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In the conventional Bardeen–Cooper–Schrieffer (BCS) theory 
of superconductivity, the pairing state is characterized by the 
breaking of a U(1) symmetry related to fixing the phases of the 

Cooper-pairs wavefunction. Yet, several superconductors break 
additional symmetries, leading to new forms of superconductivity. 
Symmetry-breaking in a superconductor may arise through intrin-
sically anisotropic pairing channels, as well as through coupling 
between different channels promoted by external perturbations. 
Hexagonal NbSe2 is a superconducting1 member of the transition 
metal dichalcogenide (TMD) family, a class of materials that has 
been attracting major interest2–9 because of the range of proper-
ties they exhibit, such as layer-dependent inversion symmetry, 
valley-contrasted Berry curvatures and strong spin–orbit coupling 
(SOC). NbSe2 exhibits superconductivity and charge density wave 
order10–12 from bulk to monolayer forms. In bulk, NbSe2 is believed 
to be in the s-wave pairing state13. However, in few-layer hexagonally 
stacked 2H-NbSe2, the underlying crystalline symmetries give rise 
to distinct electronic properties. For example, odd-layer-number 
NbSe2 lacks inversion symmetry (Fig. 1a,b), which leads to a spin–
orbit interaction that polarizes the spins of different valleys in dif-
ferent out-of-plane directions8, as illustrated by the Fermi surface 
plotted in Fig. 1c. This so-called Ising SOC stabilizes the super-
conducting state against in-plane magnetic fields far exceeding 
the Pauli paramagnetic limit8,14 imposed by conventional super-
conducting theory15,16. This effect becomes stronger as the mono-
layer limit is approached8,14. In addition to Ising superconductivity, 
other unique superconducting properties such as field-induced 
mixed-parity states17,18 and topological superconductivity have been 

theoretically proposed19–25 in TMDs. However, other than the stabil-
ity of the superconducting state against high fields, little is known 
experimentally about the nature and symmetry of the pairing state 
in the few-layer limit.

In this work, we report two-fold-periodic superconducting prop-
erties of few-layer encapsulated NbSe2 samples studied under rotat-
ing in-plane magnetic fields. This periodicity is confirmed by three 
complementary experimental approaches: magneto-transport near 
the transition temperature (Tc), measurements of the effective criti-
cal field (H̃c) and tunnelling across magnetic tunnel junctions deep 
inside the superconducting state. The superconducting properties 
follow a cos(2θ) dependence on the in-plane field angle as probed 
with all three experimental approaches. This oscillation shows a 
dominant correlation with the long, straight edge of the NbSe2 flake. 
The observation of this phenomenon using both magneto-transport 
and tunnelling devices highlights its intrinsic nature, which persists 
in distinct device architectures and under very different probing 
processes. These results are suggestive of field- or strain-induced 
mixing between quasi-degenerate pairing states with s-wave and d- 
or p-wave symmetries in few-layer samples, thus shedding new light 
on the unusual superconducting state of few-layer TMDs.

Figure 1d shows device 1 (schematic, Fig. 1e), a hexagonal 
boron nitride (hBN)-encapsulated five-layer NbSe2 sample used for 
magneto-transport measurements. Figure 1g shows device 2 (sche-
matic, Fig. 1h), a magnetic tunnel junction that consists of a normal 
metal (Pt), bilayer CrBr3 and trilayer NbSe2. CrBr3 with H-stacking 
is a magnetic semiconductor26,27 (gap of 0.6–3.8 eV; ref. 28) with a 
ferromagnetic ordering temperature of 36 K (ref. 29) and a magnetic 
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anisotropy field (as reflected by the in-plane saturation field) of 
~440 mT (refs. 29–31). For both types of device, the NbSe2 was exfoli-
ated and encapsulated (see Methods for details) in gloveboxes filled 
with inert gases (<0.1 ppm O2 and H2O concentrations) to preserve 
a pristine nature for the NbSe2 under study. The same approach was 
also followed for CrBr3 in the case of the magnetic tunnel junctions.

