
Journal of Magnetic Resonance 333 (2021) 107106
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Numerical recipes for faster MAS-DNP simulations
https://doi.org/10.1016/j.jmr.2021.107106
1090-7807/� 2021 Elsevier Inc. All rights reserved.

E-mail address: fmentink@magnet.fsu.edu
Frederic Mentink-Vigier
National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, FL 32310, USA
a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 September 2021
Revised 5 November 2021
Accepted 7 November 2021
Available online 09 November 2021

Keywords:
MAS-DNP
Simulations
Liouville space
Hilbert space
Relaxation
Numerical integration
Cross-Effect
Solid-Effect
Numerical simulations of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP) have trans-
formed the way the DNP process is understood in rotating samples. In 2012, two methods were concomi-
tantly developed to simulate small spin systems (< 4 spin-1/2). The development of new polarizing
agents, including those containing metal centers with S > 1/2, makes it necessary to further expand
the numerical tools with minimal approximations that will help rationalize the experimental observa-
tions and build approximate models. In this paper, three strategies developed in the past five years are
presented: an adaptive integration scheme, a hybrid Hilbert/Liouville formalism, and a method to trun-
cate the Liouville space basis for periodic Hamiltonian. Each of these methods enable time savings rang-
ing from a factor of 3 to > 100. We illustrate the code performance by reporting for the first time the MAS-
DNP field profiles for ‘‘AMUPol”, in which the couplings to the nitrogen nuclei are explicitly considered, as
well as Cross-Effect MAS-DNP field profiles with two electrons spin 5/2 interacting with a nuclear spin
1/2.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

In the past two decades, Magic Angle Spinning Dynamic Nuclear
Polarization (MAS-DNP) has enabled very difficult solid-state NMR
experiments by increasing the resolution (MAS) and the sensitivity
(DNP) [1–3]. First developed for low magnetic fields [4–6], MAS-
DNP for high fields [1,7] has been a game changer for difficult sys-
tems [8–15], thanks to hardware developments [3,16–20] and the
introduction of biradicals as polarizing agents [21–24]. MAS-DNP
complements room temperature solid-state NMR experiments
and enables ssNMR applications where the system of interest has
a low concentration [14,25–31] and/or cannot be isotopically
enriched [32–34].

DNP is a process that involves a complex interplay between the
coherent and incoherent behavior of the spin system. The time
dependence induced by MAS generates fast energy level (anti)
crossing [35,36] also called rotor events [37]. These rotor events
impact the populations and coherences in the density matrix, the
effects of which depend on the strengths of the interactions and
the rates of the crossings [35,37]. The deep complexity of this prob-
lem makes numerical simulations the only viable tool for the anal-
ysis of these mechanisms [35–39].

To simulate an experiment under MAS-DNP conditions, one
needs to account for both the coherent (time dependent) behavior
of the spin dynamics and its coupling to the environment, i.e., the
relaxation. The integration of the resulting time dependent quan-
tum master equation requires significant computing power. Due
to the potentially large anisotropies and the amplitude of the inter-
actions, it is integrated in a stepwise fashion [35–37]. This integra-
tion can be done over a long evolution time [35] or can take
advantage of the periodicity of the problem [36,37] by just com-
puting the evolution operator for one rotor period and applying
it stroboscopically [36,37]. Hilbert space simulations are best sui-
ted for the former, while the Liouville space approach is better
for the latter, and turns out to be faster for small spin systems
[36,37,40–42].

This integration of the quantummaster equation involves many
matrix multiplications and exponential matrix operations. As the
size of the spin system increases, the matrices become very large
(exponential scaling), making the simulations cumbersomely slow.
Improving the efficiency of MAS-DNP simulations is critical, as cur-
rently, they are the only way to understand time-dependent DNP
mechanisms [35–40,42–48] and may be the best pathway for
enabling the rational design of better biradicals [40,43,44,49,50].
While the numerical efficiency problem seems largely contained
for bisnitroxide, with the advent of quantitative simulations
[44,51], it may remain an open problem for biradicals with strong
exchange interactions [49,52–54]. In addition, the MAS-DNP com-
munity has a strong interest in using other paramagnetic species
for DNP that are reduction resistant, can be used to dope bulk
materials [55–65], and/or may offer increasingly important struc-
tural information [66,67].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmr.2021.107106&domain=pdf
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The current literature offers a variety of approaches to acceler-
ate numerical spin dynamic simulations, such as the Liouville
space basis truncation [68,69] using symmetry considerations or
the contribution of the state to the spin dynamics [70,71], trunca-
tions using the Krylov-Bogoliubov approximation [72], block diag-
onalization [73,74], or the use of efficient exponential matrices
[74–77]. For Hilbert space simulations, larger spin systems can
be simulated with the coupled cluster approach [78–81]. For very
large spin systems, one can use Krylov propagation [74,82] and
prevent matrix size explosion using tensor trains to avoid opening
the Kronecker products [83]. In addition, simulations of frozen sys-
tems routinely require powder averaging to provide an accurate
representation of the system’s properties. To this end, efficient
interpolation algorithms have been implemented and yield consid-
erable time savings [84–87]. However, most of these approaches
have not been implemented into MAS-DNP simulations but have
great potential to improve the speed of the simulations.

In this article we describe additional numerical methods that
can lead to orders-of-magnitude time savings in simulations of
MAS-DNP experiments. First, a simple adaptive integration scheme
that enables time savings on the order of three to five times is pre-
sented. Second, a hybrid Hilbert/Liouville formalism is introduced
to study larger spin systems, which enables simulations of MAS-
DNP field profiles with more spins and with electron spin S > 1/2
with times savings greater than one hundred times for short spin
evolution times (<1 s). Third, this hybrid formalism is used to trun-
cate the Liouville space basis. This process, similar to the Zero-
Track-Eliminations [88], enables truncation of the Liouville space
basis, which combined with the adaptive integration scheme,
yields times savings on the order of five to nine times, and is per-
fectly suitable for 3-spin steady state studies. Finally, the advan-
tages, limitations, and potential improvements of each method
are discussed.
2. Simulations

2.1 Hamiltonian and integration of the master equation

In this section the spin system and Hamiltonian are presented
together with the standard numerical simulation approach to
numerically integrate the time dependent Liouvillian [36,37].

