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A B S T R A C T   

Stable molybdenum (Mo), thallium (Tl), and uranium (U) isotope ratios were determined in a suite of samples 
from the 1959 Kilauea eruption and from Kilauea Iki lava lake with the aim of understanding the effects of 
igneous differentiation on these isotope systems. The samples range from olivine cumulate with MgO up to 27% 
to internal differentiates with MgO less than 3%, representing a tholeiitic differentiation series. Molybdenum, Tl, 
and U behave incompatibly during differentiation, and Mo and U isotope ratios do not systematically vary 
amongst the different samples. δ98Mo values range from − 0.17 to − 0.31‰ and δ238U values range from − 0.20 to 
− 0.38‰. Most individual analyses for both isotope systems overlap within measurement uncertainty (± ~0.7 
and ~ 0.6, respectively). Mean δ98Mo and δ238U values are − 0.22 ± 0.08‰ (2σ) and − 0.29 ± 0.09‰ (2σ), 
respectively, which overlap with Pacific mid ocean ridge basalt (MORB). In contrast, Tl isotopes show small but 
resolvable variations, with ε205Tl ranging from +1.20 to − 1.38. The most negative ε205Tl values are confined to 
some of the lowest [Tl] samples, but the ε205Tl values do not otherwise vary smoothly with MgO or [Tl]. Possible 
mechanisms for thallium isotope fractionation are considered (e.g., degassing, water leaching, sulfide fraction
ation) but none are found to be satisfactory. Overall, the lack of resolvable variation in the Mo and U isotope 
systems and the small magnitude of heterogeneity in the Tl isotope system indicate that differentiation in 
tholeiitic systems is unlikely to be a major contributor to global variation in these isotope systems.   

1. Introduction 

The field of non-traditional stable isotopes has greatly expanded in 
the past decade and a half. One common attribute of nearly all of these 
emergent tracers is the occurrence of large measurable isotope frac
tionation at low temperatures, often in oceanographic settings (see Teng 
et al., 2017 and references therein), and one of the major applications 
for these systems has been in paleoceanography, particularly research 
pertaining to the rise of oxygen (e.g., Arnold et al., 2004; Nielsen et al., 

2005; Anbar and Rouxel, 2007; Wille et al., 2007; Czaja et al., 2012; 
Planavsky et al., 2014; Andersen et al., 2016; Wang et al., 2016; 
Ostrander et al., 2017, 2019; Them et al., 2018). It is inevitable that 
fractionated isotope signatures diagnostic of Earth-surface conditions 
will be transferred to solid Earth reservoirs via subduction, and varia
tions in non-traditional isotope ratios in igneous rocks and their minerals 
perhaps tied to such processes are increasingly being reported (e.g., 
Nielsen et al., 2006; Wille et al., 2007; Czaja et al., 2012; Andersen et al., 
2015; Freymuth et al., 2015; Nielsen et al., 2017a; Rader et al., 2018). 
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The Mo, Tl, and U isotope systems are of particular interest as numerous 
studies in recent years have documented major isotopic variations in 
igneous systems, especially in arc volcanic rocks (e.g., Willbold and 
Elliott, 2017; Nielsen et al., 2017a; Andersen et al., 2015; Freymuth 
et al., 2019). In order to determine if measured isotopic variations can be 
traced to subduction of isotopically fractionated material, we must first 
establish if these isotope systems can experience fractionation by 
igneous processes, such as fractional crystallization. 

This contribution explores the behavior of the Mo, Tl, and U isotope 
systems during the crystallization of Kilauea Iki lava lake, a tholeiitic 
picrite body. The lava lake has been an ideal locality for testing whether 
closed-system igneous differentiation leads to isotope fractionation and 
has been targeted in studies of several other stable isotope systems that 
include Li, Mg, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, and Sn (Tomascak et al., 
1999; Teng et al., 2007, 2008; Chen et al., 2013; Savage et al., 2015; 
Badullovich et al., 2017; Kato et al., 2017; Zhang et al., 2018; Johnson 
et al., 2019; Ding et al., 2020; Shen et al., 2020; Zhao et al., 2020). We 
show here that negligible isotope fractionation occurs for the Mo and U 
systems during crystallization. We also report minor heterogeneity in Tl 
isotope composition that does not correlate straightforwardly with de
gree of differentiation and discuss potential explanations for this 
heterogeneity. 

