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In the Landau levels of a two-dimensional electron system or when flat bands are present, e.g., in twisted
van der Waals bilayers, strong electron-electron interaction gives rise to quantum Hall ferromagnetism with
spontaneously broken symmetries in the spin and isospin sectors. Quantum Hall ferromagnets support a
rich variety of low-energy collective excitations that are instrumental to understand the nature of the
magnetic ground states and are also potentially useful as carriers of quantum information. Probing such
collective excitations, especially their dispersion ωðkÞ, is experimentally challenging due to small sample
size and measurement constraints. In this work, we demonstrate an all-electrical approach that integrates a
Fabry-Pérot cavity with nonequilibrium transport to achieve the excitation, wave vector selection, and
detection of spin waves in graphene heterostructures. Our experiments reveal gapless, linearly dispersed
spin wave excitations in the E ¼ 0 Landau level of bilayer graphene, thus providing direct experimental
evidence for a predicted canted antiferromagnetic order. We show that the gapless spin wave mode
propagates with a high group velocity of several tens of kilometers per second and maintains phase
coherence over a distance of many micrometers. Its dependence on the magnetic field and temperature
agree well with the hydrodynamic theory of spin waves. These results lay the foundation for the quest of
spin superfluidity in this high-quality material. The resonant cavity technique we develop offers a powerful
and timely method to explore the collective excitation of many spin- and isospin-ordered many-body
ground states in van der Waals heterostructures and opens the possibility of engineering magnonic devices.

DOI: 10.1103/PhysRevX.11.021012 Subject Areas: Condensed Matter Physics

I. INTRODUCTION

Spin wave (SW) excitations, also known as magnons,
offer fundamental insight into the nature of a magnetically
ordered system, similar to phonons of a crystal. In an easy-
axis ferromagnet (FM), SW excitations are gapped at zero
momentum k ¼ 0 by the energy cost of flipping a spin. On
the other hand, an easy-plane FM or antiferromagnet
(AFM) supports linearly dispersed, gapless SW excitations
that correspond to an in-plane precession of the order
parameter [1–4]. A magnetic system can also form topo-
logical spin textures such as a skyrmion [5,6]. These low-
energy collective excitations are potentially useful as

information carriers. Magnons in magnetic insulators
are particularly attractive given their ultrafast dynamics
and low energy dissipation [4,7–10]. Furthermore, theory
predicts that gapless magnons of an easy-plane AFM or
canted antiferromagnet can form a Bose-Einstein conden-
sate and transport spin in a superfluidlike manner without
dissipation; this topic has gathered intense interest of the
spintronic community lately [7,11–18].
Two-dimensional electron systems (2DESs) placed in a

magnetic field constitute an important class of quantum
magnets. Here, magnetism develops in the Landau levels of
nonmagnetic materials, because strong electron-electron
interaction leads to spontaneously broken spin and isospin
symmetries [5,19–25]. This phenomenon is known as
quantum Hall ferromagnetism (QHF). QHF gives rise to
skyrmions in semiconductor 2DESs [5]. Graphene materi-
als enrich the physics and phenomenology of QHF by
introducing isospins such as valley or layer (sublattice)
[19,20,22]. For instance, the E ¼ 0 Landau levels of AB-
stacked bilayer graphene is expected to support a spin-
valley coherent, canted-antiferromagnetic (CAF) phase
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with in-plane rotational symmetry [22] and gapless, lin-
early dispersed SW excitations that correspond to an in-
plane precession of the Néel vector [14,16,26–28]. This
gapless magnon mode is predicted to support spin super-
fluidity [12–18]. To date, no direct evidence of the CAF
order has been obtained. Quantum Hall ferromagnetism
and a plethora of spin, valley, and charge density wave
excitations also manifest in a growing family of magic-
angle-twisted van der Waals bilayers where flat bands are
formed without a magnetic field [29–32].
Probing the low-energy collective excitations of

a QHF system is experimentally challenging. Scattering
techniques used to measure the excitations of bulk
magnets, e.g., inelastic neutron or Brillouin light scattering

]4,7,33,34 ], do not function readily at the low temperatures
where QHF typically occurs. Specialized techniques, e.g.,
surface acoustic waves, have been developed to study
magnetic excitations of a semiconductor 2DES [35–37].
Nonetheless, accessing the dispersion ωðkÞ over a range of
k remains difficult, and the microscopic size of van der
Waals heterostructures presents an additional challenge to
any spectroscopic technique. New experimental approaches
are needed to explore the rich physics, phenomena, and
technological potential of van der Waals quantum magnets.
In this work, we demonstrate an all-electrical method to

probe SW excitations in graphene heterostructures, includ-
ing the attainment of the dispersion relation ωðkÞ. Key to
this approach is the integration of a high-quality Fabry-
Pérot (FP) cavity into a multiterminal transport device,
which enables the selective excitation of magnons of
discrete wave vectors through resonant transmission. We
present unprecedented experimental evidence of gapless,
linearly dispersed SWexcitations in theE ¼ 0 Landau level
of bilayer graphene, directly validating the theoretically
predicted CAF order. The SW propagates coherently with a
high group velocity of several tens of kilometers per
second, the magnetic field dependence of which agrees
well with a hydrodynamic model. We examine intrinsic and
extrinsic sources of dissipation by varying the temperature
and a number of relevant experimental conditions. These
results open the door for the pursuit of spin superfluidity
and the development of more complex magnonic device
geometries in this high-quality QHF platform. Our exper-
imental method is compatible with a wide range of sample
geometry and measurement conditions. We envision its
applicability to other symmetry-broken magnetic ground
states in van der Waals materials.

II. DEVICE FABRICATION AND
CHARACTERIZATION

Our bilayer graphene devices are fabricated using van
der Waals dry transfer, side contact, and precision align-
ment techniques [38–40] with four layers of gates (six in
total). Figures 1(a) and 1(b) show the optical micrograph
and schematic side view of device 606. In areasQ3 andQ4,

the filling factor ν and displacement field D are controlled
by the aligned top and bottom gates. The bottom gates are
etched into the profile of a quantum point contact. We use
this geometry to control areas Q3 and Q4 separately. The
bulk filling factor νB in the rest of the device is controlled
by the global graphite gate. All contacts reside outside the
boundary of the graphite bottom gate and are heavily doped
by the Si back gate. The use of two long contacts adjacent
to the dual-gated region is a salient feature of our design
that promotes SW excitation and detection, as we show
below. In a magnetic field, we observe well-developed
integer quantum Hall effect (IQHE) in the bulk and the
dual-gated regions. Appendix A gives a detailed descrip-
tion of the fabrication steps of devices 606 and 611 and the
characteristics of device 606.

