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CeCoIn5 is an f-electron metal with notable similarities to 
high-temperature superconducting copper-oxides, for exam-
ple in crystal structure, transport properties, and unconven-
tional superconductivity (1–10). Both sets of materials also 
exhibit signatures of a quantum phase transition (QPT), a 
phase transition induced by a non-thermal parameter, under-
lying the superconducting state. However, in many unconven-
tional superconductors, it is unclear whether the underlying 
QPT can be understood in the conventional sense as separating 
phases with different symmetries. An exploration of unconven-
tional types of QPTs, non-symmetry breaking (11) or weakly 
symmetry breaking (12, 13), has therefore become a subject of 
intense study. In this work, we bring evidence that CeCoIn5 is 
proximate to a quantum phase transition where the density of 
itinerant electrons changes apparently without breaking of 
symmetry. Established theory of f-electron metals provides a 
route to interpret such a transition. 

At the microscopic level, f-electron metals such as CeCoIn5 
are described by a Kondo lattice model. Each cerium atom 
hosts a single f level valence electron which contributes a lo-
calized spin-1/2 moment. These local moments coexist with a 
sea of itinerant conduction electrons. In the conventional me-
tallic ground state of the Kondo lattice, the f-electrons appear 
to become an integral part of the itinerant metal. In particu-
lar, they join the conduction electrons, contributing their full 
share to the total Fermi volume as prescribed by Luttinger’s 
theorem (14). This phenomenon occurs through the for-
mation of Kondo singlet correlations between the local f 

moments and the conduction electrons, which effectively hy-
bridize the f level with the conduction bands. 

A long-standing challenge has been to characterize a QPT 
in which the f-electrons recover their localized character and 
withdraw from the itinerant Fermi volume. Superficially, the 
remaining Fermi volume without f-electrons is in apparent vi-
olation of Luttinger’s theorem. The loss of Fermi volume when 
f-electrons localize is therefore conventionally accompanied by 
a transition to a (antiferromagnetic) spin-density wave state, 
whereby Luttinger’s theorem is recovered in the appropriately 
folded Brillouin zone associated with translational symmetry 
breaking (15–19). In this paper, we present Hall effect, quan-
tum oscillation, and angle-resolved photoemission spectros-
copy (ARPES) measurements of CeCoIn5 with small levels of 
chemical substitution, and compare the experimental data to 
ab initio calculations. We find evidence for an f-electron delo-
calization QPT without symmetry breaking. 

Figure 1A presents low-temperature measurements of  
the Hall resistivity, xyρ , versus magnetic field, H, for CeCoIn5 

samples with varying levels of cadmium (hole-doping) or tin 
(electron-doping), both of which substitute indium. The Hall 
coefficient, 0/H xyR Hρ µ=  can be used to estimate the net 

carrier density enclosed by the Fermi surface according to the 
formula (20) 
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The study of quantum phase transitions that are not clearly associated with a broken symmetry is a major 
effort in condensed matter physics, particularly in the problem of high-temperature superconductivity 
where such transitions are thought to underlie the mechanism of superconductivity itself. In this study, we 
argue that the putative quantum critical point in the prototypical unconventional superconductor CeCoIn5 
is characterized by the delocalization of electrons in a transition that connect two Fermi surfaces of 
different volumes, with no apparent broken symmetry. Drawing on established theory of f-electron metals, 
we discuss an interpretation for such a transition that involves the fractionalization of spin and charge, a 
model which well-describes the anomalous transport behavior we measure in the Hall effect. 
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where netn  is the net carrier density—electrons minus holes. 

