors as a local description of the
correlations within the TBG narrow bands?6>3>4, The key new
ingredients are the off-site terms appearing alongside the usual
on-site terms in the projected density operator. Physically, such
terms originate in the extended multi-peak nature of the maxi-
mally localized Wannier states?>?* arising from the nontrivial
topology?>2>3555-58 of the narrow bands, and, importantly,
remain finite even when the bandwidth vanishes.

Results
Honeycomb moiré lattice model. In the strong coupling limit,
the aforementioned model (as illustrated in the upper panels of
Fig. 1) is

H= UO%(QO +aTy — 1), (1)

where U, constitutes the overall energy scale in the problem
(=40meV in TBG and set to unity henceforth). Q=

I ch +5,Cros, Tepresents the cluster charge term?22:25:53,54,59,60

(cf. Fig. Ic), and T = ?:1[(—1)Zc;+51+1cR+51 + h.c.] represents
the Coulomb induced hopping with alternating sign (c.f. Fig. 1d).
Fermion annihilation and creation operators cy, s and P +o, are
defined at the sites of the honeycomb lattice R + §;, where R =
m;L; + m,L, with integer m, , spans the triangular Bravais lattice.
The hexagon centers, over which we sum in Eq. (1), are connected
to the six nearest honeycomb lattice sites /=1, 2, --- 6 through §;
(cf. Fig. 1e). As we focus on the three-quarters filling of the TBG,
where the spin and orbital degrees of freedom are assumed to be
polarized, Eq. (1) thus constitutes a simplification to the full
Hamiltonian of ref. 26. The parameter « controls the relative

strength of charging and assisted-hopping of the projected Cou-
lomb interaction. It originates from the overlap of two neigh-
boring Wannier states in the continuum model and thus depends
on the lattice relaxation. Due to the background charge from the
remote bands, which is approximated to be uniform in Eq. (1), the
projected Coulomb interaction is in the form of density-density
repulsion?30162, instead of being normal ordered. Although the
projected interaction contains other terms such as next-nearest
neighbor interaction, the more detailed calculations at the chiral
limit have shown that the interaction-induced dispersion of the
charged excitation at the charge neutrality point is dominated by
a, the nearest neighbor assisted hopping®3.

The original bandwidth W ~ 8 meV24 is much smaller than U,
suggesting the system is in the strong coupling regime.
Furthermore, after the states on the remote bands are integrated
out, the superexchange interaction (<5 x 10—3¢2/(eL,,)) is found
to be negligible compared with the projected Coulomb
interaction®!; this justifies neglecting additional fermion bilinear
(kinetic) terms in Eq. (1). The kinetic term, as well as the further-
range assisted hopping terms, may shift the critical value «a, of the
phase transition but do not qualitatively change the phase
diagram in Fig. 1f. In addition, we do not include the additional
symmetry breaking term produced by the possible hBN
alignment that favors the QAH phase®®, but focus on the
topological phase transitions purely driven by interactions.

It is worth emphasizing that Eq. (1) corresponds to the leading
order terms when the distance to the gates [, is about the same as
the moiré lattice constant |L,|, and thus the electron-electron
repulsion decays exponentially when the inter-electron separation
is larger than |L;|?°. With larger I, the longer range aspect of the
Coulomb repulsion will have to be included, but because
currently there is no experimental indication that there are
significant changes in the nature the insulating states for different
1,165, it is reasonable to neglect the longer range terms in Eq. (1).
We should note that terms in Eq. (1) are purely real, and because
the two QAH states with opposite Chern numbers transform into
each other under complex conjugation, the QAH state is not a
priori favored by this model. In what follows, we will demonstrate
that, for a range of a, Eq. (1) naturally leads to the TMI ground
state via spontaneous symmetry breaking without including any
other interactions or kinetic terms.