For a spin system containing Ne electron spins and Nn nuclei, the
Hamiltonian for MAS-DNP simulations is defined as:

bH tð Þ ¼ bHZ tð Þ þ bHHF tð Þ þ bHD tð Þ þ bHJ þ bHZFS þ bHQ þ bHlw

¼ bH0 tð Þ þ bHlw ð1Þ
Where

bHZ tð Þ ¼ P
i

gi tð ÞbeB0 �xlw
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bHlw ¼
X
i

x1
bSx;i ð3Þ

Herein, the electrons spins are designated by a, b, c, . . . while
nuclear spins designated by 1, 2, 3. . . gi stands for the electron g-
tensor value of electron spin i, Di;j, the electron dipolar coupling
between electron spin i and j, Ji;j, the exchange interaction between
electron spin i and j, Ai;n, the hyperfine coupling between electron
2

spin i and nucleus n,xn, the nuclear Larmor frequency of nucleus n,
xlw, the microwave frequency, and x1, the microwave nutation
frequency.

If the electron spin has S > 1/2 the Zero-Field Splitting (ZFS)
term must be accounted for. This interaction is treated as a pertur-
bation of the Zeeman interaction to enable the simulations in the
microwave rotating frame. Using the Irreducible Spherical Tensor
(IST) representation, the ZFS Hamiltonian can be written up to sec-
ond order as

bHZFS ¼ bH 1ð Þ
ZFS þ bH 2ð Þ

ZFS

¼
X

i
DZFS;iQ

i
2;0

bT i
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Where Qi
2;m and bT i

2;m are the spatial tensor components of the

ZFS and the IST, respectively, and xi
0 ¼ gibeB0 is the Larmor fre-

quency of the electron spin (detailed expressions are given in ref-
erences [73,89])

The simulations are carried out by propagating the density
matrix either in Hilbert space with the Liouville-von Neuman
equation [35]

i�h
@

@t
bq tð Þ ¼ bH tð Þ; bq tð Þ

h i
þ bR tð Þbq tð Þ ð5Þ

where bH and bR are the coherent and relaxation operators, respec-
tively in Hilbert space, or in Liouville space using the Master equa-
tion [36,37,41]

i�h
@

@t
bq! tð Þ ¼ bbL tð Þ bq! tð Þ ¼ bbH tð Þ þ bbR tð Þ


 � bq! tð Þ ð6Þ

where bbH and bbR are the coherent and relaxation super-operators.

We use one hat bO for an operator O in Hilbert space, and two hatsbbO for O in Liouville space. In the Liouville basis made of the projec-

tors /ij i /J

� , where /ij i are the Hilbert space states, bq! is just bq
reshaped as a vector. This basis is called wave-function basis [90]
(but also the Bra-Flipper [91]). To simplify the equations, we set
�h ¼ 1.

In this article the relaxation super-operator was generated in
the eigenbasis of the Rotating Frame Hamiltonian (without micro-

waves), bH0. Details about the relaxation and propagation of such
equations can be found in a previous publication [37]. Other relax-
ation models may be valid [92,93], but might not benefit from the
same performance gains.

The numerical solution of the MAS-DNP master equation in the
Liouville space is obtained by slicing the rotor period in small time
intervals dt (typically � 103-104 steps per rotor period). At each

step k, the Liouvillian bbL kdtð Þ is assumed to be constant, and the
evolution super-operators are computed:

bbU kdt; kþ 1ð Þdtð Þ ¼ e�i
bbL kdtð Þdt ð7Þ

The calculation of this matrix exponential is often the slowest
step of the simulation, and this step must be repeated many times.
For one rotor-period, sr , the complete evolution super-operator is
given by

bbU 0; srð Þ ¼
Y#steps�1

k¼0
e�i

bbL kdtð Þdt ð8Þ
The density matrix at an integer multiple of any rotor period, N,

is obtained as
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bq! Nsrð Þ ¼ bbU 0; srð ÞN bq! 0ð Þ ð9Þ
from which the expectation values of the operators are extracted.
For example, the polarization of electron spin a, Pa, is defined as

Pa tð Þ ¼ �2� Tr bq tð ÞbSz;a

� �
ð10Þ

and the polarization gain, �B, is defined as

�B tð Þ ¼
Tr bq tð ÞbIz� �
Tr bq 0ð ÞbIz� � ð11Þ

More details can be found in earlier publications [38,44,51].
2.2. Simulation parameters

Unless otherwise specified, all the simulations were carried out
assuming a microwave frequency xlw ¼ 2p�263.45 GHz, a tem-
perature T ¼ 100 K, a MAS frequency mr ¼ 8 kHz, and a nutation
frequency x1 ¼ 2p�0.4 MHz. Using Liouville space formalism,
the steady-orbit density matrices were computed for 30 s of free
evolution. When using the Hilbert/Liouville formalism, the density
matrix was propagated for 100 ms of free evolution. For all nuclei
we assumed T2;n ¼ 10 ms.

For single orientation bisnitroxide simulations, we used an arbi-
trary biradical geometry. The g-tensor principal axis frame values
were g = [2.00924, 2.0061, 2.00205], Da;b ¼ 30 MHz, Ja;b ¼ 0 MHz.
The electron a is coupled to a proton through a dipolar hyperfine
coupling of Aa;1 ¼ 3 MHz. The g-tensors relative orientation was

set to a; b; cð Þ ¼ 90
�
;90

�
;90

�� �
, the electron–electron dipolar

angles to h;/ð Þ ¼ 90
�
;180

�� �
, and the electron–proton dipolar

angles to hn;/nð Þ ¼ 0
�
;0

�� �
. The electron relaxation times were

set at T1;e ¼ 0:3 ms and T2;e ¼ 2:5 ls for bis-nitroxide, and the
nuclear relaxation time was set to T1;n ¼ 0:1 s for the protons.
The single crystal orientation was chosen to be [0�, 137.5�, 275�]
(Fig. 2 and Fig. 4). The electron-nucleus dipolar angles are arbitrary
but for the chosen hyperfine coupling strength, they have no effect
on the outcome of simulations which are dominated by the elec-
tron spins’ dynamics [37].