Figure 1f shows the temperature dependence of the resistance of 
device 1. The sample shows a clear drop from the normal-state resis-
tance (RN) to vanishing resistance, with a superconducting transition 
temperature of Tc ≈ 5.0 K (defined as the point where R = 0.9RN). This 
value of Tc is consistent with the value of the superconducting gap 
Δ extracted from tunnelling data on two-dimensional (2D) NbSe2 
(ref. 32). The device shows transport characteristics similar to those 
studied in ref. 8: phonon-limited linear resistance (R ∝ T) for high 
temperatures, indicating a metallic sample, and disorder-limited 
transport (R approaching a plateau) just above the superconduct-
ing transition. RN is defined as the resistance value at this plateau. 
The resistance remains low (23.6 Ω) just above the superconduct-
ing drop, indicating that the sample remains metallic all the way to 
the superconducting transition. Figure 1i shows similar four-probe 
data for the magnetic junction sample (device 2). The four-probe 
resistance of the NbSe2 flake, measured as a function of tempera-
ture on a section non-overlapping with the CrBr3 flake, shows a 
superconducting transition with Tc ≈ 5.5 K. The zero-bias differen-
tial conductance of the junction shows a similar onset temperature; 
however, the junction resistance saturates towards a finite value of 
0.6RN due to the finite resistance of the CrBr3 bilayer in series with 
the NbSe2. The inset of Fig. 1i shows the differential conductance 

(G = dI/dV) of the junction versus d.c. bias at T = 1.9 K, with G nor-
malized relative to the normal-state value GN. We fit the spectrum 
with the Blonder–Tinkham–Klapwijk model, which considers both 
quasiparticle tunnelling and Andreev reflection processes33,34. The 
experimental data agree well with the fit, except for the dip observed 
outside the superconducting gap. The small dip can be attributed to 
local heating in junctions with high transparency35. The supercon-
ducting gap of ~0.67 meV extracted from this fit is comparable to 
the Tc value extracted from the resistance measurements.

Next, we discuss the magneto-transport properties of device 1, 
probed under an in-plane magnetic field. Care was taken to rule 
out the effects of an accidental out-of-plane component of the field 
(Supplementary Sections 1–3 and 5). As the magnetic field is rotated 
in-plane (θ = 0 corresponds to magnetic field alignment along 
the NbSe2 flake’s longest straight edge), we observe a pronounced 
two-fold modulation of the magnetoresistance in the range between 
the onset and the offset of superconductivity (Fig. 2a–e), which 
is consistent across multiple samples. Such a modulation is well 
described by a sinusoidal function of the form cos(2θ + φ) (where 
φ is the relative phase from θ = 0), as shown by the solid lines. As 
we varied the temperature for a fixed applied field amplitude of 8 T, 
the angular modulation of the resistance (ΔR) was suppressed when 
the resistance was outside the superconducting transition region 
(Fig. 2d). The phase of the oscillating signal also shifted slightly 
in device 1 as a function of field and temperature (most apparent 
in Fig. 2b,e). The field angles at which the resistance maxima or 
minima were observed were not affected by the directions of volt-
age measurement, current and material transfer. However, the field 
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angle of minimum resistance does show a consistent alignment with 
the long straight edge of the crystal (Supplementary Section 5). We 
expect that the long straight edge may be associated with the direc-
tion of cleaving during exfoliation, which may align along one of the 
three equivalent zigzag (a) or armchair (b) directions.

The measurements described above were performed around Tc, 
in a temperature regime where superconducting fluctuations are 
present. To verify that this effect persists at lower temperatures, a 
similar five-layer device (device 3, Tc ≈ 6.4 K) was studied at a tem-
perature of 0.5 K in fields up to ~35 T, revealing a similar modula-
tion of the magnetoresistance with applied field angle (Fig. 2c and 
Supplementary Fig. 4). For this device, we also studied the angular 
dependence of the effective critical field H̃c that suppresses supercon-
ductivity, defined as the field at which the resistance is 0.5RN (mea-
sured at T = 0.5 K). H̃c also showed two-fold periodicity (Fig. 2c).  
The oscillations of H̃c and the magnetoresistance have a π phase 
shift, such that at angles where superconductivity is hardest to sup-
press, H̃c is largest and the magnetoresistance is lowest, as expected. 
Importantly, these data indicate that the angle dependence of the 
magnetoresistance is a good proxy for the angle dependence of H̃c.