2. Background 

2.1. The Mo, Tl, and U isotope tracers and their behavior in igneous 
systems 

Early Mo isotope studies identified large fractionations between 
seawater and certain types of sediments in oceanographic settings (e.g., 
Barling et al., 2001; Barling and Anbar, 2004), and more recent studies 
have reported on Mo isotope variations in igneous rocks. A significant 
range of δ98Mo values (defined as per mil deviation of 98Mo/95Mo in a 
sample relative to a standard) have been reported from volcanics 
(Voegelin et al., 2014; Freymuth et al., 2015; Greber et al., 2015; 
Freymuth et al., 2016; König et al., 2016; Bezard et al., 2016; Liang et al., 
2017; Gaschnig et al., 2017; Willbold and Elliott, 2017; Wille et al., 
2018; Casalini et al., 2019; McCoy-West et al., 2019; Yan et al., 2019) 
and granites (Yang et al., 2017), and the possibility that igneous dif
ferentiation could be a driver of isotopic diversity has been addressed in 
several studies. Voegelin et al. (2014) reported Mo isotope compositions 
in hornblende and biotite separates that were anomalously light relative 
to whole-rock values from Kos in the Aegean Arc and concluded that 
crystallization of these minerals can drive the remaining liquid towards 
heavier isotope compositions. While this study focused on a more water- 
rich calk-alkaline magmatic system, Yang et al. (2015) analyzed a suite 
of samples from Hekla in Iceland representing a dry tholeiitic differen
tiation trend. These authors found a uniformity of isotope composition 
and concluded that Mo isotopes do not fractionate in such environments. 
On the other hand, recent studies have suggested that partial melting of 
the mantle may isotopically fractionate Mo (Liang et al., 2017; McCoy- 
West et al., 2019). 

Thallium can experience fractionation between its two isotopes 
(Rehkämper and Halliday, 1999), with isotope variations defined as 
ε205Tl or parts per ten thousand deviation of the 205Tl/203Tl in a sample 
from the standard. As with Mo, isotope fractionation occurs between 
seawater and certain sediment types and also oceanic crust (Rehkämper 
and Halliday, 1999; Rehkämper et al., 2002; Rehkämper et al., 2004). 

Significant variation of the Tl isotope composition of arc and ocean 
island basalts (e.g., Nielsen et al., 2006a; Prytulak et al., 2013; Nielsen 
et al., 2016, 2017a; Shu et al., 2017; Blusztajn et al., 2018) has led to the 
consideration of whether these variations could be affected by igneous 
differentiation rather than reflecting magma sources. Prytulak et al. 
(2017) studied samples from the dry Hekla differentiation series and 
also a more water-rich arc differentiation series and found no evidence 
that igneous differentiation affects Tl isotope composition. 

Uranium consists of two long-lived radioactive isotopes, 238U and 
235U, that can experience isotope fractionation in oceanographic settings 
(Stirling et al., 2007; Weyer et al., 2008; Tissot and Dauphas, 2015), 
Reports of isotopic variability (defined by δ238U or per mil deviation of 
the 238U/235U in a sample relative to the standard) in granites (Telus 
et al., 2012) and in basalts from different tectonic settings (Andersen 
et al., 2015) opened the possibility of the use of the U isotope system to 
understand igneous processes and additional studies have focused spe
cifically on U isotopes in arc rocks (Avanzinelli et al., 2018; Freymuth 
et al., 2019). As with the Mo and Tl system, interpretation of U isotope 
ratios as signatures from the magma source requires determining 
whether igneous differentiation alone can produce significant isotopic 
fractionation. Thus far, no systematic investigation of this possibility has 
been conducted. 

2.2. Kilauea Iki 

Kilauea Iki lava lake formed on the island of Hawaii in 1959 when 
lava erupted into an existing pit crater (Richter and Moore, 1966; 
Richter et al., 1970). The lake crystallized inward over several decades, 
during which it underwent extensive internal differentiation; over this 
period, it was drilled repeatedly by the USGS and extensive core was 
recovered (Helz, 1987a). The lava was a tholeiitic picrite with an 
average melt MgO content of approximately 15.4%. Internal differen
tiation and crystallization produced a range of compositions from 
olivine cumulates with MgO of 27% to ferrodiabasic segregation veins 
with MgO <6%. Rarer, more differentiated compositions occur as small 
veins or as oozes in boreholes (Helz, 1987a). Samples from the lava lake 
contain olivine and chromian spinel with plagioclase, augite, and Fe–Ti 
oxides while the more felsic segregations contain augite, plagioclase, 
Fe–Ti oxide, and minor apatite. Many samples contain interstitial glass 
(with SiO2 up to 74%) and some contain trace amounts of sulfide. By 
contrast, scoria samples from the 1959 eruption contain mostly glass, 
with some olivine and chromian spinel, plus rare traces of sulfide. 

Kilauea Iki lava lake thus represents a superb natural laboratory for 
studying the effects of closed-system crystallization and differentiation 
in a (dry) tholeiitic system. The Kilauea Iki sample suite has a clear 
advantage over the Hekla sample suite that has been used in other 
studies of stable isotope behavior during differentiation, where the 
samples represent multiple eruptions over a millennium. At Hekla, 
consanguinity of magmas can only be inferred indirectly, and some 
workers have argued for the role of magma mixing and remelting of the 
lower crust in the generation of the erupted products (Schuessler et al., 
2009; Savage et al., 2011, 2015; Chen et al., 2013; Yang et al., 2015; 
Prytulak et al., 2017). 

