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Multimagnon dynamics and thermalization in the S = 1 easy-axis ferromagnetic chain
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Quasiparticles are physically motivated mathematical constructs for simplifying the seemingly complicated
many-body description of solids. A complete understanding of their dynamics and the nature of the effective
interactions between them provides rich information on real material properties at the microscopic level. In
this paper, we explore the dynamics and interactions of magnon quasiparticles in a ferromagnetic spin-1
Heisenberg chain with easy-axis on-site anisotropy, a model relevant for the explanation of recent terahertz
optics experiments on NiNb2O6 [P. Chauhan et al., Phys. Rev. Lett. 124, 037203 (2020)], and nonequilibrium
dynamics in ultracold-atomic settings [W. C. Chung et al., Phys. Rev. Lett. 126, 163203 (2021)]. We build a
picture for the properties of clouds of a few magnons with the help of exact diagonalization and density matrix
renormalization group calculations supported by physically motivated Jastrow wave functions. We show how the
binding energy of magnons effectively reduces with their number and explain how this energy scale is of direct
relevance for dynamical magnetic susceptibility measurements. This understanding is used to make predictions
for ultracold-atomic platforms, which are ideally suited to study the thermalization of multimagnon states.
We simulate the nonequilibrium dynamics of these chains using the matrix product state based time-evolution
block decimation algorithm and explore the dependence of revivals and thermalization on magnon density and
easy-axis on-site anisotropy (which controls the strength of effective magnon interactions). We observe behaviors
akin to those reported for many-body quantum scars, which we explain with an analytic approximation that is
accurate in the limit of small anisotropy.

DOI: 10.1103/PhysRevB.105.054413

I. INTRODUCTION

How does one characterize the low energy spectrum
of a system of a large number of electrons? In many
cases, we are fortunate to afford a description of these
seemingly complicated many-body systems in terms of
quasiparticles. A comprehensive understanding of their dy-
namics and the nature of the effective interactions between
them provides us with rich information on real material
properties at the microscopic level. Quasiparticles can ex-
ist in various forms: For example, effective electrons in a
Landau-Fermi liquid [1], spinons in a quantum spin liquid
[2], or magnons in a system with conventional magnetic
order [3,4].

Magnetic spin chains provide particularly illuminating ex-
amples of quasiparticle physics associated with many deep
insights into how strongly correlated electrons collectively
act. In the antiferromagnetic S = 1/2 chain, for example,
neutron scattering sees a continuum of excitations, provid-
ing striking confirmation of spin fractionalization and the
emergence of spinon quasiparticles [5,6], a consequence of
correlated many-body effects. The S = 1 case is equally spec-
tacular, giving rise to the Haldane spin gap associated with
effective S = 1/2 fractionalized degrees of freedom, which
are deconfined [7–12]. The low dimensionality of spin chains
makes magnetic order highly unstable to quantum fluctua-
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tions, and it is now known that even in higher dimensional
systems, geometrical effects such as frustration can achieve
similar qualitative outcomes [2,13]. In the case of ferromag-
nets, more conventional magnon quasiparticles are expected
and observed, which are well described within the framework
of spin wave theory. Interactions between magnons can lead
to distinct signatures in the excited state spectrum [4], and
corresponding finite frequency observables such as the dy-
namical magnetic susceptibility. Adding to the richness of
possible emergent behaviors from quasiparticle interactions is
the effect of temperature [14,15], which must be accounted
for to connect to real experiments. Thus, spin chains provide
an ideal setting for exploring the dynamics and effective inter-
actions of magnons and their impact on measurements.

S = 1 systems with predominantly Heisenberg interactions
offer an interesting ground for exploring the physics of in-
teracting magnons. For S = 1 and higher, terms such as the
biquadratic interaction and on-site anisotropy are allowed
[16], both of which are forbidden for the S = 1/2 case. There
is a large class of materials and associated realistic models
with high spin (see for example [13,15,17–26]); with the
ability to perform accurate measurements and theoretical sim-
ulations of these systems, there is renewed interest in their
physics. In addition to the plethora of high spin compounds
on the materials front, the ability of cold atom systems to
realize effective high spin models is an exciting opportunity
to explore high spin physics in new regimes [27,28].