III. NONLOCAL MEASUREMENT SETUP

Figure 2 shows the nonlocal measurement setup we use
to electrically excite and detect spin wave transmission
through area Q4. In this setup, Q4 is set to the CAF phase

FIG. 1. (a) An optical image of device 606. The black, blue, and
white dashed lines outline the edges of the bilayer graphene sheet,
the graphite bottom gates, and the graphite global gate, respec-
tively. Areas Q3 and Q4 are gated by aligned top and bottom
gates. The opening of the quantum point contact is 106 nm. Side
contacts are made to the bilayer graphene sheet gated by the
295 nm SiO2/doped Si back gate. (b) A schematic side view along
the red dashed line in (a).
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of ν ¼ 0, while Q3 is set to the layer-polarized (LP) phase,
which is nonmagnetic and insulating [22,24,25,40,41].
Conduction through the quantum point contact is pinched
off (see Fig. 8 in Appendix A). We note that neither the
CAF nor the LP phase carries edge states [22,24,25,40,41],
and, because of the large width of the insulating middle
region (w ¼ 2 μm for device 606 and 1.6 μm for device
611), no edge state on the left could directly transmit to the
right [42,43]. The bulk is set to filling factor νB ¼ 2, which
is fully spin polarized [41]. We apply a varying dc and a

small fixed ac voltage Vdc þ δVac between contacts 2 and 3
and measure a nonlocal ac voltage signal δVNL as a
function of Vdc on the right side of Q4, e.g., between
contacts 8 and 7. We examine the differential nonlocal
signal dVNL=dV ≡ δVNL=δVac and integrate dVNL=dV
over Vdc to obtain VNL. Figures 2(a) and 2(b) show,
respectively, the flow of the high chemical potential
(red) and low chemical potential (blue) edge states under
different dc bias conditions. Previous studies examining
SW excitations of a spin-polarized quantum Hall state
detect appreciable nonlocal dVNL=dV in similar measure-
ment setups [44,45].

IV. RESULTS AND DISCUSSIONS

We first examine the scenario in which both the bulk and
area Q4, called the middle region from now on, are set to
ν ¼ 2, where spins are polarized along the external field
direction. Figure 3(c) plots the nonlocal differential signal
dVNL=dV and the integrated VNL. Both exhibit a Vdc
threshold of approximately the Zeeman energy Ez ¼
gμBB (g ¼ 2). This threshold originates from the spin-flip
energy cost Ez needed to excite SWs in an easy-axis FM.
Furthermore, because a fully spin-up-polarized FM can
support only the propagation of spin-down SWs, the
nonlocal VNL carries the same sign for both positive and
negative Vdc’s. This result is indeed what Fig. 3(c) and
previous studies at the ν ¼ 1 of monolayer graphene show
[44,45]. While only spin-down SWs are emitted, the
emission occurs at source (drain) contacts, respectively,
for Vdc < 0 (> 0) [44].
A qualitatively different behavior is expected for an

easy-plane AFM or CAF state, which transmits magnons
through the in-plane precession of the Néel vector. Both
spin-up and spin-down SWs can be transmitted and trans-
late into VNL of opposite signs in the detection region. In a
system with in-plane U(1) symmetry, the k ¼ 0 mode is
expected to be gapless [14,26–28].
Indeed, the characteristics of the nonlocal signal changes

drastically when the middle region of our device is tuned to
the putative CAF phase of ν ¼ 0. The results are shown in
Figs. 3(d) and 3(e). Here, VNL varies approximately linearly
with Vdc, changes sign at Vdc ¼ 0, and commences at jVdcj
much smaller than Ez. For example, the low-temperature
threshold VT is only 0.025 mV in device 606, while
Ez ¼ 1.0 meV. Furthermore, the nonlocal signal abruptly
disappears when ν ¼ 0 transitions to the nonmagnetic LP
phase at a large D field, indicating the necessity of a
magnetic order in its detection [Fig. 3(f)]. These observa-
tions are consistent with the transmission of gapless SWs
through a CAF phase.
The dVNL=dV signal in our device reaches up to 0.5 with

an average of approximately 0.2 [Figs. 3(d) and 3(e)]. It is
very large compared to prior graphene devices [44,45] and
several orders of magnitude larger than the heavy metal
and magnetic insulator interfaces studied in Refs. [8–10].

FIG. 2. The nonlocal differential voltage measurement setup
corresponding to negative (a) and positive (b) dc bias conditions,
respectively. We apply a varying dc bias Vdc and a small ac bias
(δVac ¼ 10 μV, f ¼ 17 Hz) between two contacts on the left side
of the device and measure a nonlocal ac differential voltage δVNL
on the right side of the device. A 1 kΩ resistance is used to
monitor the ac current. Electrons riding on edge states departing
from a negatively (positively) biased contact acquire a high (low)
chemical potential and are represented in red (blue) lines with the
chirality given by the magnetic field. Blue and orange arrows
indicate the polarization of spin in the bulk and near the contacts,
respectively, where heavy doping by the Si back gate gives rise to
additional edge states. SWs are emitted by contact 3 in both bias
configurations. εn indicates chemical potential redistribution at a
contact caused by magnon absorption.
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We attribute the large signal to the unique design of our
devices shown in Figs. 3(a) and 3(b). Heavy doping by the
Si back gate leads to the crowding of many edge states
in the green shaded area [Fig. 3(a)]. This doping profile
causes a rapid decrease of the carrier density adjacent to the
νM ¼ 0 region, which facilitates strong interedge scattering
(see Fig. 14(b) for a dependence of the nonlocal signal on
VSi). Under a negative dc bias, an electron scattered from a

“hot” edge carrying canted up spin to a “cold” edge
carrying canted down spin releases net spin-up angular
momentum into the CAF region. Similarly, net spin-down
angular momentum is released with a positive dc bias. This
process can occur at E ≪ Ez due to gradual spin reor-
ientation in the vicinity of the CAF region (Fig. 9 in
Appendix B and Ref. [14]). Thus, only contacts adjacent to
a CAF region can emit gapless SWs (transmission of

FIG. 3. Excitation, transmission, and absorption of gapless SWs through a quantum Hall canted antiferromagnet. (a) Two edge states
emitted by a contact below (not shown) and carrying high chemical potential −eVdc scatter with edge states local to the heavily doped
contact region shaded in green, emitting a SW with net spin up into the CAF phase. The SW transmits through the CAF phase through a
precession of the Néel vector. Absorption at a probe contact leads to a chemical potential redistribution εi, which is measured in VNL.
(b) An optical image of the illustrated area in device 606. l ¼ 3.5 μm, w ¼ 2 μm, and d ¼ 0.8 μm. (c) dVNL=dV and integrated VNL
with νM ¼ 2. The gray dashed lines mark Ez ¼ gμBB ðg ¼ 2Þ ¼ 0.87 meV. From device 611. (d) VNL (Vdc) in two devices with the
middle region tuned to the CAF phase. Both show an onset VT much smaller than Ez. Intrinsic and extrinsic contributions to VT are
discussed in Appendix E. (e) The differential signal dVNL=dV in device 606. (f) A false-color graph of dVNL=dV as a function of the D
field applied to the νM ¼ 0 region. D� ∼ 80 mV=nm separates the CAF phase at low D and the nonmagnetic LP phase at high D. The
nonlocal signal is detected only in the CAF phase. Similar behavior is observed in device 611 (Appendix C).
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gapped SWs through a FM-CAF junction is discussed in
Appendix H). In our device, this process occurs along the
entire length of contact 3, which is several micrometers
long, in comparison to individual “hot spots” in conven-
tional Hall bar structures [44]. The absorption of SW is
dominated by contact 8 on the right side of the CAF region;
this domination causes dVNL=dV to be roughly symmetric
in Vdc, as our data in Fig. 3(e) show.
A more quantitative description of the above process is

given in Appendix B, where we calculate VNL using the
spin chemical potential redistribution method introduced in
Ref. [44]. Our analysis can satisfactorily explain the sign,
symmetry, and magnitude of the nonlocal signal we

observe in a variety of measurements using different
contact configurations and in a magnetic field of both
directions (see Fig. 10).
More strikingly, highly reproducible oscillations in

dVNL=dV and corresponding steplike features in VNL
develop at low temperatures [Figs. 3(d) and 3(e) and also
additional data on device 611 in Appendix C]. They are
strongly reminiscent of discrete standing waves of a
confined geometry, e.g., the resonant transmission of a
FP cavity [46,47]. Here, the FP cavity is that of the SWs.
The structure of our devices—a dual-gated region sand-
wiched between two parallel contacts—motivates us to
consider the scenario of a one-dimensional FP cavity. As