In multiple band metals such as CeCoIn5, Eq. 1 only applies 
in the limit where high fields eliminate the effects of carrier 
mobility misbalances and RH becomes field-independent (see 
(21) Section 3 for more details on the high-field limit). For 
each sample, we measure the high-field value of RH at 0.5 K 
in order to approximate the net carrier density. Many of the 
traces shown in Fig. 1A appear to saturate at high fields, and 
fig. S4 (21) shows that evaluation of the high-field slope of 

xyρ  is in good agreement with the high-field value of 

0/xy Hρ µ , suggesting that at these temperatures and fields 

the Hall coefficient is close to field-independent. In addition, 
select samples were measured in pulsed magnetic fields up to 
75 T, as shown in Fig. 1B, where the Hall coefficient is field-
independent over an extended field range; the extracted Hall 
coefficients from pulsed and continuous fields are in good 
agreement for these samples (Fig. 1C). Finally, our Hall coef-
ficient measurements on pure CeCoIn5 agree well with meas-
urements at 20 mK where the Hall resistivity is completely 
linear in field (22). These facts together give confidence that 
our extracted Hall coefficient values can be interpreted as an 
approximate measurement of the net carrier density as de-
scribed by Eq. 1. 

Figure 1C shows the value of 1/eRH, approximating the net 
carrier density, extracted for samples with different levels of 
chemical substitution in continuous and pulsed magnetic 
fields. The carrier density of this material excluding the f-
electron can be established using Hall resistivity measure-
ments of LaCoIn5 shown in Fig. 1B (its Hall coefficient is field-
independent above 5 T at 1.8 K. See also fig. S3 (21)); LaCoIn5 
can be thought of as CeCoIn5 without the f-electron. We find 
that the Hall coefficient of CeCoIn5, evaluated either up to 60 
Tesla or up to 14 Tesla at 0.5 K, is close to that of LaCoIn5 
(Fig. 1C). This suggests that the two materials have similar 
net carrier densities, implying that the f-electrons are close to 
localized in CeCoIn5. With cadmium-substitution 1/eRH re-
mains close to that of LaCoIn5, but with tin substitution in-
creases to a value consistent with the addition of one 
itinerant electron per unit cell. Identifying the additional 
electron as the single cerium f-electron suggests that Sn-sub-
stitution induces a delocalization transition of the f-electrons. 
None of these samples show a finite-temperature phase tran-
sition other than superconductivity. Only in Cd substitution 
levels higher than 0.6% is an antiferromagnetic phase ob-
served (fig. S1 (21)) (23). In addition, the specific heat capacity 
at moderate temperature remains constant across this substi-
tution series (Fig. 1C); we will comment more on this later. 

When the f-electrons delocalize, the Fermi surfaces are ex-
pected to reconstruct and increase in volume. The results of 
our density functional theory (DFT) calculations of the three 
Fermi surfaces comparing the (de)localized f-electron models 

are visualized in Fig. 2A (DFT calculation details are provided 
in (21) Section 1). In summary, according to the calculation f-
electron delocalization causes the extended γ surface to dis-
connect into small ellipsoidal pockets at the Brillouin zone 
center and edge, and the γ pocket at the zone top (γZ) to dis-
appear. Also, large extended surfaces αZ and βZ appear at the 
zone top, and the α and β cylinders expand slightly. In pure 
CeCoIn5, previous angle-resolved photoemission (ARPES) 
data at 10-20 K are in better qualitative agreement with the 
localized f-electron model as αZ and βZ are absent, and γZ is 
present (24, 25). However, the volumes of the α and β cylin-
ders are slightly larger than those of the localized model (24–
26), and the smaller γ Fermi surface seems to exhibit features 
of both the delocalized and localized models, being poten-
tially disconnected (suggesting delocalized) but retaining γZ 
(suggesting localized) (24, 25, 27, 28). These characteristics 
may point to a partially delocalized f-electron character in 
pure CeCoIn5. This interpretation is also promoted by previ-
ous magnetic resonance (29) and photoemission studies (24, 
30, 31). Note that our Hall effect measurements suggest that 
the f-electrons only weakly contribute to the Fermi volume of 
CeCoIn5 even at 0.5 K, consistent with partially localized f-
electrons in the low-temperature limit. 