Our paper here is inspired by, but not limited to, recent
terahertz (THz) optics experiments on NiNb2O6 [15], and
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FIG. 1. (a) Schematic of a S = 1 chain showing the terms in the
Hamiltonian. A representative configuration in the Hilbert space is
shown. The ground state corresponds to all sites in the |1〉 state (or
all |−1〉). For this ground state, a |0〉 corresponds to a single magnon
and |−1〉 a bimagnon. The magnons attract each other via effective
interactions mediated by the on-site anisotropy. (b) Single magnon
dispersion curve for the S = 1 FM spin chain obtained from linear
spin wave theory. Anisotropy gaps out the lowest energy excitation.
(c) Mapping between hyperfine states and S = 1 degrees of freedom
as used in recent ultracold atomic setups. The pink and blue states
correspond to hyperfine states of 87Rb, and the chemical potential is
adjusted to two bosons per site. A microwave pulse can be used to
prepare a superposition of hyperfine states, which in turn translates
to a superposition of |1〉, |0〉, |−1〉 (depicted with red, yellow, and
green colors). More details are in the text.

recent realizations of S = 1 magnets with tunable anisotropy
in ultracold atomic settings [27]. In the former experiment,
the interaction between magnons was effectively tuned be-
tween attractive and repulsive by changing the direction and
the strength of the external magnetic field (longitudinal vs
transverse). This manifests itself as a significant shift in the
location of the excitation in the dynamical susceptibility,
which moved lower or higher in energy depending on the
field direction and the temperature. More recently, higher-
order magnon bound states arising out of magnon interactions
have been seen in FeI2 both in neutron [29] and THz optics
experiments [30]. These findings suggest the importance of
magnon-magnon interactions that arise from anisotropic terms
in the Hamiltonian, which are consequences of spin-orbit cou-
pling.

In this paper, we focus on a simple S = 1 Hamiltonian of
direct experimental relevance, both from the point of view of
real materials and cold atoms,

H = −J
∑
〈i, j〉

Si · S j − D
∑

i

(
Sz

i

)2
, (1)

where J > 0 is the ferromagnetic exchange interaction, D (>0
in this paper) is the local on-site uniaxial anisotropy, Sμ

i for
μ = x, y, z are spin-1 operators at site i. This Hamiltonian is
schematically depicted in Fig. 1(a). We generally focus on
the case of D � J , for NiNb2O6, J ≈ 14.8 K (0.308 THz)
and D ≈ 5.2 K (0.108 THz) [15], i.e., D/J ≈ 0.35. These pa-
rameters correspond to a two-fold ferromagnetic ground state,
with the symmetry broken states being either |1, 1, . . . , 1〉 or
|−1,−1, . . . ,−1〉. Working with one of these ground states

as our vacuum, the elementary excitation is a magnon, which
has well-defined energy and momentum.

The questions we pose here are the following: What hap-
pens when there are multiple magnons in the system, as is
expected at finite temperature or with the introduction of a
transverse magnetic field? How do magnons interact with
one another, and what imprint does anisotropy and magnon
density leave on the physics of thermalization of multimagnon
states? What is the nature of the composite bound states of
magnons, and how do their energetics affect what is observed
in the time domain?

With these objectives in mind, the paper is organized as
follows. In Sec. II, we visit the case of two magnons, and
use a combination of the t-matrix method, the density matrix
renormalization group (DMRG) algorithm [31], and previ-
ously known exact results for two-magnon bound states. In
Sec. III, we transfer our lessons to the case of higher magnon
bound states, and study the nature of magnon clouds using
appropriately defined correlators. A simple Jastrow function
captures all our numerical results surprisingly well, using
which we provide both quantitative and qualitative characteri-
zation of magnon interactions. We then focus on the formation
of bimagnons in the magnon clouds, and how they grow
once they are completely saturated. In Sec. IV, we carry
forth the acquired insights to address the findings of finite
temperature dynamical measurements in NiNb2O6. In Sec. V
we study the effect of magnon-magnon interactions in the
time domain, focusing on the protocol used in S = 1 ultracold
atom setups [27]. We simulate the nonequilibrium dynamics
of these chains using the time-evolution block decimation
(TEBD) algorithm [32]. We study revival and thermalization
behaviors many of which resemble those seen for quantum
many-body scars. We conclude by summarizing our findings
and discussing avenues for possible future experiments.