The MAS-DNP field profiles of ‘‘AMUPol” used parameters
extracted from DFT and EPR experiments [44]. The g-tensors rela-

tive orientation was set to a; b; cð Þ ¼ 58
�
;57

�
;126

�� �
, Da;b ¼ 35

MHz, Ja;b ¼ �16 MHz, the electron–electron dipolar angles to

h;/ð Þ ¼ 78
�
;167

�� �
, and the proton hyperfine coupling was identi-

cal to the single orientation case. In this case, the electron T1;e was
assumed anisotropic, i.e., T1;e ¼ f gð Þ; where f is a second order
polynomial [51,94] and T2;e ¼ 2:5 ls.

For ‘‘AMUPol” and the fictious bisnitroxide, the 14N nitrogen
hyperfine coupling was set to AN = [20 18 101] MHz. Each electron
spin is coupled to one 14N nuclear spins. The hyperfine coupling
can be implicitly or explicitly considered.

In Fig. 3 and Fig. 8, the 14N were implicitly accounted for by con-
sidering that the hyperfine coupling shifts only the electron Larmor
frequency

bHz;i ¼ gi tð ÞbeB0 þmI;iA
N
z;i tð Þ

� �bSz;i: ð12Þ

In these simulations, mI;i was randomly picked between [1,0,-1]
for each radical of each crystal orientation.

In Fig. 4, the 14N are explicitly accounted for and their relaxation
times were T14N

1;n ¼ 0:025 s. In Fig. 6, the 15N hyperfine coupling,
3

[28 25 142] MHz, are explicitly accounted for. The relaxation times
were T15N

1;n ¼ 0:025 s.
Large integration grid made of 800 three angles REPULSION sin-

gle crystal orientations [95], were used to ensure convergence of
the simulations for bisnitroxide.

The quadrupolar interaction of the 14N was ignored as it is rel-
atively small compared to the hyperfine coupling and Larmor fre-
quency [96].

For simulations with S = 3/2 and 5/2 (Fig. 9), a Dzfs ¼ 1 GHz was
assumed (i.e., with Principal Axis Frame values [-1–1 2] GHz). The
g-tensor was assumed to be isotropic and set, for convenience, to
2.0023. The dipolar coupling between the electron spins was set
to Da;b = 30 MHz. The nucleus was assumed to be a 13C with a
hyperfine coupling was set to 0.75 MHz. The ZFS relative orienta-

tion was a; b; cð Þ ¼ 90
�
;90

�
;90

�� �
, the electron–electron dipolar

angles to h;/ð Þ ¼ 90
�
;180

�� �
and the electron a - proton dipolar

angles to h;/ð Þ ¼ 0
�
;0

�� �
. The relaxation times were set to

T1;e = 0.1 ms and T2;e = 2.5 ls, an T1;n ¼ 10 s. 200 three angles
REPULSION single crystal orientations were sufficient to reach
convergence.

All the simulations were carried out on a Dell Precision 7820,
equipped with two Intel XEON gold 6130 CPUs, with 96 GB of
RAM, and operating under Ubuntu 20.04.2 and using MATLAB
2020b (The MathWorks, Inc). The code was written in MATLAB
and optimized to maximize calculation speed.

3. Adaptive integration in MAS-DNP

3.1 Principles

One obvious improvement to MAS-DNP simulations, and MAS
simulations in general, is to avoid the constant time step integra-
tion and use an adaptive grid instead. So far, the MAS-DNP codes
described in the literature use uniform/equidistant integration
steps [35–37,41] which could be improved with an algorithm that
automatically determines the optimal integration step size to
achieve a given accuracy level.

The algorithm presented herein aims to (1) be simple to imple-
ment, (2) be accurate, (3) have low overhead (i.e., does not slow
down the simulations), and (4) avoid re-computation of the Liou-
villian and propagator super-operators.

The workflow of this procedure is shown in Fig. 1. It is a modi-
fied two steps forward Euler method that computes accurately the
spin dynamics during the rotor-events. First, the integration inter-
val, i.e. one rotor period, sr ¼ 1=mr , is divided into two different
grids, each containing 2n elements. The largest time step allowed
for the simulations is dtmax ¼ sr=27 and the smallest time step
allowed is dtmin ¼ sr=2N (N = 12–14). The code determines on the
fly, the optimal dt 2 dtmin; dtmax½ � for each ‘‘integration step”.

The master equation is first integrated with the largest step
interval dtmax and the largest convergence criterion � ¼ �max. Then,
and for all following integration step, two computations are carried
out: one super-operator propagator is computed with a time step
dt and a second one with 2dt:

bbU 2�steps 0; t þ 2dtð Þ ¼ bbU 0; tð Þe�i
bbL tþdtð Þdte�i

bbL tþ2dtð Þdt ð13Þ

bbU 1�step 0; t þ 2dtð Þ ¼ bbU 0; tð Þe�i
bbL tþdtð Þ2dt ð14Þ

To assess convergence, the Frobenius norm of the difference
between the two super-operator propagators, D1�2 , is calculated:

D1�2 ¼ k bbU 2�steps 0; t þ 2dtð Þ � bbU 1�step 0; t þ 2dtð ÞkFro ð15Þ



Fig. 1. Schematics of the adaptive integration scheme for MAS-DNP simulations in
the case of the Liouville space simulations. Typically, N = 12–14.
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If D1�2 is smaller than a user determined threshold � (typically
10-3) the simulation proceed to the next integration step, and sets

bbU 0; t þ 2dtð Þ ¼ bbU 2�steps 0; t þ 2dtð Þ; ð16Þ
The integration step is increased by a factor two (if dt is smaller

than dtmax)

dt0 ! min 2dt; dtmaxð Þ ð17Þ
If the difference is greater than � the calculation is carried out

with a time step smaller by a factor 2

dt0 ! max dt=2; dtminð Þ ð18Þ
The code loops back and computes

bbU 2�steps 0; t þ 2dt
0� � ð19Þ
4

bbU 1�step 0; t þ 2dt0ð Þ ð20Þ
The procedure is carried out until convergence is achieved, i.e.