Phase diagram. We solve the TBG lattice model in Eq. (1) using
DMRG on long cylinders of XC (zigzag, Fig. 1a) and YC (armchair,
Fig. 1b) geometries, with widths W up to 6 and lengths L up to 24.
The details of DMRG implementation and finite-size analysis are
given in the Methods and Supplementary Note 1. The obtained
ground state phase diagram, as a function of «, is shown in Fig. 1f.
We identify two gapped insulating phases: a stripe phase with charge
density wave (CDW) for small &, and a TMI phase for a > a, = 0.12.
These two ground states are separated by a first-order quantum
phase transition (QPT). In Fig. 2, we show results for various
quantities, including the ground state energy e, entanglement
entropy Sg, charge structure factor C,, and the imaginary part of the
equal time correlation (J) = % ((c;'c,/ — c;r,cl)). As shown in Fig. 2a,
the e, curve exhibits a discontinuity in the slope (a kink) at «,
indicating the first-order QPT. In Fig. 2b, we calculate the entan-
glement entropy Sp(x) = —Tr[p 4(x)In (p 4(x))], with p (x) the
reduced density matrix of the subsystem .A consisting of the first x
columns (c.f. Fig. 1a, b). By setting x = L/2 (for even L), i.e,, cutting at
the very center of the system, we compute Sg(L/2) and show it vs. «
in Fig. 2b, where an evident “jump” takes place right at the QPT. In
addition, for « <a,, the negligibly small Sg(L/2) indicates the exis-
tence of a nearly direct product state with virtually no charge fluc-
tuations in the CDW pattern. On the other hand, the sizable Sg(L/2)
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Fig. 1 The honeycomb moire lattice model and phase diagram. a YC and b XC geometries with PBC along vertical (L; — L, for XC and 2L; — L, for YC) and
OBC along horizontal direction. The number of sites on the cylinders is N = W x L x 2, with length L (the number of vertical armchair/zigzag chains, c.f. the gray-
shaded lines) and W is the number of 2-site unit cells (c.f. the red-shaded rectangles) along those chains. € Shows the cluster charge operator Qa, which counts
the electron number in a hexagon and d demonstrates the assisted hopping term T with alternating-sign structure. e The labeling of six sites within hexagon R. f
The phase diagram contains two distinct insulating phases, i.e., the stripe phase for @ <a,, and the QAH state for @ >a.~0.12. g The schematic plot of the
emergent current through a mean-field tight-binding analysis of the QAH state.

a . X C 4 N 3 , ' ' for a > a, indicates a finite amount of quantum entanglement in the
0015/ e YC4 s ] ground state. In the insets of Fig. 2b, Sg(x) vs. subsystem length x
) . YC6 S~ shows a flat plateau in the bulk of the system, indicating that both

2 o001} 3 1 phases in Fig. 1f are gapped, consistent with the exponentially

© | - & (Stripe) decaying single-particle Green’s functions also obtained by our
0.005} iaﬁ 01p - MF(QAH) 1 DMRG (see the Supplementary Note 1).

b 0 t t i t t t

Stripe and QAH insulators. The emergence of the stripe phase at
small & can be understood from a perturbative analysis?0. Up to
second-order corrections (c.f. Supplementary Note 2), we find the
1 ground-state energy e,/U, ~ a2, and plot it together with the DMRG
results in Fig. 2a, where the high accuracy of this analytical calcula-
tion can be clearly seen. The CDW order can be characterized by the
structure factor, C,(k) =13 | Spe ®®+7, . where the
quantity #ig ; = (cl'{ +6,CRt0,) — 1 /2 counts the number of electrons

(with respect to the half filling) on the honeycomb site R + ). In
1 Fig. 2¢, we find that C, (k) peaks at M = (0, «/éilﬂLl) for a <a, and

drops abruptly to 0 for & > a, confirming that the small-a regime has
i a CDW order, while for « > a, the insulating phase has no charge
order. Remarkably, this a> . regime turns out to be a topological
phase with spontaneous time-reversal symmetry (TRS) breaking and
a quantized Hall conductance, ie., a QAH phase.