De Haas-van Alphen (dHvA) oscillations measure ex-
tremal areas of the Fermi surface perpendicular to the field 
direction, giving a probe of the Fermi surface structure at ex-
tremely low temperature. Here we compare our dHvA meas-
urements of Sn-doped CeCoIn5 and published data on pure 
CeCoIn5 (5). As seen in Table 1 and Fig. 1C, the sizes of the α 
and β cylinder orbits in pure CeCoIn5 are more consistent 
with the delocalized model, implying that f-electrons incor-
porate into these Fermi surface sheets. However, there do not 
appear to be additional frequencies associated with the αZ 
and βZ sheets of the delocalized model, and orbit β2 increases 
as a function of tilt angle away from [001] (Fig. 2C), further 
suggesting that the β cylinder is fully connected in better 
qualitative agreement with the localized model. In the  
Sn-substituted sample, the sizes of the α and β cylinders 
change slightly compared to pure CeCoIn5 (Table 1). In addi-
tion, an oscillation of about 16 kT appears for two field angles 
near [001]. This oscillation does not appear to be harmoni-
cally related to the α1–3 branches, and its frequency and angle-
dependence agree well with a predicted orbit on αZ of our de-
localized model calculations. Furthermore, 1.2 kT and 2 kT 
frequencies for field angles near [001] are indicative of holes 
in the β cylinder (Fig. 2A), and, a branch of the β2 cylinder 
orbit appears to decrease as a function of tilt angle from  
[001] in better agreement with the delocalized model (Fig. 
1C), further suggesting that holes develop in the β cylinder. 
Finally, possible low frequency oscillations <800 T at several 
angles, which seem to be present in pure CeCoIn5 over certain 
angular ranges as well, are most naturally assigned to small 
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γ-ellipsoids (Fig. 2C), but could also originate from the γZ 
sheet. Table 1 summarizes the frequency assignments based 
on comparison to DFT calculations, which suggests that the 
αZ and βZ sheets are present in the Fermi surface of the Sn-
substituted sample. From dHvA, it is not possible to conclu-
sively say whether these sheets are absent in pure CeCoIn5 at 
low temperature because the orbit frequencies on αZ and βZ 
are sensitive to the precise structure of these Fermi surfaces. 
Nevertheless, the comparison shown in Table 1 is indicative 
of a Fermi surface reconstruction induced by Sn-substitution. 

Our ARPES measurements corroborate the dHvA evi-
dence for a Fermi surface reconstruction. Figure 3 compares 
Fermi surface maps at the Brillouin zone top in pure CeCoIn5 
and 3% Sn-substituted CeCoIn5 at 10 K (additional data are 
provided in (21) Section 9). Our data on pure CeCoIn5 agrees 
well with previous reports. The cylindrical Fermi surfaces 
centered at the zone corners are visible. Bright spots near the 
Z point are probably signatures of the γZ Fermi surface, as 
discussed in Refs. (27, 31). In the 3% Sn-substituted sample, 
we observe enhanced intensity at the R point of the Brillouin 
zone relative to the pure material, as well as a qualitative 
change in structure near Z. Overall it appears that the elec-
tronic structure changes with Sn-substitution, with a sharp 
cross-shaped structure emerging in the RZA plane which re-
sembles αZ or βZ of our delocalized model calculations (α and 
β bands nearly overlap along this cut, and as such they may 
be difficult to distinguish from one another in ARPES). Weak 
features appear at the R point in pure CeCoIn5 as well, poten-
tially indicating that incoherent states exist at the R point—
these states may exist because of the partially delocalized f-
electron character in the pure material. In Fig. 3C, we explore 
the temperature-dependence of these Fermi surface sheets 
via the ARPES intensity at the R point. The relative intensity 
at R increases in the Sn-substituted sample upon decreasing 
temperature below about 90 K with the onset of f/conduction 
hybridization (see also fig. S16 (21)). In the pure material, the 
R point spectral weight is relatively constant down to 10 K. 
This comparison suggests that the Fermi surface sheet in 3% 
Sn-doped CeCoIn5 emerges, or is made relatively more coher-
ent, because of enhanced f/conduction electron hybridization 
induced by Sn-substitution. 