D1�2 < �. To avoid recomputing the super operator propagators at
each step, they are evaluated for the smallest dt ¼ dtmin

bbU t; t þ dtminð Þ ¼ e�ibbL tþ2dtminð Þdtmin ð21Þ
and stored propagators in memory. They can later be scaled up by
computing

bbU t; t þ dtð Þ ¼ e�ibbL tþ2dtminð Þdtmin

� �dt=dtmin ð22Þ

which is ‘‘fast” when dt=dtmin is an integer.
This integration scheme is notoriously insufficient to capture

rapid changes such as the rotor events. Without additional con-
straints, the code requires a stringent convergence criterion � to
be accurate, annihilating the benefit of the adaptive integration.
To overcome it, and find a balance between accuracy and speed,
two convergence criteria were introduced: one, used away from
the rotor events, �max, one used nearby the rotor events, �min.

In addition, the existence of a rotor event is determined at each
step with a sub-routine that checks if an energy level crossing/anti-
crossing exists in the interval t; t þ 2dt½ �. If this is the case, then a
new convergence tolerance then � is set:

� ¼ max �=10; �minð Þ ð23Þ
where �min is user-defined (typically 10-6). This ensures proper
assessment at the rotor-events. This criterion is then slowly re-
increased towards �max after the energy crossing:

� ¼ min �� 10; �maxð Þ ð24Þ
It is sufficient with this approach to check the energy level

crossings occurring in the rotating frame since the energy diagram
is dominated by the off-resonance generated by the g-tensors’ ani-
sotropies under typical MAS-DNP conditions.
3.2. Applications

This algorithm leads to a factor > 3 in time savings for MAS-DNP
simulations while maintaining very good accuracy (� 5%). This is
illustrated in Fig. 2 which shows the computation for a single crys-
tal orientation at ‘‘steady orbit” (or ‘‘quasi-periodic steady state”).
The full lines, Fig. 2 (a) show the constant time step integration car-
ried out with 213 = 8192 steps. Fig. 2 (b) lines with crosses show the
same simulation with the adaptive integration algorithm which
lead to only 2225 steps. The time saving is a factor 35 s/10 s �
3.5. This value is very close to the ratio of number of steps
8192/2225 � 3.6, meaning that subroutine that determines the
optimal time steps has minimal overhead.

This is confirmed with simulations of a AMUPol’s MAS-DNP
field profile using both methods and reported in Fig. 3. The equidis-
tant method took 3.5 times longer than the adaptive version lead-
ing to identical profiles and a maximum error of � 8% and an
average error < 5%.

All in all, and despite its simplicity, the adaptive integration
scheme presented here is very powerful. It significantly reduces
computation time, by a factor 3–5 depending on the convergence
criteria and the spin system, while remaining accurate. It thus
enables computing MAS-DNP field profiles, probe the effect of spin
or experimental parameters to be tested, in a shorter timescale.

The method presented here still suffers from Liouville space
simulations exponential scaling with the number of spins. To
address this problem an alternative formalism was developed, a
hybrid between Hilbert and Liouville space.



Fig. 2. Single crystal, time dependence after 30 s of at ‘‘steady orbit” of the
polarization of electrons spin a Pa (blue), electron spin b Pb (red) and nuclear spin
P1H (black), in the case of constant step integration with 8192 steps (a) obtained in
35 s, and adaptive integration (b) obtained in 2225 steps and 10 s. The integration
steps can be seen in figure (a) as Pa is represented with a blue line and crosses. In
figure (b) the Pa; Pb and P1H are represented with vertical crosses which illustrates
where finer and coarser steps where used. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. MAS-DNP field profile of AMUPol computed with two different methods:
equidistant (black circles) and adaptive integration (open red squares). The
equidistant was computed in 5 h 48 min as compared to 1 h 39 min for the
adaptive. The maximum number of steps was set to 8192 (N = 13) and the
convergence criteria were [10-3,10-6] (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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4. Operator splitting, the hybrid Hilbert/Liouville formalism

4.1 Taking advantage of Hilbert space scaling

In this section, a simulation method that combines Hilbert
space and Liouville space components is presented. This method
avoids, in part, the Liouville space simulations scaling issue. In
absence of any Liouville basis truncation, a M spin ½ system is rep-
resented with a Liouvillian and evolves under a super-operator
propagator of size of 4M while the corresponding Hilbert space size
is 2M. The Liouvillian of a five-spin system has a size (1024�1024)
and while the Hamiltonian size is only 32�32. The exponentiation
is in general computationally intensive and scales unfavorably,
even when the Liouvillian is sparse [74]. For a Liouvillian contain-
ing both the coherent and incoherent processes, there are often no
‘‘hidden” symmetries, and the full matrix must be exponentiated.
One would thus want to take advantage of the more favorable Hil-
bert space scaling, as previously done by Thurber and Tycko [35],
but also keep the convenience of Liouville space to introduce relax-
ation. This is possible under certain conditions and relies on 3
observations.