To reveal the TRS breaking in the large-« QAH phase, in Fig. 2d

(O

<

R

t

]

. PR

o1}
YC6 o = we show the correlation (J) on both the nearest-neighbor (NN) and
ot . ot! ‘ g next-nearest-neighbor (NNN) (I, I') pairs. We find a finite value of
0 0.05 0.1 a 0.15 0.2 0.25 Ny ~0.22 and (J)yan ~ 0.1 in the bulk of the cylinder for large-«

phase, while they vanish in the stripe phase. In the QAH phase, the
Fig. 2 Identificatior} of two insulating phases. a The ground-state energy  1¢q] part of ( C;L Cl’> is negligibly [0(1077~78)] smaller compared to its
per site e, E%(V/ngW/g% shown as a function of a, with total number of
sites N=2WL and lvg) the DMRG ground state. b Entanglement entropy
Sk, ¢ stripe order parameter C,(M), d both correlations (J)\y and (J)ynn: are
shown versus , all showing abrupt changes of behavior at a.~0.12. The
mean-field energies for both phases are as well shown in a. The detailed
entanglement profile Sg vs. subsystem x is shown in the inset of (b), and
C,(k) vs. k in the first Brillouin zone (BZ) shown in the inset of (c).

imaginary part, and thus (c;' ;) emerging from interactions is
virtually purely imaginary. The corresponding hopping process thus
acquires a 71/2 phase (labeled as 7 in Fig. 1g), rendering a 37/2 flux for
a circulating triangular loop current, which resembles the Haldane
model®. The difference is that the TRS breaking NNN hopping term
is introduced explicitly in the Haldane model, while here it emerges
spontaneously due to electron interactions, a typical feature of TMIs.
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Fig. 3 Quantized hall conductance and QAH state. In the systems of both
width W =4, 6, a flux ¢ € [0, 2x] is threading through the cylinder, a One
electron is pumped from one edge to the other for @ =0.15 (QAH phase),
while no charge response is observed for @ = 0.1 (stripe phase). b In the
real-space charge distribution of YC4 cylinder, no accumulations are
observed in the bulk, i.e., only the charge near the left edge is pumped. ¢
Entanglement spectrum computed at the central bond (between two
columns) shows a two-fold degeneracy. For a typical QAH state with
a=0.25, we show in d the charge density n,(k), with 4 labeling the two
eigenvalues of the 2 x ZG(k) matrix associated with two sublattices. In e the
von Neumann Entropy S,y averaged over all the k points, is shown versus a,
where the S,y distribution in BZ is shown in the inset (with also a = 0.25).

We also note that in a recent quantum Monte Carlo simulation
applied at charge neutrality®> (i.e. even integer filling), a quantum
valley Hall state is found at intermediate coupling for a specific choice
of kinetic energy terms. Such a state is different from the QAH found
at odd integer filling here as it preserves the TRS with helical valley
edge modes and undergoes a first-order phase transition into
intervalley coherent insulator at strong coupling, consistent with the
exact results obtained in ref. 20,

Quantized Hall conductance. To reveal the topological
properties in the large-a phase, we perform a flux insertion
experiment on the cylindrical geometry (c.f. the inset of Fig. 3a)
and compute the Hall conductance. We thread a ¢-flux along the
cylinder by modifying the boupdary condition gy, —1,)+5, =
CRys, 1O CRyw,—1L,)+s, = e ey +5, for XC geometry and
CRAW(L,~L,/214+6, = CR+3, 1O CR4W(L,—L,/2)+3, = e”“’cRM’1 for YC
geometry. During the process of the flux insertion, ¢ is adiaba-
tically increased from 0 to 27 in the DMRG calculations. One
thereafter obtains the Hall conductance oy = eh—ZAQ by
measuring the net charge pumping AQ from one edge of the
cylinder to the other. In DMRG, we calculate the net
charge transfer as AQ = Zi:L_l +1[1712"1((;5) — fz;"l(O)], ie. the
pumped charge to the rightmost I columns (chosen as I =3-4 in
practice) where #%°(¢) is the deviation of the charge number of
the x-th column measured in the ¢-flux inserted ground state
lyy) from the half filling. For instance, we have nl(¢) =

Z)‘,L Zﬁ:l<ll/¢|ﬁ(x—l)Ll+y(Ll—L2)+8A —3ly,) for the XC geometry,
and similar expressions for YC.