FIG. 4. Fabry-Pérot resonance of a CAF cavity. (a) illustrates the resonant selection of wave vector kn and corresponding discretization
of a linearly dispersed SW. (b) dVNL=dV vs Vdc at selected temperatures. Traces are vertically stacked for clarity. Short black dashed
lines mark the zero-signal position of each trace. (c) plots dVNL=dV at T ¼ 0.33 K (blue) and 2 K (purple) with the mode numbers
labeled in the plot. We probe the long wavelength limit where knlB < 0.23 for the entire range. The n ¼ 1 and 2 modes are suppressed at
low temperatures, likely due to a small contact barrier [Fig. 14(a) in Appendix E]. Irregularities of the oscillations are attributed to
nonuniformity of the cavity, similar to Ref. [46]. (d) Vn vs mode number n at selected temperatures. Solid lines are fits to data that pass
through the origin. Free parameter fitting yields y-axis intercepts less than 1=2E1 at all temperatures. (e) plots the T dependence of the
slope dVn=dn extracted from the fitting. B ¼ 8.9 T in all figures. From 606. An analysis of the FP resonance in device 611 is given in
Appendix C.
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illustrated in Fig. 4(a), standard FP resonance produces
transmissions at wave vectors satisfying kn ¼ nπ=w and
corresponding magnon energies En ¼ nE1, where the
fundamental mode E1 ¼ ℏvafπ=w. Here, vaf is the velocity
of the SW, and n ¼ 1; 2; 3;… labels the mode number. The
nth harmonic manifests as peaks in dVNL=dV at the
corresponding dc bias Vn ¼ �En=e. The large amplitude
of the oscillations suggests a long SW dephasing length of
many micrometers in our devices, a necessary condition to
explore spin superfluidity [14,16]. We focus on signals
within �Ez, since in this range only excitations on the
gapless CAF SW branch are allowed [26,27].
In Fig. 4(b), we plot dVNL=dV vs Vdc at selected

temperatures from 0.33 to 20 K with an expanded version
of the 0.33 K data shown in Fig. 4(c), together with the
labeling of the harmonics n ¼ 1–17. Figure 4(d) tracks Vn
at different temperatures. For each mode, Vn remains a
constant at T < 2 K and increasingly shifts to larger values
at higher temperatures. At each temperature, Vn vs n is well
described by a linear fit through the origin, which validates
the FP resonance model.
The constant slope of dVn=dn ¼ 0.06 mV per mode we

obtain at T < 2 K [Fig. 4(e)] yields a velocity of vaf ¼
57 km=s at B ¼ 8.9 T. A T-independent SW velocity at
low temperatures is in excellent agreement with the hydro-
dynamic theory of SW [3]. In conventional AFMmaterials,
anisotropy often leads to the opening of a gap at k ¼ 0 [4].
Although k ¼ 0 is not accessible in our experiment due to
the finite size of the CAF region, fitting the data without
constraints yields y-axis intercepts less than ½E1 at all
temperatures, from which we estimate an upper bound of
E0 ¼ 30 μeV for a possible gap opening at k ¼ 0. The
small value of E0, which is roughly 3% of Ez, indicates that
the CAF phase of bilayer graphene has a nearly ideal easy-
plane Néel order. This result is perhaps not surprising given
the vanishing spin orbit coupling and lack of crystal fields
in graphene. This character, together with the high quality
of graphene devices, makes this system an ideal platform to
explore spin superfluidity [14,16].
In the hydrodynamic theory of an easy-plane AFM, the

SW velocity vaf is given by v2af ¼ ρsχ
−1
z , where ρs is the

spin stiffness constant that represents the energy cost of in-
plane rotational misalignment between neighboring spin
sublattices and χ−1z is the inverse transverse susceptibility
that characterizes the preference of spin lying in the x − y
plane [2]. Specifically, a Hartree-Fock description produces
vaf ¼ 2lB sin θs

ffiffiffiffiffiffiffiffiffiffiffiju⊥jũ
p

for bilayer graphene [26] [Eq. (1)],

where lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏ=eBÞp
is the magnetic length, θs is the spin

canting angle measured from the z axis, ũ is a renormalized
energy scale of the CAF phase, and u⊥=z is the anisotropy
energy in the x-y plane or z direction. The interplay of uz,
u⊥, Ez, and the valley anisotropy energy Ev, which is
proportional to the applied D field, gives rise to multiple
phases in the ν ¼ 0 Landau level of bilayer graphene [22].
The easy-plane CAF phase occurs at small Ev and Ez,

together with uz > −u⊥ > 0. Using experimental param-
eters of Refs. [21,40,41], we obtain ũ ¼ 6 meV,
uz ≈ Ev ¼ 10.4 meV, u⊥ ≈ − 1

7
uz ¼ −1.5 meV, and a spin

canting angle of θs ≈ 70° at B ¼ 8.9 T (see Appendix F for
a detailed analysis). Equation (1) gives an estimated
vaf¼74km=s, in excellent agreement with vaf¼57km=s
obtained in our experiment.
The magnetic field dependence of vaf further corrobo-

rates the above analysis. Here, all interaction energies ũ, uz,
and u⊥ are proportional to the valley anisotropy energyE�

v at
the CAF-LP phase transition point.E�

v ¼ 0.13D� is given by
the transition field D� [41]. Experimentally, D� is approx-
imately linear in B at B < 12 T and follows an empirical
power law ofB0.56 above 12 T [upper inset in Fig. 5(b)]. The
B dependence of D� leads to a

ffiffiffiffi
B

p
dependence of vaf at

B < 12 T and approximately no dependence at higher field.
Figure 5(a) plots measurements of dVNL=dV obtained at B
fields ranging from 8.9 to 18 T, and Fig. 5(b) tracks the field
evolution ofVn andΔVn at several resonances, togetherwithffiffiffiffi
B

p
trend lines plotted for comparison. Though the data

points have considerable spread, they are consistent with the
two-segment scaling prescribed by D�(B). The magnetic
field dependence of the SW velocity further supports the
linear dispersion relation of the SW.
At low temperatures (T < 2 K) and when the bulk filling