Observations (1), if the relaxation super-operator is written in

the Rotating Frame Hamiltonian (bH0) eigenbasis wavefunction, it
takes a ‘‘kite shape” [97]. It is the direct sum of the terms related
to the population and those related to the coherences such that

bbR ¼ bbRPop 	 bbRCoh ð25Þ
bbRPop being a square non-diagonal matrix of size 2M and bbRCoh is a

square diagonal matrix of dimension 2M(2M�1) � 22M. The expo-
nentiation preserves the kite shape and is thus fast and straightfor-
ward. It maps as

exp �i
bbRt
 �

¼ exp �i
bbRPopt


 �
	 exp �i

bbRCoht

 �

ð26Þ

Only a 2M�2M matrix, bbRPop, must be exponentiated, and the

exponential of the numbers populating the diagonal of bbRCoh must
calculated.

Observation (2), the MAS-DNP simulations are often carried out
in small steps (�10 ns) and for the typical interactions/relaxation
rates found under MAS-DNP conditions (T2;e ls, x1 MHz,
Da;b = Ja;b MHz) the Lie-Trotter product formula [98] (or Suzuki–
Trotter expansion up to the first order [99]), is valid. Thus,

e�ibbL tð Þdt ¼ e
�i bbH tð Þþ

bbR tð Þ


 �
dt

¼ e�i
bbR tð Þdte�i

bbH tð Þdt þ O dt2
� �

: ð27Þ

Observation (3), e�i
bbH tð Þdt (Liouville space) is a very large matrix

and slow to compute. However, using this Suzuki–Trotter
approach, one can use a Hilbert space computation instead

e�ibH tð Þdt if the density matrix is re-written in Hilbert space for this
step.

The resulting Hilbert/Liouville formalism, is illustrated in Fig. 4.
First, the density matrix, written as a 2M�2M matrix and written inbH0 ’s eigenbasis. It is then propagated in the Hilbert space using

bq t þ dtð Þ ¼ bUH tð Þbq tð ÞbU�1

H tð Þ ð28Þ

where bq and bUH tð Þ ¼ e�ibH tð Þdt are operators in the Hilbert space.bq is then turned into a Liouville space vector of size 4M by a simple

‘‘reshape” command, which corresponds to bq!written in the Labo-



Fig. 4. Schematic of Hilbert/Liouville formalism. First the density matrix is
propagated in Hilbert space, then reshaped and Relaxation is applied. Finally, it is
reshaped back into the Hilbert Space. In this schematic, the rotation ‘‘into” and
‘‘from” the lab-frame Hamiltonian eigenbasis were omitted for clarity. They occur at
the beginning and the end of this cycle.

Fig. 5. Time dependence of the polarization for nitroxide biradical made of 2
electrons, 2 14N, and one 1H across one rotor period after 100 ms of evolution. Blue,
polarization of electron spin a Pa , red, polarization electron spin b Pb , gold,
polarization of the 14N connected to electron a P14N;1, green, polarization of the 14N
connected to electron b P14N;2, and black for spin P1H computed in 15 min. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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ratory frame eigenbasis wavefunction. The relaxation (super-

operator) propagator bbUR tð Þ ¼ exp �ibbRPopdt

 �

	 exp �ibbRCohdt

 �

can be applied

bq! t þ dtð Þ ¼ bbUR tð Þ bq! t þ dtð Þ ð29Þ
The density matrix ‘‘vector” is then written back into the Hilbert

space, as a simple ‘‘reshape” command, and finally rotated back

into the Zeeman basis. bUH and bbUR and the eigenvectors bV can be
computed for one rotor period and stored in memory for subse-
quent calling.

4.2. Applications

The advantages of this approach are not obvious: (1) the num-
ber of computations is doubled, (2) it is more memory demanding,
(3) it does not take advantage of the periodicity offered by Liouville
space simulations. However, the execution time of exponential
matrices and matrix multiplication are the main bottlenecks lead-
ing to slower simulations in full Liouville space. The combined Hil-
bert/Liouville method is massively faster for larger spin systems,
with literally no accuracy difference between the Hilbert/Liouville
and full Liouville approach (see Figure SI 1 for a 3-spin system).
Fig. 5 illustrates the potential of this formalism by exploring the
evolution of a 5-spin system: 2 electrons spin 1/2, 2 14N, and a pro-
ton after it evolved for (100 ms). The simulation took 890 s on a
single CPU core. In comparison, this 5184�5184 problem in
Liouville space, combined with the Zero-Track Elimination (vide
infra) and a basis size reduction by 75% (cutoff criteria 10-5), vastly
exceeded 15 h.

The simulations reveals that all the rotor events are now ‘‘split”
into sub-rotor events due to the significant 14N coupling and that
14N undergo very strong Cross-Effect rotor event occurring close
to the dipolar/exchange rotor events. They affect the electron spins’
dynamics by creating significant changes in their polarization. It
also shows that, as the number of spins is increased, the sharp nat-
ure of the rotor-events gets smeared into a more continuous form
as anticipated in earlier work [39].

This brings up the question: can the spin dynamics of nitrogen
be ignored for bis-nitroxides? Fig. 5 shows they impact all the rotor
events and the electrons’ polarization, but so far, their dynamics
have been left out of MAS-DNP simulations due to scaling issues.
The Hilbert/Liouville method enables answering this question.
The MAS-DNP field profile of ‘‘AMUPol” made of {2 electrons, 2
nitrogens, 1 proton} was computed in two cases: (1) by explicitly
including the nitrogens’ nuclear spins, i.e. with the secular and
pseudo secular hyperfine to the nitrogen spins, (2) by considering
only the shift induced by secular hyperfine to the nitrogen spins
(see Eq. (12)). In case (1), the simulations consider the contribution
of the nitrogen spin to the total spin dynamics, while in case (2),
the nitrogen only shifts the electron Larmor frequency.

To keep the simulation time down (i.e., less than a day), 15N
were used. The results are reported in Fig. 6. The black circles cor-
respond to the full treatment of the 15N hyperfine coupling while
the open red square correspond to the implicit case. The two
MAS-DNP field profiles are very similar. The relative intensities
of the maximum positive and negative sides are identical. The pro-
files are identical in the low field region but slightly differ in the
high field one. The approximation (Eq. (12)) repeatedly underesti-
mates the DNP efficiency on the right edge of the MAS-DNP field
profile. The optimal field position is slightly shifted as well. Overall,
6

these effects are small and these simulations (and others, see figure
SI 4) confirm that one can safely ignore the impact of the nitrogen
on the MAS-DNP performance of bis-nitroxides.