One way to view f-electron delocalization is as a result of 
Kondo hybridization between the f level and conduction elec-
trons. Although there are reports of hybridization developing 
below about 45 Kelvin in pure CeCoIn5 (27) and Cd-doped Ce-
CoIn5 (32) resulting in a detectable f-electron contribution to 
the Fermi surface, we find that the low-temperature carrier 
density of these materials is consistent with predominantly 
localized f-electrons (Fig. 1). In contrast to the pure material, 
the net carrier density of Sn-substituted samples appears to 
include the f-electrons (Fig. 1C). This change coincides with 
signatures of new Fermi surface sheets (Fig. 3 and Table 1), 

which seem to agree well with predicted Fermi surfaces 
unique to the delocalized f-electron DFT model (Fig. 2A). 
Taken together, these data suggest that Sn-substitution of Ce-
CoIn5 induces a Fermi volume changing transition between a 
phase with predominantly localized f-electrons to one with a 
delocalized character. This transition could be attributed to 
an enhancement of the Kondo coupling induced by electron 
doping (25, 33, 34). High magnetic fields may compete with 
the Kondo coupling by polarizing the f-electrons, but notably 
the Hall resistivity remains linear up to 73 T (Fig. 1B), so it 
seems likely that higher fields are required to induce a com-
plete breakdown of Kondo hybridization. 

A delocalization transition is a reasonable scenario from 
the perspective of doping-tuned Kondo coupling. Because of 
the constraints imposed by Luttinger’s theorem, the reduc-
tion in Fermi volume in the more localized f-electron regime 
is expected to coincide with antiferromagnetic order where 
the Brillouin zone is reduced (15). It is however hard to rec-
oncile this scenario with the data because the transition to 
antiferromagnetism is seen only around Cd doping of 0.6% 
(23), considerably removed from the suggested delocalization 
transition induced by Sn-substitution (Fig. 1C). Furthermore, 
magnetic order has never been observed in native CeCoIn5 or 
Sn-substituted CeCoIn5 (6, 25, 33, 34), and the ARPES and 
dHvA data suggest that the Brillouin zone is essentially un-
changed by Sn-substitution. An alternative possibility is the 
formation of a fractionalized phase in the more localized f-
electron regime (11). In this theoretically predicted phase, the 
f-electron charge localizes to the cerium site, reducing the 
Fermi volume, while the spin excitations of the f moments 
remain itinerant and form a charge neutral Fermi surface 
(11). We can speculate that the specific heat remains constant 
across the substitution series (Fig. 1C) owing to the presence 
of such a neutral Fermi surface, which conserves the fermi-
onic degrees of freedom of the system even when the density 
of itinerant electrons appears to increase. One may also ex-
pect quantum fluctuations associated with a delocalization 
transition to enhance the specific heat coefficient. Such an 
enhancement has been observed as a function of decreasing 
temperature below 2 K in pure CeCoIn5 (2). The confinement 
of these effects to <2 K temperatures could explain why we 
do not detect singular behavior in C/T at 4 K across the sub-
stitution series. 

Our calculations of the Hall conductivity of such a frac-
tionalized phase capture several distinctive aspects of the 
low-field Hall coefficient in this material. In the simplest de-
scription of the fractionalized Fermi liquid, the f-electron sep-
arates into a fermionic spinon carrying its spin, and a gapped 
bosonic mode, in this case a valence fluctuation, carrying its 
charge. f-electron delocalization can be identified with the 
closing of the boson gap. Near this transition, the electrical 
conductivity has contributions from the fermionic spinons, 
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the charged bosons and the conduction electrons. The spinon 
and the bosons should be added in series (35). The boson’s 
resistivity will then dominate owing to their much smaller 
number, and we therefore neglect the spinon contribution. 
Adding to this the resistivity of the conduction band in par-
allel gives: 