II. TWO MAGNON PROBLEM

In this section, we review the elementary magnon quasi-
particle excitations of the ferromagnetic (FM) spin chain and
use them to build a picture of two-magnon bound states. We
characterize properties such as their binding energy and their
spatial extent. Building on previous works, we establish that
the uniaxial anisotropy D > 0 acts as an attractive interaction
between magnons, and show that this leads to magnon bound
states.

For the S = 1 case, a magnon is the lowest energy exci-
tation, which has Sz = ±1 arising from a spin-flip |1〉 → |0〉
or |−1〉 → |0〉. Since our Hamiltonian in Eq. (1) has total Sz

as a good quantum number, magnons can be used as building
blocks to describe low energy excitations of various Sz sectors.
Working with the ground state where all sites are in the |1〉
state, and using the Holstein-Primakoff transformation [33],
we rewrite Eq. (1) in terms of bosonic magnon creation and
annihilation operators a†

i and ai:

S+
i =

√
2S − a†

i aiai, Sz
i = S − a†

i ai. (2)

Substituting the above transformations and expanding the
Hamiltonian up to quartic order in ai and a†

i , we get

H = H0 + H2 + H4 + . . . . (3)
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where H0 = −LJS2 − LDS2 is the classical ground state en-
ergy and L is the total number of sites in the spin chain.

The single-particle hopping term H2 is given by

H2 = −JS
∑
〈i, j〉

(a†
i a j + H.c.) +

∑
i

((2S − 1)D + 2JS) a†
i ai,

(4)

diagonalizing which gives the bare single magnon (spin wave)
dispersion

h̄ωq = 2JS(1 − cos(qa)) + (2S − 1)D, (5)

where a is the lattice constant of the spin chain. The schematic
for this functional form is shown in Fig. 1(b). The anisotropy
term vanishes for S = 1/2 since the (Sz

i )2 operator cannot
distinguish between up and down spins. The term, however, is
allowed for S = 1, and leads to a gap in the spin-wave disper-
sion (gives mass to the magnons), stabilizing ferromagnetic
order. This result for one magnon excited states is exact for
the ferromagnetic chain with Sz conservation since the higher-
order terms in Holstein-Primakoff make no contributions to
the case of one magnon.

We now turn to the case of two magnons. This problem
has been solved exactly for arbitrary spin S � 1 (in arbitrary
dimensions) at zero temperature by Tonegawa [34]. (Note
that the choice of J in Ref. [34] is different from ours by
a factor of 2. The exact results have been adapted to match
our convention.) The key results are as follows. The energy
of a two-magnon bound state in an S = 1 Heisenberg chain is
given as a solution of a cubic equation

(1 + δ − ε)3 + p2(1 + δ − ε)2 + p1(1 + δ − ε) + p0 = 0,

(6)

where the two magnon energy is E2 = 4Jε, and

p0 = −[{(1 − 2α)ξ 2 cos2(Ka/2) − 2αδ′}2

+ δ′2ξ 2 cos2(Ka/2)]/4α, (7a)

p1 = −(1 − 2α − δ′)ξ 2 cos2(Ka/2) + δ′(2α + δ′), (7b)

p2 = {(1 − 4α)ξ 2 cos2(Ka/2) − 4α(2δ′ + α)}/4α. (7c)

K = q1 + q2 is the total momentum of the two magnons, a is
the lattice constant, which we set to 1 for all our calculations,
and the parameters are given by ξ = 1, δ = δ′ = D/2J , and
α = 1/4.