factor is in the range of 1.8 < νB < 2.2, the nonlocal signal
in our devices reaches a steady state in amplitude and in the
resonant energy En. These observations suggest that under
these conditions the entire process of SW emission, trans-
mission, and detection is elastic, i.e., energy conserving, in
our devices. Indeed, a constant spin wave velocity vaf as T
approaches zero is in excellent agreement with theory [3].
Deviations from this steady state occur as T is raised
above 2 K or when νB departs from the spin-polarized
νB ¼ 2 [Fig. 16(a) in Appendix G]. Figure 6(a) shows two
representative temperature dependences of the normalized
dVNL=dV peak height. Both the n ¼ 6 and the n ¼ 14 har-
monics remain steady at low temperatures, drop precipi-
tously above 2 K, and vanish at 10–20 K, with the n ¼ 14
mode showing amore rapid decay. In Fig. 6(b), we plot theT
dependence of the integrated VNL. VNL also decreases with
increasing temperature but not nearly as rapidly. For exam-
ple, while dVNL=dV at n ¼ 6 drops by a factor of 100 at
20 K, VNL at the same dc bias drops only by a factor of 3.
The strong T dependence the resonant dVNL=dV peaks

in Fig. 6(a) show can potentially be explained by the
occurrence of thermally activated magnon-phonon and
magnon-magnon scattering events and their dependence
on the incident magnon momentum [2,3,48]. These proc-
esses cause decoherence of the SWand, thus, a rapid decay
of the FP resonances and the redistribution of spectral
weight to all modes. Thus, their impact on the integrated
VNL is much smaller. Increasing temperature may also
reduce the transmission of the SW through the now
weakened CAF phase. However, this loss is partially
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compensated by the growing population of thermally
excited magnons. These competing factors could account
for the much gentler decay of VNL with T, as our data in
Fig. 6(b) show.
At elevated temperatures, fits to our data suggest an

apparent increase of dVn=dn or vaf with increasing T
[Fig. 4(e)], which is opposite to trends observed in con-
ventional FM and AFM materials [33,48,49]. Further
departure of νB from the spin-polarized νB ¼ 2 also leads
to a systematic blueshift in Vn [Fig. 16(a)–16(c) in
Appendix G], similar to the effect of raising the temper-
ature. In the latter measurement, all conditions of the CAF
region are held constant so that the blueshift of Vn must ori-
ginate from external mechanisms. A similar blueshift of Vn

is observed when the magnetic field is lowered [Fig. 16(d)
in Appendix G]. Taken together, these measurements point
to the opening of energy dissipation channels in the
emission and detection of the SWs outside the CAF region.
We suspect that the spin polarization of the quantum Hall
FM plays an important role. A more in-depth understanding
of these phenomena requires microscopic modeling of
the voltage-to-spin interconversion processes [28]. In
Appendix H, we briefly discuss the transmission of gapped
SW excitations through a FM-CAF junction created in
device 606. Similar to photons, the creation of more
sophisticated magnonic devices can help advance the
understanding and technological potential of magnons in
the arena of quantum information transport [7].

FIG. 6. Temperature dependence of the SW signal. (a) Normalized dVNL=dV peak height as illustrated vs T in an Arrhenius plot for
mode n ¼ 6 (up triangle) and 14 (circle) as labeled in Fig. 4(b). Height ¼ 1 at 0.33 K. The inset compares the two modes on a linear T
scale. (b) plots the integrated VNL (Vdc) at selected temperatures. The inset plots normalized VNL (T) at two Vdc’s marked by the arrows.

FIG. 5. Magnetic field dependence of the SW signal. (a) plots dVNL=dV at selected magnetic field from 8.9 to 18 T obtained in the
MagLab (see Fig. 13 in Appendix D for the impact of noise on the measurements done at the MagLab). (b) The main panel plots Vn of
three well-reproduced peaks marked in (a). The lower inset plots a differential ΔVn. Solid lines in both plots show

ffiffiffiffi
B

p
scaling. Vn

follows the
ffiffiffiffi
B

p
scaling below 12 T and tends toward saturation at higher field. The upper inset plots the CAF-LP transition D� vs B

obtained in Ref. [41] with linear (gray dashed line) and B0.56 (black solid line) scaling.
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V. CONCLUSION

In summary, we presented the observation and properties
of a linearly dispersed, gapless SW excitation mode in a
quantum canted antiferromagnet formed in bilayer gra-
phene. Our results offer direct evidence for the predicted
CAF order and pave the path to the explorations of spin
superfluidity in this highly coherent many-body system
through microwave radiation or the Josephson junction
effect. The integration of a resonant Fabry-Pérot cavity and
the all-electrical approach enabled us to study low-energy
collective excitations inaccessible to previous experimental
techniques. We expect our method to be applicable to a
wide range of spin- and isospin-ordered quantum magnets
emergent in van der Waals materials and heterostructures.
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APPENDIX A: MATERIALS AND LOCAL
MEASUREMENTS

1. Device fabrication

Devices 606 (Fig. 1) and 611 (Fig. 12) contain four
layers of gating. The global gate and the bottom gates are
made of multilayer graphite flakes. The bottom gates are
etched into the shape of a quantum point contact (in device
606) or a strip (in device 611) using the standard O2 plasma
reactive ion etching (RIE) recipe. The devices are fabri-
cated using the following procedure: (i) Transfer of
h-BN/graphite global gate to SiO2=Si substrate following
Ref. [50]. We employ this method in our recent studies
[39,40,51]. (ii) Anneal in Ar=O2 atmosphere at 450 °C
for 3 h to remove polymer residue from the transfer.
(iii) Transfer and pattern the graphite bottom gate using
e-beam lithography and RIE. (iv) Anneal the stack
again using the same annealing procedure. (v) Transfer a
h-BN=BLG=h-BN stack. Here, the bilayer graphene sheet
is bigger than the global gate. (vi) Anneal the stack again.
(vii) For device 606, we define the Hall-bar structure of the

bilayer graphene using e-beam lithography and RIE
(CHF3=O2 plasma). (viii) Pattern and deposit Cr=Au side
contacts [50]. (ix) Pattern and deposit Ti=Au top gates
that align with the bottom gates using an alignment
procedure we developed previously with a typical precision
of 10–15 nm [38,39]. For device 611, in step (vii), we
pattern and deposit the Ti=Au top gate in the shape of a Hall
bar þ two handles. (viii) Etch the h-BN=BLG=h-BN stack
using the top gate as the mask. (ix) Pattern and deposit the
Cr=Au side contacts. The top gate overhangs the bottom
gate by about 165 nm on each side. This overhang creates
another resonant condition that manifests in the nonlocal
signal of device 611 shown in Fig. 12.