Fig. 6. MAS-DNP field profiles after 100 ms of free evolution of a spin system
mimicking a AMUPol labelled with 15N. Black circles represent a 5-spin system {2
electrons spin ½, 2 15N, 1 proton} computed with the Hilbert/Liouville method. Both
secular and pseudo-secular 15N hyperfine coupling terms are considered. Red open
squares represent adaptive Liouville space simulations where the 15N hyperfine
coupling are implicitly accounted for. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Lastly, the adaptive integration scheme and the Hilbert/Liou-
ville formalism can be combined. The algorithm is identical with
exception of the convergence criteria D1�2 is applied to the density
matrix and becomes

D1�2 ¼ kbq2�steps 0; t þ 2dtð Þ � bq1�step 0; t þ 2dtð Þk
Fro

� � ð30Þ
This adaptive integration generates significant time savings

when the number of rotor events is low. This is illustrated on a
model biradical made of 2 electrons and 2 nuclei with large isotro-
pic hyperfine couplings matching the Larmor frequency of the
Fig. 7. Top high field EPR spectrum of the hypothetical biradical computed with
Easyspin. Bottom 73 points MAS-DNP field profile computed with the hybrid
Hilbert/Liouville method after 100 ms evolution, for a 5-spin system {2 electron
spins, 2 15N, 1H}. The 15N couplings are isotropic and equal to 400 MHz, the g-
tensors are [2.0027, 2.0024, 2.0023]. The biradical geometry was identical to the
fictious bisnitroxide used in Fig. 2. T1;e = 0.5 ms and T2;e = 2.5 ls.
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proton. This spin system is similar to the ideal biradical proposed
by Thurber and Tycko [35], except that the EPR line is not split
due to different isotropic g-tensors but due to the isotopic hyper-
fine coupling. The corresponding MAS-DNP field profile is reported
in Fig. 7. It was obtained in < 6 h, �9 times faster than the equidis-
tant computation.

Expectedly this type of spin system can generate significant
enhancement and could be superior to bis-nitroxides. One should
note that such a mechanism may occur in Mn2+ when polarizing
certain nuclei (e.g. 31P at � 14.1 T) or with 13C-labelled bis-trityl
that exhibit very large hyperfine interactions [100].

All in all, the Hilbert/Liouville formalism is very efficient for lar-
ger spin system. Its speed makes this method pertinent to deter-
mine which terms in the density matrix are getting populated,
thus enabling a speed up the Liouville space simulations via the
reduction of the Liouville basis. This process, called Zero-Track
Elimination [88], is described in the following section for periodic
Hamiltonian used in MAS-DNP simulations.

5. The Zero-Track Elimination (ZTE) for periodic Hamiltonians

In this section the Liouville/Hilbert method is used to reduce
the space size of the conventional Liouville method. As demon-
strated by Kuprov et al. [69] the Liouville space is often sparsely
populated during magnetic resonance simulations. States that do
not contribute to spin dynamics can be safely discarded, leading
to smaller super-operators [71,88]. For a time-independent Hamil-
tonian, it is sufficient to propagate the full density matrix over a
few time steps to assess which terms are not populated and there-
fore can be discarded. This is the ZTE algorithm [71,88].

However, the time dependence induced by MAS complicates
the application of the ZTE algorithm. As MAS-DNP involves peri-
odic, quasi-instantaneous energy level anti-crossing (rotor event),
the spin system must be propagated over at least one rotor period
to assess which terms can be discarded. For large spin systems, this
is nearly impossible when using the full Liouville formalism.
Instead, the propagation can be carried out with the Hilbert/Liou-
ville formalism, thus enabling the ZTE and the shrinking of the
Liouville basis used in Liouville space simulations.

In the current implementation, the density matrix is propagated
over Nr = 21 rotor periods. The density matrices computed at each
step of the last rotor period, bq Nr � 1ð Þsr þ kdtð Þ; are stored in
memory. The module of the density matrices elements
jqi;j Nr � 1ð Þsr þ kdtj is averaged over the last rotor period as

kqi;jk ¼ 1
#steps

X#steps

k¼1
qi;j Nr � 1ð Þsr þ kdtð Þ
 : ð31Þ

If kqi;jk < � the state can be discarded from the basis.
As MAS-DNP requires powder averaging, two strategies can be

devised: (1) apply the ZTE for each single crystal orientation prior
to executing the reduced Liouville space simulations, or (2) try to
find the minimal basis size common to all crystal orientations and
then run the reduced Liouville space simulations. The ZTE being
still time consuming, option 2 is a smarter choice. The minimal
common basis can be found by executing the ZTE for multiple
crystal orientations. For Cross-Effect MAS-DNP, 40 REPULSION
crystal orientations are sufficient to determine these commonly
populated states. The final basis consists of all the states that
meet the criteria kqi;jk > � at least once for all the crystal orienta-
tion, i.e.

kqi;jktotal ¼
1

#steps

X#CrystalOrient

CF¼1

X#steps

k¼1
qi;j Nr �1ð Þsr þkdtð Þ
 

CF
>�

ð32Þ



Fig. 8. MAS-DNP field profile of AMUPol computed with equidistant integrations
steps (black circles, in 5 h 48 min), computed with adaptive integration and reduced
Liouville space (open red squares, 1 h). The maximum number of steps was set to
8192 in these simulations. Adaptive integration, reduced Liouville (42 states vs 64)
and a maximum number of steps set to 4096 obtained in 40 min (open blue
diamonds). For all simulations the convergence criteria were [10-3,10-6]. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 8 reports the MAS-DNP field profile computed in the case of
AMUPol with ZTE as compared to the full space, equidistant inte-
gration. Keeping the terms that are kqi;jk > � ¼ 5� 10�5, only 42
of the 64 terms survived. The simulations using adaptive integra-
tion and ZTE were 5.2 times faster when the maximum number
of angular steps was set to 8192. The ZTE execution took 40 s
and was executed once at B0 ¼ 9:394 T. The average error is < 5%
on average. A factor > 8 in time savings is obtained by setting the
maximum number of angular steps to 4096. The errors are larger,
about 8 % on average, but simulations still provide an accurate
MAS-DNP field profile and are thus sufficient for that purpose.