Multiple stable isotope systems have been examined in the Kilauea 
Iki sample suite. The Li, Mg, Ca, Cu, and Ga isotope systems do not show 
variation in the sample suite (Tomascak et al., 1999; Teng et al., 2007; 
Savage et al., 2015; Kato et al., 2017; Zhang et al., 2018). In contrast, 
Teng et al. (2008) reported that Fe exhibits a clear and continuous trend 
towards heavier isotope compositions with decreasing MgO, Chen et al. 
(2013) reported that Zn exhibits a small but resolvable shift towards 
lighter isotope compositions with decreasing MgO, and Badullovich 
et al. (2017) found a shift in Sn isotopes towards lighter isotope com
positions with decreasing MgO. Johnson et al. (2019) and Zhao et al. 
(2020) observed a step-change to distinctly heavier Ti isotope compo
sition in the most felsic samples due to the crystallization of Fe–Ti 
oxides, which preferentially removed light Ti isotopes. The same shift 
towards heavier isotope compositions, driven by Fe–Ti oxide crystal
lization, was also observed V by Ding et al. (2020). Shen et al. (2020) 
observed a shift in Cr isotope composition towards lighter isotope 
composition in the more evolved samples, which they attributed to 
preferential accumulation of isotopically heavy Cr in spinel. 

Previous workers have found that Mo, Tl, and U show similar trends 
during crystallization, indicating incompatible behavior (Greaney et al., 
2017; Helz, 2012). All three elements show slight increases in 
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concentration between ~28% and ~ 7% MgO, followed by a more rapid 
increase through the remainder of the MgO range. The 7% MgO in
flection point corresponds to the point at which clinopyroxene and 
plagioclase begin to crystallize from the melt. In situ analyses by Grea
ney et al. (2017) revealed that the major reservoirs of Mo are glass and 
Fe–Ti oxides whereas Tl is concentrated in glass but also occurs in 
sulfides. A mineralogical inventory of U has not yet been conducted but 
based on the similar trend to the other two elements, it is likely 
concentrated in glass. 

3. Methods 

3.1. Samples 

The Kilauea Iki samples studied here consist of 15 drill core samples 
collected in the 1967, 1975, 1979, and 1981 drilling campaigns along 
with eight samples of scoria from the initial 1959 eruption. Major 
element data are reported in Helz et al. (1994) and Murata and Richter 
(1966), and trace element data are reported in Helz (2012) and Greaney 
et al. (2017). Platinum group element data for some of these samples 
have been reported by Pitcher et al. (2009), and many of these samples 
were used in the previous stable isotope studies mentioned above. 

3.2. Digestion 

Initial samples were digested at the Georgia Institute of Technology 
on a hot plate in screw-top beakers in 4 mL of concentrated HF plus 0.5 
mL of concentrated HNO3 at 140 ◦C and then uncapped and evaporated. 
Salts were dissolved in 4 mL of concentrated HNO3 and evaporated and 
then repeatedly dissolved in HCl and evaporated until an HCl solution 
free of precipitates was obtained. 

Additional samples of erupted scoria targeted specifically for thal
lium isotopes alone were digested in the Metal Isotopes Laboratory at 
Indiana University on a hot plate in screw-top beakers in 3 mL of 
concentrated HF plus 1 mL of concentrated HNO3 at 140 ◦C for three 
days and then uncapped and evaporated. Salts were dissolved in 4 mL of 
concentrated aqua regia and evaporated and then repeatedly dissolved 
in 6 N HCl and evaporated until an HCl solution free of precipitates was 
obtained. 

3.3. Mo separation and isotope analysis 

Molybdenum column chromatography was conducted at the Georgia 
Institute of Technology. Aliquots of dissolved samples were taken and 
combined with a 97Mo–100Mo double spike in proportions designed to 
double the Mo concentration of the resulting mixture and then dried 
down. The single stage Mo column chromatography procedure of Will
bold et al. (2016) was used to separate Mo from the sample matrix. This 
procedure was designed specifically for Mo isotope analysis of igneous 
samples and entails loading the sample in a mixture of HCl and ascorbic 
acid, the latter of which is added to reduce all iron to Fe2+, onto columns 
with AG1-X8 anion exchange resin. Full details of the procedure are 
provided in Willbold et al. (2016). 