2. Characteristics of device 606

The operation of device 606 employs six gates, which
are the Si back gate VSi, the graphite global gate VGG, and
the top and bottom gates that control areas Q3 and Q4,
respectively, VTG3, VBG3, VTG4, and VBG4 [see Fig. 8(a)].
VSi is biased to a large voltage, e.g., 60 V, to dope the
contact areas unless otherwise mentioned. The bulk carrier
density n and filling factor νB are controlled by the global
gate VGG. Sweeping VGG at a fixed B field enables us to
determine its gating efficiency and examine the character-
istics of the bulk bilayer graphene. As Fig. 7(b) shows,
IQHE is well developed in the bulk. By measuring the
resistance from electrode 2 to 5, i.e., R2–5, as a function of
VTG3 and VBG3, we determine the charge neutrality point
(CNP) of area Q3 and the VTG3-VBG3 relation, which is
shown in Fig. 7(c). Similar measurements are performed on
area Q4, and the resulting VTG4-VBG4 relation is also given
in Fig. 7(c). As expected from the stacking process, VTG3

behaves similarly to VTG4, and VBG3 behaves similarly to
VBG4. In Fig. 7(d), we measure RXYð2–8Þ as a function of
VTG3 with Q4 at the LP insulating phase of ν ¼ 0.
1=RXYð2–8Þ displays a series of well-quantized plateaus
as VTG3 changes. These plateaus allow us to determine the
gating efficiency of VTG3 and also VBG3 through the
VTG3-VBG3 relation. Similar measurements are performed
onQ4 to determine the gating efficiency of VTG4 and VBG4.
Table 1 summarizes the gating efficiencies of all five gates.
In the majority of our measurements, we position Q3 at the
LP phase of ν ¼ 0 by applying a large DQ3 ¼ 400 mV=nm
[41] unless otherwise mentioned.
Because of a small misalignment of the top and bottom

gates as illustrated in Fig. 8(a), varying DQ3 or DQ4 while
keeping Q3 and Q4 at the CNP also changes the carrier
density inside the opening of the QPC. We take advantage
of this effect to vary the carrier density inside the QPC
opening while holding the bulk filling factor νB constant.
The impact of DQ3 and DQ4 on the QPC is quantified by
measuring R2–8 across the QPC at differentDQ3 orDQ4 and
tracking the shift in VGG for a point of constant density.
Examples are shown in Figs. 8(b) and 8(c), while Fig. 8(d)
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plots the resulting VGG-DQ3 (DQ4) relations. The positive
sign of the slopes in Fig. 8(d) indicates that both top gates
protrude into the QPC opening as shown in Fig. 8(a). For an
extended discussion on this subject, we refer the reader to
Fig. S6 in Ref. [38]. Here, we use a large DQ3 to pinch off
the QPC completely. The operation conditions and the
conductance across the QPC are shown in Fig. 8(e).
Figure 8(f) illustrates the filling factors and phases in
different parts of device 606 under the measurement
condition of Fig. 3.

APPENDIX B: THE NONLOCAL MEASUREMENT
METHOD AND MECHANISMS OF SPIN WAVE

EMISSION AND DETECTION

We use Yokogawa GS200 to apply a dc voltage and add a
small ac excitation δVac generated by a lock-in amplifier
through a transformer and a divider. δVac ¼ 10 μV at 17 Hz
is used unless otherwise mentioned. The nonlocal voltage
δVNL ismeasured by a Stanford SR860 lock-inwith aNFLI-
75A preamplifier. We calculate and present the dc voltage
dropped on the sample using Vdc ¼ ½RB=ðRB þ RCÞ�V 0

dc,

FIG. 7. (a) An optical image of device 606. (b) Bulk RXX (to the right of the QPC) and RXY (to the left of the QPC) vs VGG showing
well-developed IQHE in the bulk of the bilayer graphene. (c) VTG3-VBG3 and VTG4-VBG4 relations and the gate voltage offsets
corresponding to DQ3 ¼ 0 (−0.206 V, 0 V) and DQ4 ¼ 0 (−0.214 V, 0 V). (d) RXY (VTG) across area Q3 (red trace). Area Q4 is at the
LP insulating phase of ν ¼ 0 with DQ4 ¼ 400 mV=nm so that RXYð2–8Þ is dominated by Q3. The bulk remains at νB ¼ 4 (blue trace).
Table 1 summarizes the gating efficiencies of all five gates and the thickness of the h-BN flakes used.

GAPLESS SPIN WAVE TRANSPORT THROUGH A QUANTUM … PHYS. REV. X 11, 021012 (2021)

021012-9



where V 0
dc is the applied dc voltage, RB is the sample

resistance excluding contacts, andRC is the total nonsample
resistance including the two contacts, cryostat wiring, and
the 1 kΩ resistor shown in Fig. 2. At a bulk filling factor of 2,
RB ≈ 13 kΩ and RC ≈ 1.8 kΩ in device 606. Both remain
constant in our measurements. Vdc ¼ 0.88V 0

dc. In device
611, RC ≈ 13 kΩ and Vdc ¼ 0.49V 0

dc at ν ¼ 2.
In the following, we provide qualitative and quantitative

accounts of how gapless SW excitations are generated and

detected in our nonlocal measurement. Our descriptions
largely follow the model developed by Wei et al. for
gapped SW excitations [44] and are adapted to the unique
characteristics of the CAF phase as illustrated below.
Figures 2(a) and 2(b) of the main text compare the
nonequilibrium edge state flow in the cases of a negative
or positive dc bias. The bulk (νB ¼ 2) supports two edge
states with spin-up polarization. They depart from contact 2
with high chemical potential μ ¼ −eVdc with a negative

FIG. 8. (a) illustrates the misalignment of the top and bottom gates forming the QPC in device 606. The positive slopes in (d) indicate
that both top gates extend into the opening. (b) 1=RDð2–8Þ versus VGG at varyingDQ3.DQ4 ¼ 116 mV=nm. (c) 1=RDð2–8Þ versus VGG
at varyingDQ4.DQ3 ¼ 116 mV=nm. Tracking the shift of the ν ¼ 3 plateau allows us to obtain the relation between VGG and eitherDQ3

orDQ4. The results are plotted in (d). (e) 1=RDð2–8Þ vs VGG atDQ4 ¼ 110 mV=nm andDQ3 ¼ 400 mV=nm (black trace). Also plotted
is 1=RXY in the bulk (blue trace) for reference. In the majority of our nonlocal measurements, we set DQ3 ¼ 400 mV=nm,
DQ4 ¼ 30 mV=nm, and VGG ¼ 0.8 V. In this configuration, the bulk is at νB ¼ 2, Q3 is in the LP phase, and Q4 is in the CAF phase.
We obtain the expected QPC conductance (orange dashed trace) by shifting the measurement at DQ4 ¼ 110 mV=nm by −0.42 V
according to the gating relation in (d). It shows that the QPC opening sits squarely on the ν ¼ 0 plateau. (f) illustrates the filling factor of
different areas and edge states flow in this configuration.
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dc bias and terminate at contact 3. In the area between
contact 3 and the CAF region, these two edge states with
canted up spins interact strongly with edge states departing
and terminating at contact 3 but carrying opposite, canted
down spins as illustrated in Fig. 9. Strong interedge
transitions launch SWs into the CAF phase from contact
3. A negative Vdc launches SW of net spin up, which gives
rise to a positive VNL. A positive Vdc launches SWs of net
spin down, resulting in a negative VNL. Different from a
spin-polarized quantum Hall state [44], the CAF phase
supports the transmission of both types of SWs by further
canting of its spin vectors [13].
On the other side of the CAF region, SWs are absorbed

by individual contacts, resulting in a chemical potential
redistribution εi at each contact. A SWof net spin up cannot
propagate in the bulk of ν ¼ 2, which is already fully
polarized in the up direction. Thus, all magnons are
absorbed by contact 8 next to the CAF region [Fig. 2(a)],
while multiple contacts can absorb magnons with net spin
down [Fig. 2(b)]. Following Ref. [44], we write down the
following expressions for the chemical potential at the
probe contacts.
For Vdc < 0,