To examine the possibility that small out-of-plane field contribu-
tions arising from misalignment could lead to these observations, 
the magneto-transport measurements were repeated in a canted 
configuration where the sample was intentionally canted by ~7 to 9° 
out of the field rotation plane. The magnetoresistance oscillations 
in the canted configuration show a |sin(θ)| form, as expected from 
geometric considerations, which is in contrast with the cos(2θ + φ) 
dependence reported in the absence of canting (Supplementary 
Section 1). Moreover, the amplitude of the two-fold anisotropy 
would require a canting angle well above our experimental uncer-
tainty (Supplementary Section 2). Another possible experimental  

effect that could in principle lead to a two-fold modulation in cer-
tain cases is current-induced vortex motion36. This is ruled out by 
investigating different contact configurations, as well as by the low 
current densities employed and the absence of characteristic fea-
tures of vortex motion in the R versus T curves (Supplementary 
Sections 5, 6, 8 and 9). More generally, we expect orbital effects to be 
weak in the few-layer limit of our samples32. Even if a weak orbital 
effect were present, it would not account for the observed two-fold 
anisotropy because its angular dependence would be expected to 
follow the in-plane cross-section of the NbSe2 flakes along the field 
direction, which is inconsistent with our observations on samples 
with distinct shapes (Supplementary Fig. 5). The robustness of the 
observations is further supported by recent independent work37.

As a complementary probe of the two-fold anisotropy deep 
inside the superconducting state, we also studied the NbSe2/CrBr3 
junction (device 2). In particular, we measured the differential con-
ductance spectra under a 3 T in-plane magnetic field as a function 
of the angle θ, defined in the same manner as for device 1. At 3 T, the 
value of the applied field is expected to be substantially larger than 
the in-plane saturation field (~440 mT)29 for few-layer CrBr3, ensur-
ing that its spins are oriented in the plane. Figure 3a summarizes 
the spectra in a colour plot and shows a clear two-fold modulation, 
especially prominent at a voltage bias smaller than or comparable 
to the superconducting gap. The angular dependence of the differ-
ential conductance at a fixed bias shows a clear contrast between 
biases larger or smaller than the gap (Fig. 3b). The normalized dif-
ferential conductance at energies outside the gap (V = 4 mV > Δ/e) 
has less than a 0.5% variation versus angle, indicating negligible 
anisotropic differential conductance. By contrast, the angular 
dependence of the normalized conductance at energies inside the 
gap (V = 0 mV) shows a clear two-fold modulation that can be fit 
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to a cos(2θ + φ) form (solid curve, Fig. 3b). Overall, this indicates 
that the two-fold modulation persists deep inside the supercon-
ducting state of NbSe2, consistent with the magnetoresistance and 
H̃c behaviours. The direction of minimum conductance is slightly 
rotated from the long, straight edge, which may be due to the addi-
tional transfer steps involved. We also studied a second type of junc-
tion with a ferromagnetic (Co/Pt multilayer) electrode and an AlOx 
barrier (Supplementary Section 11). The Co/Pt junction devices all 
show alignment of the conductance extrema along the long, straight 
edge of the NbSe2 flake, similar to the magneto-transport devices.