Molybdenum isotope analyses were conducted at the Yale Metal 
Geochemistry Center on a Thermo Neptune Plus MC-ICP-MS. Solutions 
were introduced with an Apex IR desolvating nebulizer and analyzed in 
static mode. 91Zr and 99Ru were monitored in addition to the isotopes of 
Mo in order to correct for isobaric interferences. Groups of three samples 
were bracketed by analyses of the NIST 3134 Mo standard and also by 
periodic analyses of the RochMo2 Mo standard. A modified approach of 
Siebert et al. (2001) was used to process the data. δ98Mo values are 
reported in per mil relative to the NIST 3134 standard (Goldberg et al., 
2013). External reproducibility of the Mo isotope standard was ±0.04‰ 
(2σ). Gaschnig et al. (2017) reported results for USGS reference mate
rials BHVO-2 (δ98Mo = − 0.08 ± 0.03‰, n = 4, 2σ) and W-2 (δ98Mo =
− 0.04 ± 0.08‰, n = 1, 2σ). These analyses were conducted during the 

same analytical sessions as the Kilauea Iki samples and so demonstrate 
accuracy and reproducibility, with BHVO-2 overlapping with the range 
of − 0.04 to − 0.08‰ reported in the literature (Hin et al., 2013; Bur
khardt et al., 2014; Li et al., 2014; Bezard et al., 2016; König et al., 2016; 
Freymuth et al., 2016; Zhao et al., 2016; Liang et al., 2017) and W-2 
overlapping with the range of − 0.04 to − 0.10‰ reported in the litera
ture (Burkhardt et al., 2014; Bezard et al., 2016; Zhao et al., 2016). 

3.4. Tl separation and isotope analysis 

Initial thallium column chromatography and isotope analysis was 
conducted in the National High Magnetic Field Laboratory at Florida 
State University. Purification of Tl was achieved using a two-column 
procedure described in detail by Rehkämper and Halliday (1999), 
Nielsen et al. (2004), and Baker et al. (2009). Purified Tl was doped with 
the NIST 981 Pb standard in order to monitor for instrumental mass bias 
and for external normalization (Rehkämper and Halliday, 1999; Nielsen 
et al., 2004; Baker et al., 2009). Isotope analyses were conducted on a 
Neptune MC-ICP-MS with an Aridus II desolvating nebulizer at the Na
tional High Magnetic Field Laboratory of Florida State University. 
Sample analyses were bracketed by analyses of NIST 997 thallium 
standard. Results are reported in ε205Tl, referenced to NIST 997. Ana
lyses of USGS reference materials BCR-2 and BHVO-2 yielded mean 
ε205Tl values of − 2.24 ± 0.04 and − 1.78 ± 0.61 (2σ), respectively, 
which are consistent with literature values (− 2.5 ± 0.5 for BCR-2 and 
-1.5 ± 0.4 for BHVO-2; Prytulak et al., 2013). The error bars are the two 
standard deviations of replicate analysis unless only one analysis was 
available, which is then given as an error of the individual analysis. 

Thallium column chromatography and isotope analysis for a subset 
of erupted scoria samples were conducted in the Metal Isotopes Labo
ratory at Indiana University. Purification of Tl was achieved using the 
same protocol as mentioned above. Purified Tl was doped with NIST 981 
Pb standard to monitor for instrumental mass bias and for external 
normalization (Rehkämper and Halliday, 1999; Nielsen et al., 2004; 
Baker et al., 2009). Isotope analyses were conducted on a Nu Plasma II 
MC-ICP-MS with an Aridus II desolvating nebulizer. Sample analyses 
were bracketed by analyses of NIST 997 thallium standard. Multiple 
analyses of USGS reference material BCR-2 yielded mean ε205Tl = − 2.5 
± 0.4 (2σ), consistent with literature values (Baker et al., 2009; Prytulak 
et al., 2013). Error bars represent two standard deviations of replicate 
analyses. 

3.5. U separation and isotope analysis 

Uranium column chromatography was conducted at the Georgia 
Institute of Technology. Aliquots of dissolved samples were taken and 
combined with a 233U–236U double spike in amounts appropriate to 
yield a 238U/236U of ~30. Uranium was purified on columns with 
UTEVA resin, using the methods of Wang et al. (2016) (modified from 
Weyer et al., 2008). Uranium isotope analyses were conducted at the 
Yale Metal Geochemistry Center on a Thermo Neptune Plus MC-ICP-MS, 
with samples normalized to bracketing analyses of spiked CRM 112a 
standard solution. Additional details are provided in Wang et al. (2018). 
δ238U results are reported per mil relative to the CRM 112a standard. 
The long-term reproducibility of this standard is 0.07‰ (2σ). Four an
alyses of USGS reference material BHVO-2 yielded a mean δ238U of 
− 0.34 ± 0.05‰ (2σ), which overlaps with published values (Andersen 
et al., 2015; Tissot and Dauphas, 2015). 

4. Results 

Results are presented in Table 1 and Figs. 1 through 4 and compared 
to the range of isotopic variation seen in various common rock types in 
Fig. 5. For Mo isotope results, the data might suggest an increase in 
δ98Mo with decreasing MgO starting at ~7% MgO, but this largely 
hinges on a single outlier sample (which has the lowest δ98Mo observed 

R.M. Gaschnig et al.                                                                                                                                                                                                                            



ChemicalGeology574(2021)120239

4

Table 1 
Mo, Tl, and U isotope results  

Sample Aprox latitude (degrees)a Aprox longitude (degrees)a 1959E (%)b MgOc SiO2
c δ98Mo 2SEd [Mo]e δ238U 2SEd (234 U/238 U) [U]e ε205Tl 2σd n [Tl]e 