C8∶ 4μ8 ¼ 2μ7 þ 2μ8 − ε8; ðB1Þ

C7∶4μ7 ¼ 2μ6 þ 2μ7; ðB2Þ

C6∶ 4μ6 ¼ 2μ6 þ 2μ5; ðB3Þ

C5∶ 4μ5 ¼ 2μ8 þ 2μ5 þ ε8: ðB4Þ

Therefore,

μ8 ¼ μ7 − ε8
2
; ðB5Þ

μ7 ¼ μ6 ¼ μ5: ðB6Þ

The nonlocal voltage VNLð8–7Þ is

VNLð8–7Þ ¼
μ8
−e −

μ7
−e ¼ ε8

2e
: ðB7Þ

The differential voltage ½dVNLð8–7Þ=dV� is

dVNLð8–7Þ
dV

¼ dðε8
2eÞ

dðμsd−eÞ
¼ − 1

2

dε8
dμsd

: ðB8Þ

μsd is the source-drain chemical potential, which is positive
for Vdc < 0. Equations (B7) and (B8) produce positive
VNLð8–7Þ and negative ½dVNLð8–7Þ�=dV for Vdc < 0, in
agreement with data shown in Figs. 3(d) and 3(e).
For Vdc > 0,

C8∶ 4μ8 ¼ 2μ7 þ 2μ8 þ ε8 − ε7; ðB9Þ

C7∶ 4μ7 ¼ 2μ6 þ 2μ7 − ε6 þ ε7; ðB10Þ

C6∶ 4μ6 ¼ 2μ6 þ 2μ5 þ ε6 − ε5; ðB11Þ

C5∶ 4μ5 ¼ 2μ8 þ 2μ5 − ε8 þ ε5: ðB12Þ

Therefore,

μ8 ¼ μ7 þ
1

2
ðε8 − ε7Þ; ðB13Þ

μ7 ¼ μ6 þ
1

2
ðε7 − ε6Þ; ðB14Þ

μ6 ¼ μ5 þ
1

2
ðε6 − ε5Þ; ðB15Þ

μ5 ¼ μ8 þ
1

2
ðε5 − ε8Þ: ðB16Þ

The nonlocal voltage VNLð8 − 7Þ is

VNLð8 − 7Þ ¼ μ8
−e −

μ7
−e ¼ − 1

2e
ðε8 − ε7Þ: ðB17Þ

The differential voltage ½dVNLð8–7Þ�=dV is

dVNLð8 − 7Þ
dV

¼ d½− 1
2e ðε8 − ε7Þ�
dðμsd−eÞ

¼ 1

2

dðε8 − ε7Þ
dμsd

: ðB18Þ

FIG. 9. A schematic of the gradual canting of spins due to the
effective field created by the CAF state following Ref. [14]. The
canting enables a gapless transition of an electron from the inner
edges (quasi spin up) to the outer edges (quasi spin down), with
the net spin angular momentum carried away by the emission of a
SW into the CAF phase. Transition in the opposite direction
reverses the net spin angular momentum transmitted and, hence,
the sign of the detected nonlocal signal.
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Equations (B17) and (B18) again produce the correct
sign for VNL and dVNL=dV given that μsd is negative for
Vdc > 0. Because contact 8 is much larger and much closer
to the CAF phase than contact 7, it plays a dominant

role in the detection of VNL. This result makes VNL an
approximately odd function of Vdc and dVNL=dV an
approximately even function of Vdc, as our data in
Figs. 3(d) and 3(e) show.

FIG. 10. (a) The same measurement setup as in Fig. 2(b) but with the B field pointing in the opposite direction. All edge states near the
CAF phase departure from contact 3 and have the same chemical potential. Electron scattering cannot happen. (b) The measured
nonlocal differential signal using the configuration in (a) is negligible within �EZ ¼ 1 meV, in comparison to signal amplitude>0.1 in
the other B-field direction. (c) The measured nonlocal differential signal using the configuration shown in the inset is very small, because
both contacts 1 and 2 are away from the CAF region.

FIG. 11. dVNL=dV and analysis for positive dc bias in device 606. (a) compares dVNL=dV vs positive Vdc (orange line) and negative
Vdc (black dotted line) at T ¼ 2.5 K with the resonance peaks labeled for both traces. The two data overlap very well. (b) Vn vs mode
number n at selected temperatures and linear fits to the data. (c) Temperature dependence of the slope dVn=dn extracted from the fittings
in (b). The low-T slope of 0.055 mV yields vaf ¼ 52 km=s, in comparison to vaf ¼ 57 km=s extracted from the negative Vdc data.
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We experiment with measurement setups different from
that used in Fig. 2. Both the presence of the CAF phase
and an active contact in its immediate vicinity [contact 3
or 8 in Fig. 10(a)] are essential to the emission and
detection of the gapless SWs, independent of whether the
SW is emitted from the left side or the right side of the

sample. In Fig. 10(a), because of the direction of the
magnetic field, all edge states near contact 3 are on the
same chemical potential, so no gapless SW is emitted
there and we observe negligible nonlocal signal in
Fig. 10(b). In Fig. 10(c), the voltage probes are some
distance away from the CAF region. Because the

FIG. 12. Characteristics and nonlocal measurements on device 611. (a) An optical image and a schematic of the active region. The
black, blue, and white dashed lines outline the edges of the bilayer graphene sheet, the graphite bottom gate, and the graphite global gate,
respectively. The bottom gate is a strip of width 1.27 μm. The Au top gate includes a “belly” that coincides with the edge of the bilayer
graphene sheet and two “handles” that overhang the bottom gate by about 165 nm on each side. (b) 1=RXY (8-6) vs the global gate
voltage VGG showing well-developed IQHE at bulk filling factor νB ¼ 2. (c),(d) dVNL=dV vs Vdc at 7 T and two different temperatures
showing the two sets of Fabry-Pérot resonances. Contacts 1 and 3 are used as the source and drain, and the nonlocal differential voltage
is measured from 9 to 8. (e) A linear fit of the fine oscillations similar to that of device 606 yields a slope of 0.059 mV, which
corresponds to a SW velocity of 36 km=s. (f) shows the evolution of the nonlocal signal as a function ofDM of the dual-gated area in (a).
The transition at 65 mV=nm corresponds to the CAF-LP phase transition of ν ¼ 0 [41].
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spin-polarized bulk does not support the transmission of
gapless SWs, the measured VNL is also close to zero in the
range of jVdcj < Ez.
When the middle region is set to ν ¼ 2 [Fig. 3(c)] or

when both source and drain contacts are away from the
CAF region (Fig. 17), we observe SWs with an excitation
gap, similar to what is reported in the literature. In these
scenarios, only a SWwith net spin down is transmitted, and
it is emitted by the drain (source) contact in the case of a
positive (negative) dc bias. The nonlocal VNL (8-7) remains
negative, and the differential signal dVNL=dV changes sign
at zero bias. This result is indeed what we observe. A more
detailed discussion of gapped SW excitation and trans-
mission is given in Appendix H.