The differential conductance spectra at θ = 45° and 135° (Fig. 3c,d)  
show the angular variation of the spectra versus field amplitude for 
the CrB3 tunnel junction. At H = 0, we observe a large differential 
conductance at low bias, approaching 1.6 times the normal-state 
value. This is due to a combination of Andreev reflection and qua-
siparticle tunnelling at the junction. When a finite magnetic field 
is directed along θ = 45°, the differential conductance becomes 
greatly suppressed. By contrast, when the magnetic field is directed 
along θ = 135°, the conductance does not change appreciably com-
pared to that of 0 T, indicating a higher resilience of the supercon-
ducting state to magnetic fields at this angle and highlighting the 
two-fold anisotropy of this state. Note that, due to the ferromag-
netism of CrBr3, we expect magnetic proximity to be present at the  
CrBr3/NbSe2 interface38, enhancing the effect of the applied magnetic 
field. In previous studies by some of the authors34, we investigated 
over 10 bilayer and trilayer NbSe2 tunnel junctions with nonmag-
netic insulating barriers and electrodes and observed a monotoni-
cally decreasing gap from zero field up to the upper critical field 
(~38 T). Any out-of-plane magnetic field due to misalignment would 
also lead to a monotonically decreasing gap and therefore cannot 
result in the large suppression of zero-bias differential conductance 
and widening of the spectra under a magnetic field as observed in 
this study (Fig. 3c). Within our signal-to-noise ratio, in the nonmag-
netic junctions we did not observe a clear in-plane two-fold angle 
dependence for the tunnelling spectrum under the studied angular 
magnetic field range (0–9 T). Thus, the strong two-fold angular peri-
odicity of the tunnelling spectra in the low-field limit is unique to 

devices where the insulating barrier or tunnel electrode are mag-
netic (Fig. 3 and Supplementary Section 11). However, we cannot 
exclude such dependence near the upper critical field (>20 T) of the 
nonmagnetic tunnel devices. Given the two-fold dependence of the 
upper critical field shown here (Fig. 2c), a two-fold dependence for 
tunnelling in nonmagnetic junctions is also expected. Interestingly, 
in all nonmagnetic junctions, the spectra evolved in a manner quali-
tatively identical to that in Fig. 3d, further suggesting that magnetic 
proximity coupling plays a role in the magnetic junctions.

Having experimentally established the two-fold anisotropic 
character of the superconducting state of few-layer NbSe2, we now 
discuss its possible origin. One scenario is that the superconducting 
state spontaneously breaks the three-fold rotational symmetry of the 
lattice; that is, it is a nematic pairing state, similar to that observed in 
doped Bi2Se3 (ref. 39). This is only possible if two conditions are satis-
fied: (1) the gap function transforms as the E′ or E″ irreducible rep-
resentations of the D3h point group associated with the single-layer 
NbSe2 crystal structure (which correspond roughly to d-wave and 
p-wave gaps, respectively) and (2) the d-wave/p-wave nematic gap 
configuration has a lower energy than the d-wave/p-wave chiral gap 
configuration. However, the facts that the superconducting state of 
bulk NbSe2 is s-wave13 (that is, it transforms as the A′

1 irreducible 
presentation of D3h) and that Tc seems to continuously and slowly 
change as a function of the number of layers8 pose a considerable 
challenge to this scenario.

So, how could an s-wave pairing state display two-fold anisot-
ropy? One obvious possibility is extrinsic effects. However, as dis-
cussed above, this is difficult to reconcile with the fact that the same 
sizable two-fold anisotropy is observed for different contact con-
figurations in devices with different geometries, fabricated inde-
pendently in two separate laboratories and measured using two 
complementary experimental techniques (magneto-transport and 
tunnelling). We also consider the possibility of charge density wave 
(CDW) order. The CDW in both bulk and monolayer NbSe2 is a 
3 × 3 charge order, which does not break the three-fold symmetry of 
the lattice10. As a result, it is not expected to give rise to a two-fold 
signal. Moreover, CDW onsets above superconductivity10 and there-
fore, if it were the origin of the two-fold signal, we would expect to 
see the anisotropy well above Tc.

Although the origin of this unexpected effect remains an open 
question, we put forward one possible scenario. This is rooted in 
the fact that a small external symmetry-breaking field induces a 
strong mixing between the leading s-wave (A′

1) instability and 
a sub-leading instability with either d-wave (E′) or p-wave (E″) 
character. Such a strong mixing is of course only possible if these 
sub-leading instabilities of unconventional character, which pre-
sumably are accentuated in few-layer NbSe2 by the prominent role 
played by the Ising SOC, are close competitors of the conventional 
s-wave instability, which is probably inherited from the pairing 
mechanism of the crystal in bulk form. Note that the mixing dis-
cussed here is different from the singlet–triplet mixing that natu-
rally occurs due to the presence of the Ising SOC in the absence 
of external fields (Supplementary Section 12). In our set-up, two 
strong candidates exist for such an external symmetry-breaking 
field. Uniaxial strain mixes the singlet s-wave (A′