 
2

2 2
0tot tot

1
( ) ( )

b
xyc c

H HR R
H

σσ
µσ σ

= +   (2) 

where cσ  and c
HR  are the longitudinal conductivity and Hall 

coefficient of the conduction electrons, respectively, and b
xyσ  

is the Hall conductivity of the bosonic valence fluctuations. 
The total conductivity is totσ . In our calculation, we consider 

two processes that contribute to the scattering rate of the va-
lence fluctuations. One process is provided by the internal 
gauge field (11). The other mechanism is scattering on the 
doped ions, which grows linearly with the doping level (see 
fig. S5 (21)). One may expect an enhancement of the low-field 
Hall coefficient stemming from the second term in Eq. 2 
caused by the singular behavior of the valence fluctuations 
when the boson gap closes. This expectation is corroborated 
by a semi-classical Boltzmann analysis, the details of which 
are given in (21) Section 7. As shown in Fig. 4, the results of 
the calculation of the conductivity in this model give good 
agreement with the measured Hall coefficient as a function 
of temperature, doping level, and magnetic field with the as-
sumption that pure CeCoIn5 is the sample closest to the delo-
calization transition. The results shown in Fig. 4B are 

obtained from a calculation of b
xyσ , and converted to a Hall 

coefficient using the physical resistivity of the system 

tot1 / xx Tσ ρ= ∼  as observed in the experiment over the rele-

vant temperature range. A more complete description of the 
longitudinal resistivity in this model will be the subject of fu-
ture work. 

We emphasize that the experimental observations seen in 
Fig. 4 are difficult to reconcile with more conventional 
transport models. From the point of view of band theory, the 
low-field RH is proportional to the carrier density of the most 
mobile carriers (20), so it is surprising that RH has such a 
strong temperature-dependence with a peak at finite temper-
ature, and retains the same sign and uniformly decreases 
with either hole or electron doping. In addition, the observed 
symmetric-in-doping Hall coefficient cannot be readily at-
tributed to disorder scattering induced by substitution, as we 
find that disordering the material by other means, substitut-
ing lanthanum for cerium, has a relatively small effect on the 
low-field RH (see fig. S6 (21)). These key features of the exper-
imental transport data are captured by the valence fluctua-
tion model described above. 

The present study provides evidence that CeCoIn5 exists 
near a quantum phase transition associated with the 

delocalization of f-electron charge. The absence of evidence 
for symmetry breaking around this transition opens the pos-
sibility for the fractionalization of f-electrons into separate 
spin and charge degrees of freedom. Although our conductiv-
ity calculations support this theoretical picture, direct evi-
dence for such fractionalized electrons is desirable, and may 
be possible with inelastic neutron measurements (36) or Jo-
sephson tunneling experiments (37). On a final note, recent 
experiments on cuprate high-temperature superconductors 
find evidence for a Fermi surface reconstruction where the 
localized charge of the Mott insulator gradually delocalizes 
over a certain oxygen doping range near the endpoint of the 
pseudogap phase (sometimes referred to as a p  to 1 p+  tran-

sition (38)). We have presented evidence for an analogous 
transition in an f-electron metal. It is possible that such a 
quantum phase transition underlies some of the similarities 
between CeCoIn5 and cuprate superconductors (1–9), and 
perhaps our work may help guide interpretation of these re-
cent results on cuprates. 
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Table 1. de Haas-van Alphen extremal orbit assignments. Units of kiloTesla, H   [001], from experiments and DFT 
calculations. Each orbit is labeled by the assigned Fermi surface sheet, which are visualized on the calculated Fermi 
surface sheets in Fig. 2A. 
 

Fermi surface dHvA orbit label localized f-elec-
tron model 

CeCoIn5  
Ref. (5) 

0.33% Sn-
doped CeCoIn5 

delocalized f-
electron model 

γZ γ1 0.8       
γZ γ2 2.3       
γ-cross γ3 13.2       
γ-ellipsoid γ4     (0.46) 0.7 
γ-ellipsoid γ5   (0.24) (0.2) 0.22 
α-cylinder α1 4.8 5.6 5.4 5.6 
α-cylinder α2 4.0 4.5 4.8 4.4 
α-cylinder α3 3.9 4.2 4.4 4.3 
αZ α4     16.3 15.8 
β-cylinder β1 10.3 12.0 11.9 12.3 
β-cylinder β2 6.1 7.5 6.8 6.7 
βZ/cylinder β3     2.0 1.6 
βZ/cylinder β4     1.2 0.9 
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Fig. 1. Carrier density measurements in doped CeCoIn5. (A) Hall coefficient as a function of field in doped 
CeCoIn5 with Cd concentrations 0.2% and 0.4%, and Sn concentrations 0.11%, 0.22%, 0.33%, 0.44%, 1.2%, 
1.39%, 1.65%, 1.9%, and 3.3%. As discussed in the main text, the inverse of the Hall coefficient ( )0/xy Hρ µ  in 