APPENDIX C: FABRY-PÉROT RESONANCES
IN DEVICES 606 AND 611

In Fig. 11, we present data and analysis of the
Fabry-Pérot oscillations in the Vdc > 0 regime of device
606. Data from both bias directions overlap strongly
and yield very similar results on vaf. A small difference
could be due to a slight bias dependence of the contact
resistance or impurity states and geometrical imperfec-
tions that respond to positive and negative dc biases
differently. An intrinsic asymmetry caused by the
detection of the SW can also contribute. See discussions
in Appendix B.
Figure 12 presents data from device 611. In this device,

the active region supporting gapless SW transport is the
area inside the red box in Fig. 12(a), where the dual-gated
region is positioned at the CAF phase of ν ¼ 0 with
D ¼ −30 mV=nm. Figure 12(b) presents the properties
of the bulk, and the measured nonlocal signal and analysis
are shown in Figs. 12(c)–12(e). As Fig. 12(a) shows, the
top gate is larger than the bottom gate by 165 nm on each
side (this difference is done purposefully). We suspect that
this arrangement creates two resonant cavities of width
1.27 μm and 165 nm, respectively. Our data in Fig. 12(d)
indeed show two sets of resonance peaks with very
different spacings. The spacing between the sharp reso-
nance peaks is roughly 0.4 mV, while the oscillations
similar to that in device 606 have a period of 0.059 mV
[Fig. 12(c)]. The ratio between the two periods
(0.4 mV=0.059 mV) agrees well with the inverse ratio of
the two cavity widths 1270=165 nm. The linear fitting of
the finely spaced oscillations in Fig. 12(e) yields a SW
velocity of 36 km=s at 7 T. This value is generally
consistent with that of 50–60 km/s obtained in device
606 at 8.9 T given the field difference. Similar to
device 606, Fig. 12(f) shows that the nonlocal signal in
device 611 abruptly disappears when the dual-gated area
transitions to the nonmagnetic insulating phase at a large D
field, again demonstrating the unambiguous role of the
CAF phase in the detection of the SW signal.

APPENDIX D: THE IMPACT OF RF NOISE ON
THE FABRY-PÉROT RESONANCES

APPENDIX E: CONTRIBUTIONS TO THE DC
BIAS THRESHOLD VT IN GAPLESS SW

EXCITATIONS

Although our measurements probe the gapless SW
dispersion of the CAF phase, several intrinsic and extrinsic
factors give rise to a finite onset bias VT. The first is the
finite size of the CAF region, which produces discrete
resonant modes at kn ¼ nπ=w, where n ¼ 1; 2; 3…. In
addition, the properties of the contact area play an impor-
tant role in the emission and detection of gapless SWs.
Figure 14 gives two examples. Figure 14(a) shows the

FIG. 13. Sensitivity of Fabry-Pérot resonance to rf noise. (a)
and (b) are from a He3 cryostat equipped with rf filtering using
thermocoax cables (THERMOCOAX, Inc. Model 1 Nc Ac 05,
length >2m). The sample is thermal cycled to above 20 K in
between (a) and (b). Resonant peaks in dVNL=dV reproduce very
well, apart from an occasional small shift. (c) and (d) are obtained
at the MagLab using the dilution fridge of the 18 T system
(SCM1). They reproduce the envelope of the nonlocal signal but
exhibit larger onset dc bias and substantially fewer resonance
peaks. Environmental noise that leads to decoherence is likely the
cause. The severity of the problem also depends on what other
instruments are running at the same time. The situation in (d) is
worse than in (c). From device 606. T ¼ 0.33 K. B ¼ 8.9 T. Data
presented in Fig. 5(a) are obtained in the run of (c), where we
track the magnetic field dependence of the three strong resonance
peaks that reproduce well to 18 T.
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temperature dependence of the first three Fabry-Pérot
modes in device 606. The first two modes n ¼ 1 and 2
are suppressed at low temperatures and appear only at
T > 1.5 K, probably due to thermal activation over a small
contact barrier. Figure 14(b) plots traces taken on device
611 at four different VSi voltages. Measurements taken at
VSi ¼ 45 and 60 V show the characteristics of gapless SW
excitations with a small and stable threshold VT. At lower
VSi, the data increasingly take on the symmetry and
threshold of gapped SWs that propagate through a spin-
polarized bulk. See Appendix H for an expanded discus-
sion on a FM-CAF junction. These measurements show
that heavy doping of the emission and detection contacts,
which leads to crowed edge states in their vicinity, is
necessary to probe gapless SW excitations.

APPENDIX F: THE PHASE DIAGRAM AND
ENERGY SCALES OF THE ν= 0 STATE IN

BILAYER GRAPHENE

Previous experiments show that all relevant interaction
energies and the Landau level gaps of the E ¼ 0 octet in
bilayer graphene (ν ¼ 0, �1, �2, �3) scale linearly with
B⊥ up to 12 T [21,41]. The ν ¼ 0 phase diagram is driven
by competing interaction energies uz, u⊥, Ez, and Ev. uz
and u⊥ are anisotropy energies in the z axis and x-y plane,
respectively. Ez is the Zeeman energy proportional to Btot,
and Ev is the valley anisotropy energy proportional to the
appliedD field [22,24,25,40,41]. Small Ev and Ez, together
with uz > −u⊥ > 0, give rise to the easy-plane CAF phase
studied here. Increasing Ez through Btot drives a transition
to an easy-plane FM phase at u⊥ ¼ ð−Ez=2Þ, while
increasing Ev drives a transition to a partially layer
polarized (PLP) nonmagnetic phase at Ev ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2z − u2⊥

p
in a pure B⊥ field [22]. Figure 15 plots a phase diagram
from our previous work [40]. At B⊥ ¼ 3 T, the CAF-PLP
phase transition occurs at D� ¼ 34 mV=nm, and the CAF-
FM transition occurs at Btot ¼ 11.2 T. Together with
EvðmeVÞ ¼ 0.13D ðmV

nmÞ determined in Ref. [41], we
obtain u⊥¼−0.65meV and uz¼4.4meV or u⊥ ≈ − 1

7
uz.

The approximately linear D� (B) relation at low field [inset
in Fig. 5(b)] yields uzðmeVÞ ∼ 1.1B⊥ðTÞ. Measurements of
the CAF-FM transition [24,40] also suggest a linear B⊥
scaling for u⊥. These results allow us to estimate the
corresponding energies at 8.9 T to be uz≈E�

v¼10.4meV,
u⊥ ≈ − 1

7
uz ¼ −1.5 meV. Here, we use the measured

D� ¼ 80 mV=nm. The spin canting angle θs is given byFIG. 14. The threshold bias VT in the measurement of a gapless
SW signal. (a) dVNL=dV at different temperatures illustrating the
decrease of VT with increasing temperature. Modes 1 and 2
appear only at T ¼ 1.5 K and above. Modes of n ¼ 3 and above
are not impacted by the threshold shift. From device 606. (b) The
decrease of VT with increasing contact area doping. From device
611. See Fig. 12(a) for the measurement setup. Traces are
vertically shifted for clarity. In both devices, the onset of the
nonlocal signal occurs at VT ≪ EZ with VSi ¼ 60 V.