6. Discussion

Numerical simulations of MAS-DNP are time consuming, even
for a small spin system made of 3 spins 1/2. They can take a few
hours up to a few days depending on the number of parameters
scanned and the extent of the powder averaging. Thus, three differ-
ent strategies with minimal approximations, and their implemen-
tations, have been described: the adaptive integration for Liouville
space simulations, the hybrid Hilbert/Liouville method, the ZTE for
time dependent problem. The first two are independent while the
ZTE relies on the Hilbert/Liouville formalism but benefits the Liou-
ville space simulations. The improvement in the simulation times
should not be compared with what was achieved in recent work
[39,44]. The methods are not intended to simulate thousands of
spins, instead, the absence of additional assumptions makes these
methods ideal to probe cases where there is no prior knowledge of
spin dynamics. This is essential to understand the spin dynamics
and be able to make assumptions/simplifications in order to build
larger spin systems.

6.1. Adaptive and ZTE

The adaptive integration scheme for the Master equation is a
simple scheme that improved the speed of the simulations by a
factor 3–5 without affecting the accuracy. Combined with the
8

ZTE the gains are even more important as displayed in Fig. 8.
Specifically, the Liouville basis of a 3-spin system (2 electrons spin
1/2, one nucleus 1/2) was reduced by ZTE from 64 to 42 states
(� 65% or the original size). Scanning through experimental or
magnetic parameters is made accessible on a reasonable time scale
for 3-spin systems. The method was successfully used at screening
stages of biradical design [49].

The adaptive integration scheme performs well for small spin
systems because few rotor events occur. This means that the over-
head induced by checking the convergence criteria, the scaling of
the propagator, is vastly compensated by the reduction of the
number of steps. As the number of spins increases, the rotor events
become more continuous, and the adaptive integration becomes
slower than the brute force equidistant integration.

The ZTE implementation for periodic problem can be straight-
forwardly applied to any system and any basis. In practice, the
ZTE leads to drastic basis size reduction when the interaction graph
is sparsely connected, in other words, when each spin is connected
to very few neighbors [88]. The ZTE used for a 5-spin system (2
electrons, 2 14N, 1 proton) reduced the problem size from 5180
to 1106, i.e. a factor 5, with a cutoff criteria of 10-5.

Here, the ZTE algorithm uses the hybrid Hilbert/Liouville
method to propagate large spin systems and then reduce the basis
for Liouville space simulations. It could have been implemented
with a Krylov propagation [70,75,82] that only involves fast
matrix/vector propagator instead of matrix exponential. For speed
purposes it may be possible to use a Hilbert space propagation,
albeit with a lower efficiency as high order of coherences may
not decay quickly enough [101].

These algorithms are subject to improvements, further boosting
their efficiency. Cleverer adaptive integration schemes may pro-
vide better results both in terms of accuracy and computation time
if their overhead is significantly lower than the proposed algo-
rithm. So far, the algorithm described above ‘‘slows” down for each
energy level crossing whether it contributes to the spin dynamics
or not. This clearly can be improved by using the approximated
eigen-energy diagram, as used to compute field swept EPR spectra
[87,102].

Another significant improvement may be obtained by using
‘‘Iserles” integrators [103,104], that are equivalent to the trape-
zoidal integrations. In Spinach v.2.6, their implementation yields
time savings > 5 [74].

Finally, the ZTE could be made more efficient with more Liou-
ville basis adapted for truncation, such as IST [68,74,97,105,106].
6.2. Hybrid Hilbert/Liouville

Despite these two improvements simulations in Liouville space
(even truncated) remain exceedingly slow for large spin system.
For example, it is nearly impossible to compute a single crystal ori-
entation containing spins systems with a Hilbert space
size > 32�32 on a reasonable time-scale. This led to the develop-
ment of an alternative approach to compute larger spin systems:
the hybrid Hilbert/Liouville formalism. The method takes advan-
tage of the need for small integration steps, to benefit from the
scaling of the Hilbert space. This enables the propagation of spin
system that are significantly larger and that include spins > 1/2.
To fully take advantage of the Hilbert space scaling, the relaxation
was introduced in the eigenbasis wavefunction of the rotating

frame Hamiltonian bH0. This basis was used to compute the coher-
ent propagator and make the relaxation super-operator exponenti-

ation simple. Introducing the relaxation in the eigenbasis of bH0

requires the diagonalization which might be a bottleneck [107].

However, bH0 is always block-diagonal and the diagonalization is
very fast when combined with the Tarjan algorithm [108].
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This method does not fully take advantage of the periodicity of
the problem. This is a difficulty also faced by Thurber and Tycko in
their implementation of the MAS-DNP simulations [35] where Hil-
bert space simulations and a separation of coherent and relaxation
processes were used.

As the relaxation model used here only considered exponential
decays it enables the propagators/relaxation super-operator of the
Hilbert/Liouville approach to be stored in memory. The buffering
facilitates longer propagation. To illustrate this, a MAS-DNP simu-
lation of a three-spin system (2 electron spin 1/2 and a nucleus
1/2) was carried out for 1.25 s of free evolution. This simulation
took approximately 15 min with buffering 16 h without. The Hil-
bert/Liouville simulations, even with buffering, remains impracti-
cal for a small spin system as the full Liouville space simulations
only take � 30 s.