the high-field limit can be used to approximate the net carrier density (see also (21) Section 4). Gray lines 
denote the high-field Hall coefficient of the non-f analog LaCoIn5 and the calculated value including one 
additional electron per unit cell. (B) Pulsed field Hall resistivity of CeCoIn5 (T = 0.66 K) and Sn-doped CeCoIn5 
(T = 0.5 K) overlaid on the continuous field Hall resistivity of LaCoIn5 (1.8 K). (C) Inverse high-field Hall 
coefficient of CeCoIn5 at 0.5 K as a function of doping level, including measurements in continuous field up to 
14 T or 18 T (filled circles) and pulsed field up to 73 T (open circles). With Sn-substitution, the apparent carrier 
density of CeCoIn5 increases by about one electron per unit cell above that of LaCoIn5. This trend provides 
evidence that Sn-substitution delocalizes the single cerium f-electron per unit cell in CeCoIn5. The value of 1/eRH 
in some Sn-doped samples lies above the calculated +1 electron line, likely because the Hall coefficient has not 
completely saturated in these samples at 14 T. At higher fields the value of 1/eRH seems to saturate at the +1 
electron value as seen in the 1.6% Sn-doped sample at 70 T. The lower panel shows the 4 Kelvin heat capacity 
(units of mJ/mol K2) across this doping series. 
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Fig. 2. de Haas-van Alphen oscillations in Sn-doped CeCoIn5 and comparison to DFT calculations. (A) DFT 
calculated Fermi surface sheets of CeCoIn5 with localized and delocalized f-electron models. Predicted dHvA 
orbits for H   [001] are drawn in black and red. Red orbits are unique to the delocalized f-electron model.  
(B) Characteristic dHvA spectrum with the magnetic field 4.8° away from [001] of a crystal of 0.33% Sn-doped 
CeCoIn5. The inset shows oscillations in the magnetic torque after background subtraction. (C) dHvA oscillation 
frequencies as a function of angle tilting the magnetic field from the crystallographic [001] to [100] directions in 
pure CeCoIn5 (Ref. (5)) and 0.33% Sn-doped CeCoIn5. Light green points are DFT calculated frequencies of the 
localized and delocalized f-electron models respectively. 
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Fig. 3. ARPES measurements of CeCoIn5 and Sn-doped CeCoIn5. (A) Fermi surface maps in pure and 
3% Sn-substituted CeCoIn5 at the Brillouin zone top (RZA plane). A new Fermi surface sheet appears 
at the zone top in the Sn-substituted sample. Each of the four subpanels represents measurements on 
a different cleave. (B) A-R-A dispersion cuts. Parabolic α and β bands are labeled by red and blue dotted 
lines. The new Fermi surface in the Sn-substituted sample is observed as an increase in spectral 
intensity at the Fermi level at R. The spectral intensity within the white box has been enhanced by a 
factor of ten for clarity. (C) Comparison of temperature-dependent intensity at the R point normalized 
to the average value between 120-160 K. 
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Fig. 4. Comparison of experimental data and theoretical calculations 
of the conductivity of critical valence fluctuations around an f-
electron delocalization transition. (A) Experimentally measured Hall 
resistivity, divided by the applied magnetic field, for samples with 
different compositions. (B) The theoretically predicted Hall effect from 
bosonic valence fluctuations of the fractionalized Fermi liquid model. 
Each panel is labeled by the chemical potential in the theory 
corresponding to the doping level in the experiment, where 0µ <  
corresponds to hole-doping and 0µ >  corresponds to electron-doping. 
Curves are labeled by the normalized magnetic field value and all theory 
data includes a parametrization of impurity scattering, 4C = . See 
Supplement S7 (21) for the details of the calculation and relevant 
parameter normalizations. 
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