67-2-85.7 19.416 − 155.247  2.6 56.2 − 0.17 0.05 3.55 − 0.31 0.05 3.7 1.73 − 0.28 0.05 2 0.100 
67–3-27.5 19.414 − 155.247  12.0 48.6 − 0.26 0.07 0.73 − 0.34 0.05 6.2 0.24 − 0.49 0.35 2 0.030 
67–3-6.8 19.414 − 155.247  25.8 44.6 − 0.20 0.04 0.50 − 0.20 0.06 2.6 0.32 − 0.48 0.06 2 0.012 
75–1-38.9 19.414 − 155.247  10.7 50.0 − 0.25 0.07 0.78 − 0.27 0.05 2.6 0.37 − 1.38 0.31 2 0.015 
75–1-121.5 19.414 − 155.247  7.8 48.9 − 0.23 0.07 1.13 − 0.28 0.05 2.7 0.49 − 0.80 0.18 2 0.031 
75–1-75.2 19.414 − 155.247  5.8 50.1 − 0.22 0.06 1.45 − 0.35 0.06 3.8 0.61 − 0.26 0.19 2 0.036 
79-1R1–170.9 19.414 − 155.247  3.5 54.6 − 0.20 0.05 2.94 − 0.25 0.04 − 2.0 1.28 − 0.27 0.37 3 0.08 
79–3-150.4 19.414 − 155.247  13.5 48.4 − 0.19 0.06 0.73 − 0.33 0.06 3.0 0.32 − 0.06 0.49 2 0.019 
79-3R2–168 19.414 − 155.247  5.1 50.9 − 0.28 0.08 1.94 − 0.29 0.07 4.6 0.80 − 0.96 0.23 2 0.0001 
81–1-117.8 19.414 − 155.247  4.9 50.2    − 0.32 0.04 1.5 0.73 − 0.94 0.22 1 0.014 
81–1-119.2 19.414 − 155.247  6.7 50.6 − 0.31 0.05 1.08 − 0.32 0.05 1.7 0.48     
81–1-169.9 19.414 − 155.247  26.9 43.7 − 0.19 0.09 0.56 − 0.31 0.05 3.0 0.24 − 0.47 0.00 2 0.020 
81–1-190.1 19.414 − 155.247  21.9 45.7 − 0.21 0.08 0.46 − 0.38 0.07 9.8 0.20 − 1.27 0.24 2 0.016 
81–1-230.6 19.414 − 155.247  26.6 44.9 − 0.21 0.08 0.33 − 0.28 0.06 16.4 0.13     
81–2-88.6 19.414 − 155.247  2.4 57.1 − 0.21 0.06 3.67 − 0.30 0.07 − 39.2 1.61 − 0.47 0.44 2 0.080 
Iki 22 19.41 − 155.25 27 19.5 46.7 − 0.17 0.09 0.66 − 0.29 0.07 3.5 0.27 − 1.02 0.43 3 0.021 
Iki 3 19.41 − 155.25  17.2 47.2    − 0.21 0.05 2.2 0.30     
Iki 58 19.41 − 115.25 100 8.1 49.9 − 0.22 0.07 0.87 − 0.24 0.05 7.0 0.41 − 0.87 0.02 1 0.027 
Iki 5 19.41 − 115.25 12 10.5 49.1        − 1.10 0.7 4 0.012 
Iki 9 19.41 − 115.25 0 8.2 49.6        − 1.00 0.5 4 0.015 
Iki 10 19.41 − 115.25 0 8.9 49.4        − 0.9 0.9 3 0.016 
Iki 26 19.41 − 115.25 21 19.3 46.7        1.2 0.4 4 0.016 
Iki 33 19.41 − 115.25 19 18.3 47.0        − 0.4 0.9 3 0.013  

BCR-2             − 2.2 0.4 6   

Mean      − 0.22   − 0.29    − 0.61    
2stdev      0.08   0.09    1.13     

BHVO-2f      − 0.08 0.03  − 0.34 0.05   − 1.78 0.61 2  
BCR-2             − 2.24 0.0425 3  
W-2f      − 0.04 0.08          

Mo, U, and Tl concentrations in ppm. Samples with names in italics were analyzed for Tl isotopes at Indiana University in Bloomington. 
a Drill hole locations well constrained, but scoria coordinates are inferred from the limited location notes in Murata and Richter (1966). 
b Percent of more primitive component in erupted scoria samples calculated by Wright (1973). 
c MgO and SiO2 (wt%) from Helz et al. (1994) and Murata and Richter (1966). Note that original scoria sample names in Murata and Richter were converted to “Iki-” prefixed names used here and elsewhere by Wright 