1) and d-wave (E′) 
gaps40,41, giving rise to an overall two-fold anisotropic gap. This is 
illustrated in Fig. 4b, which shows the mixed gap along the Γ Fermi 
surface shown in Fig. 1c (details are presented in Supplementary 
Section 12). Its two-fold anisotropy contrasts with the six-fold 
anisotropy of the s-wave gap shown in Fig. 4a. Experimentally, 
residual uniaxial strain could arise due to the exfoliation or encap-
sulation processes, for example. The applied in-plane magnetic 
field itself also mixes different gap states, as was shown in ref. 17: due 
to the presence of the Ising SOC, it mixes the singlet component 
of the s-wave (A′

1) gap with the triplet component of the p-wave 
(E″) gap, giving rise to a two-fold symmetric gap, as illustrated in 
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Fig. 4c. We found that the two-fold anisotropy of the s + p mixed 
state is generally weaker than in the s + d mixed state. Note that 
the sharp minima in the figure are a consequence of the vanishing 
of the Ising SOC along the Γ−M direction. Insets in Fig. 4 provide 
cartoon pictures of the possible s + p (A′

1 + E′′
) and s + d (A′

1 + E′
) 

mixed states and their underlying symmetry-breaking fields.
Although Fig. 4 shows a two-fold anisotropy of the gap in 

momentum space, an important question is how this is translated 
into a two-fold anisotropy as a function of the magnetic field ori-
entation. As discussed in Supplementary Section 12, this might be 
explained by the Rashba SOC that is present due to the existence 
of a substrate. This is illustrated in Fig. 4d–f, which shows that the 
minimum value of the gap function of Fig. 4b,c displays a two-fold 
anisotropy as the magnetic field is rotated in the plane, as long as the 
Rashba SOC is non-zero (solid lines). By contrast, the minimum gap 
of Fig. 4a (s-wave) shows a six-fold anisotropy. Without the Rashba 
SOC, the gap minimum is isotropic as a function of the magnetic 
field angle (dashed lines, Fig. 4d–f). Although a microscopic calcu-
lation connecting the anisotropic magnetoresistance, the effective 
critical field and tunnelling data presented here with a specific form 
of the gap function is beyond the scope of this work, we expect that 
the two-fold anisotropy of the mixed gap function—and of the cor-
responding spectrum of superconducting fluctuations42—will be 
generally manifested as two-fold anisotropic superconducting prop-
erties. In the case that a quasi-degeneracy exists between the s + p 
states or the s + d states, these two-fold anisotropic properties may 
become pronounced enough to be experimentally detectable, thus 
explaining our data. We emphasize that the focus of this work is the 
unexpected experimental observation of the two-fold modulation 
of the magnetoresistance, effective critical field and tunnel junc-
tion conductance by an in-plane magnetic field. Having analysed  

and ruled out several possible scenarios for these observations, we 
find that our proposed model accounts for the data very well.

Regardless of which scenario is realized here—spontaneous 
nematic superconductivity or strong gap-mixing triggered by a 
small symmetry-breaking field—our results suggest a substan-
tial contribution of an unconventional pairing mechanism to the 
superconducting state of few-layer NbSe2. This raises fundamen-
tal questions about the origin of such pairing interactions, and 
opens up fascinating prospects of combining them with non-trivial 
topological properties that have been predicted in the regime of 
high magnetic fields. Overall, our work reveals that few-layer 
TMDs provide a promising framework to realize and explore  
unconventional superconductivity.
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Methods
Device fabrication. For the magneto-transport and effective critical field 
measurement devices, Cr/PdAu (1 nm/7 nm) bottom contacts were deposited 
on top of an atomically clean piece of hBN of thickness 20–80 nm, above which 
pieces of 2H-NbSe2 (commercial, from HQ Graphene) and hBN (20–80 nm) 
was subsequently transferred using the standard dry-transfer technique43. The 
NbSe2 layer number was determined via optical contrast44 calibrated by atomic 
force microscopy. The NbSe2 exfoliation and subsequent hBN encapsulation 
were performed in an Ar-filled glovebox to minimize sample degradation. After 
completing the assembly process, the van der Waals heterostructure was taken 
out of the glovebox and etched by reactive ion etching with O2/Ar/CHF3 to open 
windows on the top hBN for contacting the pre-patterned bottom contacts. Metal 
leads of Cr/Pd/Au (1 nm/5 nm/120 nm) were subsequently deposited to connect 
the bottom contacts to the bonding pads.