As shown in Fig. 3a, for both XC and YC systems (with widths
W =4 and 6) in the QAH phase (e.g., « =0.15), we find a net
charge transfer |AQ| =1 through a 27 flux insertion, showing that
the Chern number C = *1. In addition, Fig. 3b shows the column
charge distribution 75", where a half-charge +1 appears in two
edges in |y_). As ¢ gradually increases, the left/right-end charge

smoothly reduces/increases from +1 to 3, which corresponds

to an end-to-end pumping of a unit charge AQ=1, without
“disturbing” the charge distribution in the bulk. We note that
there is two-fold degenerate QAH ground state (apart from the
additional degeneracy due to half-charge zero edge modes, see
discussion below), and the charge pumping could be AQ = +1,
corresponding to the spontaneous TRS breaking states with
C=+l

Understanding the TMI phase. With DMRG calculations, we
can also calculate the single-particle Green’s function

G y(R— R) = (c; +6, R +5A/), from which we can find the elec-
tron occupation 1, (k) in the momentum space. Due to the two-
sublattice structure, G, ;(R — R’) and its Fourier transformation
G, (k) are both 2 x 2 matrices (cf., Supplementary Note 1). The

two eigenvalues {n;(k), n(k)} of G(k) are shown in Fig. 3d. We
find for all allowed k points, the larger eigenvalue n,(k) ~ 1 and
the smaller value n;(k) ~ 0, representing the “two-orbit” electro-
nic structure with one orbit filled while the other left empty.
Albeit small, charge fluctuations between the two orbits are still
present. We compute the von Neumann entropy S(k)=
— ZLI ny (k)In n, (k) that measures the deviation of the DMRG
ground state from a Slater determinant of Bloch states. In Fig. 3e,
we show the calculated S,y averaged over the first BZ, which
decreases as « increases, and becomes very small for large « cases.
For example, we show the detailed k-dependent profile for the
a=0.25 case, in the inset of Fig. 3e. The relatively small S,
values suggest the QAH state, emerging in the interacting TBG
model as revealed by DMRG calculations, actually very much
resembles the Slater determinant ground state of the Haldane
model and thus can be captured by a mean-field description.
To be specific, for small , a second-order perturbation shows
the charging term %:(QC> — 1) favors the insulating phases in

which each hexagon of the honeycomb lattice contains exactly
one electron, i.e. Q~ = 1 for every hexagon. Among all the states
satisfying this requirement, the first- and second-order correc-
tions from the cross terms Ti(Qs — 1) vanish. The stripe phase
is selected from such states because it minimizes the contribution
of (%Té), with the energy (H) = a?U, (c.f. Supplementary

Note 2).

For large o, motivated by the resemblance of the DMRG
ground state to the Slater determinant, we perform a variational
mean-field calculation that approximates the true ground state
with the ground state of a tight-binding model containing various
hoppings (see Methods and Supplementary Note 3). In particular
the Fig. 1g demonstrates the emergence of NNN currents which
constitute a loop in each hexagon, spontaneously choosing either
the left- or right-chiral direction (here the right chirality). We
find that the cross terms, i.e. (T5(Qg — 1))qan become negative
and thus favor the QAH phase. Including both the charging terms
and %Tz , the variational mean-field analysis results in (H)qxy

stripe

= Up(0.037 — 0.27a + 0.71a2). Therefore, as « continuously
increases from 0, the mean-field theory also finds the first-order
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phase transition from the stripe phase to the QAH, in agreement
with the DMRG result mentioned earlier. The mean-field energy
is shown in Fig. 2a as indicated by the blue and red dashed line
for the stripe and QAH phases respectively. Both lines provide a
good approximation to the DMRG energy curve, and the
intersection of two mean-field energies also provides a very good
estimate of the QPT value aMF ~ 0.125. Interestingly, the energy
difference between the mean-field approximation and the DMRG
calculation decreases as & moves away from the QPT, reflecting
the suppression of the quantum fluctuations for large |a — a,
also illustrated by the S,y in Fig. 3e.