(1973). 
d Uncertainties on Mo and U isotope compositions are standard errors. Uncertainties on Tl isotope compositions are standard deviation of mean of duplicate analyses (n). Samples with only one Tl analysis are listed with 

internal standard error. 
e Mo and U concentrations determined by isotope dilution. Listed Tl concentrations are standard addition ICP-MS from Greaney et al. (2017) except for those in italics, which were determined here by comparing the Tl 

elutions signal intensities to the Tl isotope standard on the MC-ICP-MS. 
f Mo isotope analysis of BHVO-2 (mean, n = 4) and W-2 (mean, n = 1) previously reported in Gaschnig et al. (2017). U isotope composition is mean of four analyses of separate digestions. 
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in this study). The other samples have δ98Mo within analytical uncer
tainty so there is no real evidence for Mo isotope fractionation at the 
currently level of precision. The mean δ98Mo is − 0.22 ± 0.08‰ (2σ). 
This composition overlaps with the unweathered Hawaiian basalts re
ported by King et al. (2016), although it differs from published values for 
the BHVO-2 reference material (Burkhardt et al., 2014; Hin et al., 2013; 
Li et al., 2014; König et al., 2016; Bezard et al., 2016; Freymuth et al., 
2016; Zhao et al., 2016; Liang et al., 2017; Gaschnig et al., 2017), which 
is a Kilauea lava collected from a nearby locality. The difference be
tween the Kilauea Iki lavas and BHVO-2 almost certainly stems from the 
metal contamination to BHVO-2 during preparation that has been 
extensively documented elsewhere (Weis et al., 2005). 

Tl concentration and isotope results are shown in Table 1 and Figs. 2 
and 3. Small but resolvable thallium isotopic heterogeneity is present; 
the samples here display an overall range of more than 2.6 ε205Tl units. 
While the Tl isotope composition in the system does not appear to sys
tematically vary with differentiation (Fig. 2), there is a correlation be
tween [Tl] and certain chalcophile elements, such as Cu, As, and Sb 
(Fig. 3). Uniformly, samples with the greatest [Tl] had heavier Tl isotope 
compositions whereas lower [Tl] samples had variable ε205Tl. These 
most enriched samples are the only samples analyzed to have cooled 
after sulfide saturation at around 5 wt% MgO. 

Uranium isotope results are shown in Table 1 and Fig. 4. The ma
jority of δ238U values are identical within analytical uncertainty and no 

systematic variation between δ238U and MgO or [U] are observed. The 
mean δ238U is − 0.293 ± 0.095‰ (2σ), comparable to BHVO-2. 

5. Discussion 

5.1. Lack of fractionation of Mo and U isotopes during differentiation 

The Mo isotope compositions reported here for the Kilauea Iki 
samples do not vary during crystallization and differentiation in the lava 
lake. It undoubtedly reflects in part the persistent incompatible behavior 
of Mo across the crystallization range observed here. The lack of Mo 
isotope fractionation in this dry tholeiitic system is consistent with the 
isotopic uniformity that Yang et al. (2015) observed in the similarly 
tholeiitic sample suite from Hekla in Iceland. This implies that Mo iso
topes measured in igneous rocks from such systems should record the 
composition of the primary melt (assuming that no crustal assimilation 
has occurred). 

As with Mo, U is consistently incompatible across the crystallization 
range and does not experience systematic isotope fractionation during 
differentiation. This is the first such study to address directly the ques
tion of U isotope fractionation during igneous differentiation in a single 
system. The question of whether U isotopes are affected by fractional 
crystallization in a more water-rich and/or granitic system (as has been 
observed for Mo isotopes) remains an open question. 
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and oxides. Mo behaves incompatibly and is 
increasingly enriched in the melt during 
fractional crystallization. (b) δ98Mo (relative 
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function of Mo concentration. No coherent 
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5.2. Mo isotope composition of the Hawaiian plume 

The Mo isotope system has been applied to igneous systems in many 
studies in recent years, including studies of arc lavas (Voegelin et al., 
2014; Freymuth et al., 2015, 2016; König et al., 2016; Gaschnig et al., 
2017; Wille et al., 2018), mid ocean ridge basalts (MORBS) (Bezard 
et al., 2016; Liang et al., 2017), komatiites (Greber et al., 2015; McCoy- 
West et al., 2019), and granites (Greber et al., 2014; Yang et al., 2017). 
However, available data for ocean island basalts, particularly the classic 
localities for different mantle reservoir end members (e.g., EM1, EM2, 
HIMU, etc.), are more limited. An abstract by Willbold et al. (2012) 
reported δ98Mo results for several OIB localities, including a − 0.25 to 
+0.18‰ range for Hawaiian samples, but these data have not been 
published in full. Liang et al. (2017) published results for a few OIB 
samples, including two samples from the Loihi seamount of the Ha
waiian chain with an average δ98Mo of − 0.05‰. Mo isotopic composi
tions from the island of Hawaii were also provided by King et al. (2016) 
in a study of the effects of chemical weathering on Mo and its isotopes, 
with unweathered volcanic bedrock yielding δ98Mo from − 0.11 to 