For the junction devices, 2H-NbSe2 bulk single crystals were prepared by 
the iodine-based chemical vapour transport method. CrBr3 and hBN bulk single 
crystals were grown by HQ Graphene. NbSe2 and CrBr3 were thinned down by the 
conventional Scotch tape method and assembled using the dry-transfer technique 
in a N2-filled glovebox43,45. In detail, both NbSe2 and CrBr3 were first exfoliated on a 
polydimethylsiloxane (PDMS) polymer substrate. NbSe2 flakes on the PDMS stamp 
were transferred to a Si/SiO2 (295 nm) substrate, which was heated to 70 °C. By 
searching with an optical microscope, trilayer NbSe2 was identified. A stamp with a 
thin layer of polypropylene carbonate (PPC) on PDMS was prepared on a glass slide. 
The trilayer NbSe2 was picked up onto the stamp at 45 °C. Thin CrBr3 flakes were 
identified on the PDMS polymer substrate and aligned to the NbSe2 flake on the 
stamp. The CrBr3 was picked up from the PDMS substrate onto the stamp at 50 °C. 
The stack was aligned and approached to a pre-patterned metal electrode at 50 °C 
followed by heating the substrate to 120 °C to release the stack. The pre-patterned 
metal electrodes of Ti (3 nm)/Pt (70 nm) were prepared by standard photolithography 
and electron-beam evaporation. The PPC layer on the device was dissolved by 
anisole. Finally, the device was single-side-encapsulated by hBN to prevent any 
degradation in air. All device fabrication procedures occurred in the glovebox.

Measurements. The magnetoresistance measurements for device 1 were 
performed using a Physical Properties Measurement System equipped with a 
rotating, variable-temperature sample insert and a 9-T magnet. A standard lock-in 
technique was used with an a.c. current of 400 nA (3 μΑ was used for the R versus 
T plot in Fig. 1f only). Device 3 measurements were performed at the National 
High Magnetic Field Laboratory (NHMFL), using a standard lock-in technique in 
a 3He cryostat equipped with a rotating sample insert and a 35-T d.c. magnet. For 
the measurements at NHMFL, an a.c. current of 1 μΑ was used.

The junction devices were measured in a separate 9-T Physical Property 
Measurement System at 1.9 K. A rotating probe was used to apply an in-plane 
magnetic field at angle θ. For the four-probe transport measurement of NbSe2, we 
chose four electrodes, which were in direct contact with NbSe2 regions (not covered 
by CrBr3). A standard lock-in technique was used with an a.c. current of 1 μΑ. For 
the differential conductance measurements, a small a.c. current and d.c. bias current 
were generated by a lock-in amplifier and a d.c. voltage source meter, respectively, 
with load resistances in series. The superimposed current flowed through one of the 
split electrodes of the junction. The a.c. and d.c voltages were measured between 
the other split electrode and another remote electrode using a pre-amplifier, lock-in 
amplifier and a voltage meter (see Supplementary Section 10 for the measurement 
schematics). The amplitude of the a.c. voltage was kept below 50 μV and the d.c. 
voltage was varied from −8 mV to 8 mV. The differential conductance G was 
calculated from the ratio of the a.c. current to the measured a.c. voltage. The bias 
voltage V in the main text corresponds to the measured d.c. voltage.

Data availability
Data for figures (including Supplementary figures) are available in the public 
repository Zenodo at https://doi.org/10.5281/zenodo.4545917. Source data are 
provided with this paper.
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