Moreover, as shown in Fig. 3b, there exist half-charge zero
modes on both edges of the cylinder with even W, which also
coincide with the Haldane model wrapped on the cylinder (for
more details, see the Supplementary Note 4). We also compute
the entanglement spectrum (ES), defined as £; = —In (p;) with p;
the eigenvalues of the reduced density matrix. As shown in
Fig. 3c, when we cut at the center of the system, a two-fold
degeneracy in the ES is evident, which accounts for the half-
charge zero modes in the edge (c.f. Fig. 3b), through the bulk-
edge correspondence.

Discussion

As we mentioned, the QAH can be obtained from narrow band
models of TBG with large Coulomb interactions, but these
models are built in the basis of extended states?”-28:43-45 making
the interaction potential rather unwieldy. The results indeed show
that several phases: QAH, strongly correlated topological semi-
metal, and insulating stripe phases, are energetically competitive
for the ground states at odd integer fillings28-3>44,46,67,

The common belief, however, is that the nontrivial symmetry-
protected topology of the narrow bands prevents a faithful con-
struction of models within exponentially localized basis even
when the bands’ total Chern number vanishes?3. On the other
hand, as first shown in the context of the Z, topological
insulators®®, the obstruction is not as severe as in the case of a
nonzero Chern band (or band composite). If the total Chern
number vanishes, the exponentially localized Wannier states can
be constructed®, but some of the protecting symmetries do not
have a simple on-site implementation®®7071, Because the trans-
formation from the Bloch to Wannier basis is unitary and no
information is lost in the process, it is therefore expected that the
lattice tight-binding description should also result in the same
ground state as found in unobstructed, extended states, basis.
However, any practical implementation of this program needs to
truncate the expansion of the interaction to on-site and few
nearest neigbour sites. What is not obvious, therefore, is whether
all the terms need to be included in the expansion or whether it
can be truncated to recover the ground state.

The results presented here show that the truncation at just the
nearest neighbor, parameterized by « in Eq. (1), is sufficient to
recover the insulating and the topologically nontrivial phases. In
addition, the main features of the single-particle excitation dis-
persion of the strong coupling correlated ground states at the
charge neutrality point>> from the model in Eq. (1) match
those computed exactly in the extended basis®67, This
demonstrates the practicality of Wannier description even for
such symmetry-obstructed bands. Our real-space interaction-only
model therefore establishes the microscopic mechanism of the
evolution between the insulating stripe and QAH phases. Our

effective  model and its unbiased numerical solution
therefore revealed the essence of the physics in this particular
regime, and is also consistent with other theoretical
calculationg?7-28:44,46,

As for relevance of our model towards the real system, it is
understood that other than the Q5 and T, terms, we do not
include all the other projected interactions nor the small kinetic
terms, ie., the detailed feature of the TBG material, which will
surely modify the specific value of a.. Apart from that they should
not qualitatively alter the two phases and thus also the main
conclusion of the present work. In addition to the ground states
given above, the dispersion of the charged excitations produced by
Eq. (1) is also found to be qualitatively consistent with more
detailed calculation by two of the authors in refs. 61,63, Reference®3
has also explicitly shown that the dispersion at the charge neu-
trality point is dominated by the « term in the chiral limit. For
systems away from the chiral limit, it is expected that the inclusion
of other terms may only quantitatively change the dispersion.

Methods

Density matrix renormalization group. We employ the DMRG method, realized
in the matrix product state form and with U(1) charge symmetry implemented, to
accurately find the ground state of the TBG model. Following standard 2D DMRG
calculations, we map the cylindrical geometries through a snake-like path, i.e., a
quasi-1D structure, where highly controllable and efficient simulations can be
performed. In practice, we retain up to D = 512(1024) for W = 4(6) cylinders, with
truncation errors € < 5 x 1072, for an accurate large-scale calculations. The detailed
convergence check of the TBG model calculations can be seen in the Supple-
mentary Note 1.

Mean-field analysis. We also applied the mean-field theory to approximate the
interactions by a tight-binding model with variational hopping constants. The
hopping amplitudes are obtained by minimizing the expectation value of the
interactions in Eq. (1) for the state produced by the tight-binding model. In
practice, the tight-binding model includes hopping amplitudes up to the 5th
nearest neighbor. The details are presented in the Supplementary Note 3.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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