− 0.26‰. 
The Kilauea Iki Mo isotope data presented here may offer new con

straints on the Mo isotope composition of the Hawaiian mantle plume, 
given the lack of isotope fractionation during lava differentiation. While 
the possibility of isotope fractionation during low degree partial melting 
of the mantle has been suggested (Liang et al., 2017), the Kilauea Iki 
magma is not a low degree melt. The average δ98Mo of the sample suite 
is − 0.22 ± 0.08‰ therefore likely reflects the Mo isotope composition of 
the mantle plume source. This composition falls within range of the East 
Pacific Rise MORB compositions reported on by Bezard et al. (2016), 
indicating that the Mo isotope composition of the portion of the Ha
waiian plume sampled by the Kea trend (upon which Kilauea lies) is 
indistinguishable from the ambient Pacific mantle. This is somewhat 
surprising given the previously reported Tl isotope anomalies that 
indicate the presence of Fe–Mn sediments in the Hawaiian plume 
(Nielsen et al., 2006), as such sediments also typically contain isotopi
cally light Mo. This may reflect the lower abundance of Tl in the mantle 
and the commensurately greater isotopic leverage that can be exerted by 
sedimentary contamination. 
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5.3. Potential causes of Tl isotope heterogeneity Kilauea Iki samples 

The Tl isotope system shows discernable but relatively small het
erogeneity (Fig. 3) in the Kilauea Iki system, but this does not appear to 
be directly attributable to fractional crystallization of major phases 
given the lack of correlation with canonical measures of melt evolution. 
Here, we explore and discuss potential causes of Tl isotope 
heterogeneity. 

5.3.1. Degassing, water leaching 
Thallium is a relatively volatile metal that can be enriched in vol

canic gas emissions (e.g., Hinkley et al., 1994). In considering metal 
output via degassing from several volcanoes, Hinkley et al. (1999) 
estimated that 9.1 tons per year of Tl were being emitted from Kilauea. If 
Tl is isotopically fractionated during degassing, this might provide an 
explanation for the small isotopic heterogeneities seen in Kilauea. 

The effect of volcanic degassing on the Tl isotope system was studied 
in detail by Baker et al. (2009), who analyzed gas condensates and 
particulates from six volcanoes from around the world. While they re
ported an average ε205Tl of − 1.7 ± 2.0 (comparable to the average 
composition of the mantle and the continental crust), significant isotopic 
variation was present amongst individual samples at most of the local
ities examined. Gas samples from Kilauea were included in this study, 
and several of these had anomalously negative ε205Tl values. As a result, 
we would expect degassing from Kilauea Iki lava lake to drive lake 
samples to higher ε205Tl values as Tl is removed, but we observe the 
opposite relationship (Fig. 2c). The lava samples with the lowest ε205Tl 
values have some of the lowest Tl concentrations. Consequently, existing 
evidence argues against this explanation. 

Lastly, it appears that Tl might be vulnerable to leaching by water, 
either in the geothermal system that circulated in the upper crust of the 
lava lake, or by the water used during drilling to cool the bit and quench 
the samples. One sample (KI79-3R2–168), with the extremely low Tl 
value of ~0.0001 ppm (Table 1), was recovered after having been 
exposed to three re-entries of the borehole, or roughly three times as 

much water as any of the other lake samples studied here. However, its 
ε205Tl value of − 0.96, the same as other comparably differentiated 
samples, confirms that such leaching does not affect the isotopic 
signature. 

5.3.2. Fractionation by sulfides 
Thallium can exhibit chalcophile and lithophile characteristics 

(Heinrichs et al., 1980; Nielsen et al., 2014), and chalcophile behavior 
seems to be particularly pronounced in ultramafic and mafic lithologies. 
Nielsen et al. (2014) found that sulfides dominate the thallium budget in 
mantle lherzolites. In Kilauea Iki, Fe-Ni-Cu sulfide blebs have been re
ported in both melt inclusions in olivine crystals and in the interstitial 
melt in partly molten samples (Stone and Fleet, 1991; Helz, 1987b; Helz 
and Wright, 1992; Pitcher et al., 2009). Greaney et al. (2017) analyzed 
several chalcophile elements in the groundmass sulfides and found that 
thallium concentrations and enrichment relative to adjacent ground
mass glass were heterogeneous, suggesting relatively mild chalcophile 
behavior for thallium. Nonetheless, a few sulfides were significantly 
enriched in thallium (Greaney et al., 2017) and the thallium contents of 
olivine-hosted sulfides were not determined. 