The Hilbert/Liouville implementation is designed for larger spin
systems. It is, so far, the only viable numerical method without sig-
nificant approximations. As a demonstration, simulations with 2
electron spins, 2 14N and one proton was carried out over 100 ms
in just 15 mins for a single crystal, on a single core! We used it
to show that the dynamics of the bis-nitroxide nitrogen are not
essential for the MAS-DNP process and can be omitted. Addition-
ally, the formalism is compatible with the adaptive integration sav-
ing significant computation time when the spin system does not
involve too many rotor events. This was perfectly adapted to the
model biradical where two well defined EPR lines are separated
by the proton Larmor frequency.

The hybrid Hilbert/Liouville formalism can compute MAS-DNP
field profile with two electrons spin 5/2 and one nucleus spin 1/2
as illustrated in Fig. 9. In Fig. 9 (a, bottom) the Solid-Effect MAS-
DNP field profiles were computed in two different spin systems,
an electron spin 3/2 or 5/2 connected to a 13C spin (black circles
and red squares respectively). The corresponding high field EPR
spectra are reported in Fig. 9 (a, top). For readability, the MAS-
DNP field profiles were centered around the central transition
� 1

2 $ 1
2 but broader field profiles were computed and reported in

the SI (Fig. SI 2). The MAS-DNP field profiles presents the expected
Fig. 9. MAS-DNP field profile computed with the hybrid Hilbert/Liouville method after 25
or 5/2 (red open squares) and one carbon atom; (b, bottom) Cross-Effect case with two e
and (b) are the corresponding EPR spectra of the spin systems used for the MAS-DNP sim
[0.5 0.5] mT and a D strain of 100%, using the ‘‘matrix” method. In the MAS-DNP no strain
reader is referred to the web version of this article.)
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positive and negative enhancement outside of the EPR spectra. The
simulations were carried out in 28 and 40 min respectively corre-
spond to an evolution of 25 ms. The speed of the simulations indi-
cated that even spin 7/2, as found in Gd3+, could be simulated.

Similarly, Fig. 9 (b, bottom) reports the Cross-Effect MAS-DNP
field profiles for two different spin systems, two electron spins
3/2 with or two electron spin 5/2 connected to a 13C spin (black cir-
cles and red squares respectively). The corresponding high field
EPR spectra are reported in Fig. 9 (b, top). The MAS-DNP field pro-
files presents the expected positive and negative enhancement
inside of the EPR spectra. Again, the field profiles are centered
around the central transition � 1

2 $ 1
2 for readability, broader field

profiles are reported in the SI (Fig. SI 2). They reveal significant
enhancement arising for these higher spin number states transi-
tion. The simulations took 2 h and 18 h respectively for 25 ms of
evolution time. It may be possible to compute two electron spins
7/2 and a nuclei, or two Mn2+ and a nuclei using a more powerful
computing setup.

This operator splitting method could be used to confirm the
theoretical prediction by Corzilius of the MAS-DNP mechanism
when electron spin 
 5/2 are involved [45], test the effect of the
relative ZFS orientation and build an equivalence with the g-
tensors’ distance [43]. It may then be possible to build faster
MAS-DNP model that uses Landau-Zener approximation and
severely truncated Liouville basis as was done for bis-nitroxides
[39,44,46,47]. This remains beyond the scope of this manuscript.

In general, the hybrid Hilbert/Liouville is not immediately suit-
able to compute polarization gains �B at the steady orbit. A shorter
evolution time may affect the shape of the MAS-DNP field profiles.

For Cross-Effect in small spin system, the nuclear polarization at
steady orbit is usually obtained in hundreds of milliseconds [35],
meaning that the Hilbert/Liouville method could be used to com-
pute accurate MAS-DNP field profiles. This was observed for the
MAS-DNP field profiles which is identical for shorter (12.5 ms) or
longer evolution time (100 ms) (see figure SI 3), illustrating that
reliable MAS-DNP field profiles are possible in a reasonable time
scale, i.e. within a few hours to a day.
ms evolution. (a, bottom), Solid Effect case with one electron spin 3/2 (black circles)
lectrons spin 3/2 (black circles) or 5/2 (red open squares) and one carbon. Top of (a)
ulations. The EPR spectra were computed with Easyspin assuming a line broadening
was included. (For interpretation of the references to colour in this figure legend, the
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For the Solid-Effect and Overhauser case, the steady state is
reached after a much longer evolution time [109–111]. Approxi-
mate MAS-DNP field profile may be obtained by computing them
with short evolution time (e.g. 25 ms) and scale them by comput-
ing the steady state for a single magnetic field point.

Steady state polarization may nonetheless be accessible with a
cleverer approach than brute-force time propagation. For example,
it is possible to use optimization Monte Carlo algorithms to com-
pute the steady state polarization as previously done for large spin
systems [50].

Finally, this hybrid method could also be improved, using the
already mentioned Iserles integrators, a cleverer adaptive integra-
tion and different basis. Together they would provide enable
reducing the number of angular steps required and the basis size,
thereby limiting the memory requirements, and speeding the sim-
ulations up.

7. Conclusion

In this article we showed three numerical methods to make
MAS-DNP simulations faster. The three methods, adaptive integra-
tion, hybrid Hilbert/Liouville approach and ZTE each have their
domain of applications and combination. The ZTE combined with
adaptive integration leads to time saving ranging from 5 to 10
depending on the level of accuracy enabling computation of MAS-
DNP field profiles of small spin systems straightforward. The hybrid
Hilbert/Liouville approach is powerful to look at spin systems with
more spins or spins greater than 1/2. This enables computing spin
systems that corresponds to a Liouville space 80 times greater than
the commonly used 3-spin 1/2 system that mimics the Cross-Effect.
The formalism can serve as a platform to analyze the spin physics in
these systems and seems sufficient to computer properties such as
MAS-DNP field profiles but is ineffective to compute the steady
state polarization. Each of these methods were illustrated with
examples that provided a glimpse of what is accessible and how
the spin dynamics changes with the nature of the paramagnetic
species. We finally discussed potential improvement that could
be made to the codes to further improve them.
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