FIG. 15. The phase diagram of ν ¼ 0 in bilayer graphene at
B⊥ ¼ 3 T showing the CAF-LP transition at 34 mV=nm and the
CAF-FM crossover at Btot ¼ 11.2 T. Adapted from Ref. [40].
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cos θs ¼ ðEz=2ju⊥jÞ, which is about 70° and verifies
that indeed the spins lie nearly in the x-y plane. The
velocity of the SW in the CAF phase is given by
vaf ¼ 2lB sin θs

ffiffiffiffiffiffiffiffiffiffiffiju⊥jũ
p

, where ũ is a renormalized inter-
action energy at ν ¼ 0 [26]. Following Ref. [26], we use the
measured gap of the CAF phase Δ0 in suspended bilayer
graphene [21] to estimate ũ. Δ0ðmeVÞ ≈ 1.7B⊥ðTÞ in

Ref. [21] and ũ ¼ 89
224

Δ0 ¼ 0.67B⊥ [26]. This result gives
ũ ¼ 6 meV at 8.9 T. This energy is consistent with the T
dependence of the resistance of the CAF phase shown in
experiment [40]. It is also reasonable compared to the
scaling of uz and other exchange-dominated energy scales
of the system. For example, the ν ¼ 2 gap Δ2ðmeVÞ ≈
1.2B⊥ðTÞ [41,52].

APPENDIX G: THE BULK FILLING FACTOR AND MAGNETIC FIELD DEPENDENCE OF THE
NONLOCAL dVNL=dV

FIG. 16. The dependence of dVNL=dV on the bulk filling factor νB and the external magnetic field with a constant gating condition of
the CAF phase. (a) and (b) show the evolution of dVNL=dV as a function of νB in device 606 and 611, respectively. The nonlocal signal
is insensitive to the change of νB in the filling factor range of νB ¼ ð2� 0.2–0.3Þ (regions within the black dashed lines in both graphs).
Further deviation of νB leads to amplitude reduction and simultaneous blueshift of resonant mode energies. The details are sample
dependent. (c) characterizes the shift of the mode energy at two different filling factors as indicated by the blue and red dashed lines in
(a). Larger shifts are observed for higher harmonics. ΔVn is roughly linear in n, as the dashed lines show. (d) shows the evolution of
dVNL=dV as a function of B while keeping νB ¼ 2. Blueshift of resonant modes occurs at B < 7.5 T. This trend is at odds with the
theoretical expectation of a decreasing SW velocity with decreasing B, as discussed in the main text. We suspect that a weakened νB ¼ 2
at lower field reduces the spin polarization of the bulk, and the blueshift of the modes shares the same origin as the νB dependence shown
in (a) and (b). A microscopic understanding of the nonequilibrium emission and detection process including dissipation channels can
help understand these observations.
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APPENDIX H: TRANSMISSION OF GAPPED SPIN
WAVE THROUGH A FM-CAF JUNCTION

The use of a contact adjacent to the CAF phase is
essential to the excitation of gapless SWs. When both
source and drain contacts are distant, as illustrated in
Fig. 17(a), we observe gapped SW signals [Fig. 17(b)].
In this setup, the SW is launched or reflected in the bulk of a
FM and transmitted through a FM-CAF junction. As
Fig. 17(b) shows, the envelope and symmetry of
dVNL=dV is characteristic of a ferromagnet, where the
signal onsets at a finite dc bias VT. Figures 17(c) and 17(d)
plot the evolution of dVNL=dV with increasing B field and
the B dependence of VT, respectively. VT increases linearly
with Bwith a slope of 0.09 mV=T, which is consistent with
the contribution of Ez (g ¼ 2 gives 0.11 mV=T), but
saturates to a value of approximately 1.7 mV at fields
below 10 T. We again observe pronounced and reproduc-
ible oscillations in dVNL=dV. Figure 17(e) compares the
oscillations in Fig. 17(b) with that of the gapless SW signal
in Fig. 4(b). The remarkable correspondence of the two
profiles allows us to identify the resonant modes of the
CAF cavity occurring at quantized longitudinalmomentum
kx ¼ nπ=w. Figure 17(f) plots the dc bias of the modes

Vn vs n. Vn extrapolates to a finite gap at n ¼ 0. Its rapid
change with n translates to a strong dependence of ω on kx.
Several aspects of the data can be understood by

recognizing the effect of energy ω and transverse momen-
tum ky conservation on the SW transmission at the
ν ¼ 2=ν ¼ 0 junction (41). As illustrated in the inset in
Fig. 17(f), the dispersion in the ν ¼ 2 region follows
ω0ðkx0 ; kyÞ ¼ Ez þ aðk2x0 þ k2yÞ, while in the CAF region

ωðkx; kyÞ ¼ vafk ¼ vaf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
with kx given by kx ¼

nπ=w. Energy conservation dictates a large ky when kx is
small, which in turn increases the Zeeman gap by ak2y.
This additional term could increase VT beyond the Zeeman
term. The strong dependence of ω on kx our data show
likely originates from the involvement of a large ky,
which means the SW is incident at the interface with a
small angle θ as illustrated in Fig. 17(a). This scenario is
supported by the dimensions of the device and the
measurement setup. A quantitative understanding of trans-
mission at heterojunctions will enable the design of
magnonic devices [42] and further unleash the power of
SW excitation as a useful tool to probe fundamental
phenomena of magnetic systems.

FIG. 17. SW transmission through a FM-CAF junction. (a) The measurement setup. At the ν ¼ 2=ν ¼ 0 interface, ω ¼ ω0 and
ky ¼ ky0. (b) dVNL=dV obtained in the setup shown in (a). The dashed lines mark the bias threshold VT. (c) plots dVNL=dV obtained at
selected magnetic fields as labeled. (d) plots the B dependence of the threshold VT averaged for �Vdc and a linear fit to the data with a
slope of 0.09 mV=T. (e) overlays the data in (b) (Vdc > 0, red solid line) with the corresponding trace in Fig. 4(b) (blue dotted line,
expanded in Vdc by ×4.55 and shifted horizontally). The remarkable overlap indicates that both arise from the FP resonance of the CAF
region. (f) plots Vn vs n extracted from (e). The dotted line is a guide to the eye. From device 606. The gray dashed line has a slope of
0.42 mV=mode, which is 7 times of the low-T slope in Fig. 4(e). This result indicates ky ≫ kx and a shallow SW incidence as illustrated
in (a). The inset in (f) illustrates the ω − kx relations in the FM (blue line) and the CAF (red line) regions. The CAF phase also supports a
gapped dispersion with ω0 ¼ 2Ez [12], but this branch is not activated due to energy conservation.
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