The possible effect of sulfide crystallization on thallium isotopes in 
Kilauea Iki is considered here. Rader et al. (2018) found that sulfides 
often have heavier thallium isotope compositions than coexisting sili
cate minerals in igneous and metamorphic rocks. In Kilauea Iki, sulfide 
saturation occurred during differentiation and is thought to be the result 
of the onset of magnetite crystallization, which takes place when glass 
MgO content falls between 5 and 3 wt% (Greaney et al., 2017). Sulfide 
minerals are most abundant in the more evolved bulk compositions and 
appear to be in equilibrium with their interstitial melt (Greaney et al., 
2017), which also has the greatest Tl and chalcophile element concen
trations (Fig. 2-3). Prior to sulfide saturation, most primitive samples 
(bulk MgO > 5 wt%and SiO2 < 51 wt%) have consistently low Tl and 
chalcophile element concentrations and variable ε205Tl values, indi
cating indiscriminate Tl partitioning amongst the major mineral phases. 
However, once sulfide saturation is attained in the more evolved 
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material, Tl may partition into sulfide phases, which have been shown to 
exert a preference for the heavy isotope of Tl (Rader et al., 2018). This 
process would induce isotopic fractionation and, overall, push the three 
evolved samples towards heavier Tl isotope compositions. 

This is not observed, however (Figs. 2b and 3d), probably because 
sulfide is a trace phase in samples from Kilauea Iki lava lake. We can 
approximate the necessary proportion of sulfide material required to 
instill the observed fractionation effects. Using the ε205Tl values for 
sulfide minerals from Rader et al. (2018), which present an overall range 
from ε205Tl = +1.6 to +17.8 and ε205Tlavg = +5.8, and solving two- 
variable simultaneous equations, we note it would require a modal 
abundance of sulfide blebs between 2 and 17%, with an average of 6%, 
to shift the ε205Tl values from those of the average primitive samples to 
those observed for the higher, more evolved samples. The overall 
abundance of the sulfide blebs observed for the Kilauea Iki samples is 
insufficient to produce this observed shift, as would be expected from 
their low bulk sulfur contents (Helz et al., 1994). 

5.3.3. Variability within the 1959 scoria samples 
The 1959 eruption at Kilauea Iki was a mixed-magma eruption, with 

both a primitive, mantle-derived magma (1959E-rich component) and a 
more evolved, shallowly stored magma (1959 W-rich component) 

(Wright, 1973; Helz, 1987b). Initially, only two erupted samples, both 
rich in the juvenile component (1959E, see Table 1), were analyzed for 
Tl isotopes in this study and both displayed light ε205Tl values (ε205Tl <
− 0.85). This led us to consider the possibility that the two components 
might have different Tl isotopic signatures. Five additional 1959 erup
tion samples, which spanned the range of potential mixing ratios 
(Table 1), were analyzed to evaluate this possibility. These samples 
display a wider range of ε205Tl values than range of the previously 
analyzed samples (ε205Tl = − 1.1 to +1.2, Fig. 2b), but are not consis
tently different from the earlier values, and Tl isotope composition does 
not correlate with the fraction of the evolved component (Fig. 6). This 
demonstrates that the two source components do not have distinctive 
signatures. All 1959 eruption samples analyzed here were collected in 
real time during the eruption and bagged and stored away from any 
possible subsequent influences so the variation cannot be attributed to 
any kind of post-eruptive alteration. 

To summarize, the cause and significance of the Tl isotope hetero
geneity remains uncertain. However, the magnitude of this heteroge
neity is small, with values spanning a range of slightly under 3 ε205Tl 
units. This is broadly an order of magnitude less than the range of Tl 
isotope variation seen in terrestrial materials; consequently, we see little 
evidence from the data presented here that tholeiitic differentiation will 
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contribute significantly to the global variation seen in Tl isotope 
compositions. 

6. Conclusions 

Molybdenum, Tl, and U isotope analyses of diverse samples from 
Kilauea Iki lava lake samples ranging from olivine cumulates to ferro
diabasic segregations and beyond, were obtained, to evaluate whether 
fractional crystallization in the tholeiitic Kilauea Iki system leads to 
fractionation in these isotope systems. The Mo and U isotope systems do 
not systematically vary and mean δ98Mo and δ238U values are − 0.22 ±
0.08‰ (2σ) and − 0.29 ± 0.09‰ (2σ), respectively. The lack of frac
tionation in the Mo isotope system is consistent with previous work in 
another tholeiitic system (Yang et al., 2015), but this is the first sys
tematic study of this question for the U isotope system. The mean Mo 

isotope composition is comparable to the range seen in Pacific MORB 
(Bezard et al., 2016) and lacks the clear evidence of recycled sediment 
influence in the Hawaiian source that is seen in other isotope tracers. 

In contrast to the Mo and U systems, Tl isotopes show some hetero
geneity, both in Kilauea Iki and in the 1959 eruption samples, with 
ε205Tl values ranging from +1.20 to − 1.38. ε205Tl values do not clearly 
correlate with indicators of differentiation such as MgO or SiO2 or with 
eruption component proportions. Also there is insufficient sulfide pre
sent in samples from Kilauea Iki to impact the ε205Tl compositions. 
Overall, the magnitude of Tl isotope variation observed here is quite 
small, both compared to what has been observed across Earth reservoirs 
and also what has been reported in igneous rocks alone and shows no 
consistent variation at Kilauea Iki. While there is slightly more hetero
geneity in Tl isotope compositions here as compared with U and Mo, 
there is no systematic behavior during differentiation for Tl. 
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