Even though Eq. (6) has three solutions, Tonegawa has
argued that only two of them are physically meaningful. Close
to the Brillouin zone boundary Ka = π , both solutions are
real-valued, which appear as two branches when plotted as
a function of Ka. For one of the solutions, the two magnon
wave function has a large amplitude for magnons on nearest
neighbor sites, and a smaller amplitude for two magnons on
the same site (i.e., a bimagnon corresponding to |−1〉). This
solution is referred to as the “Bethe type” bound state in
analogy with the bound state solution first found by Bethe on
ferromagnetic S = 1/2 chains [35]. The other type of bound
states are of the “Ising type,” where the amplitude for two
magnons on the same site is larger than the amplitude for
them being on neighboring sites. (This type of bound state
is forbidden for S = 1/2 chains, and hence there is only one
bound state branch for the two magnon dispersion in this

case). We note that for D/J � 3.2 [34], the Ising type two-
magnon bound state is lower in energy than the lowest energy
single magnon state. However, this range of D/J is outside
the range explored in this paper, which primarily focuses on
smaller D/J .

Below a certain threshold momentum Kth, the cubic
equation yields a pair of complex-valued solutions (with
nonzero imaginary part), and only one real-valued solution.
The complex-valued solution occurs when the corresponding
bound-state branch is no longer stable. Thus, Kth is the mo-
mentum at which the bound state dispersion joins the two
particle continuum. To demonstrate this, we numerically solve
Eq. (6) for D/J = 0.35 and plot the two-magnon dispersion
in Fig. 2(a). Indeed, we find two branches of two-magnon
bound states, with one branch merging with the two-particle
continuum. At K = 0 we see that the two-magnon bound state
is separated from the continuum (see inset).

The order of appearance of the two-magnon branches de-
pends on the strength of D/J: The origin of this effect is
the touching of the Bethe and Ising branches at Ka = π .
For D/J � 0.5, the Bethe (Ising) type constitutes the lower
(upper) branch, and vice versa for D/J � 1.1. (This is to be
expected: For small D/J , it is energetically unfavorable for
two magnons to give up a significant part of their kinetic
energy in order to be on the same site, while at large D/J this
bimagnon/doublon formation does become favorable.) For
intermediate D/J the behavior is more subtle, for the lowest
branch the small |K| wave functions are of the Bethe type. For
larger |K|, the lower energy branch is of the Ising type, and
the higher energy branch is of the Bethe type. (This subtlety
has been discussed in a note in proof by Ref. [34] in response
to the study of Ref. [36].) The two branches cross at the zone
boundary Ka = π : The energy of the Bethe-type bound state
is given by 3J + 2D while the energy of the Ising type bound
state is fixed at 4J and does not depend on D.

The formation of bound states for D > 0 can also be cap-
tured by treating the quartic order term H4 in the expansion
in Eq. (3) that describes the interaction between the magnons,
given by

H4 = −D
∑

i

a†
i a†

i aiai − J

2

∑
〈i j〉

a†
i a†

j a jai

+ J

8

∑
〈i j〉

(a†
i a†

i aia j + a†
j a

†
j a jai + H.c.), (8)

using the t-matrix approach. The details of our computations
are discussed at length in Appendix A. Here we highlight the
key ingredients of our calculation.

The Heisenberg term J contributes to the interaction be-
tween magnons on neighboring sites, while the anisotropy
term D serves as attractive interaction between the magnons
on the same site. Keeping only the on-site interaction D, since
the J term vanishes for q → 0, the two-magnon susceptibility
within the t-matrix approximation is

χ t
2(q, ω) = χ (0)(q, ω)

1 − Dχ (0)(q, ω)
, (9)
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FIG. 2. (a) Exact two-magnon dispersion for D/J = 0.35, which is experimentally relevant. The shaded region indicates the two magnon
energy continuum, and the two branches (red and blue) below the continuum represent the two stable bound states. The lower (blue) branch
represents the “Bethe type” bound state while the upper (red) branch represents “Ising type” bound state. At K = 0, the two-magnon bound
state energy lies below the continuum with energy difference 0.019, which is visible in the inset zoomed over a small region around the K = 0
point. (b) Binding energy EB/J as a function of anisotropy D/J calculated for the lowest-energy two-magnon states. The inset shows EBJ/D2

vs D/J . The black dashed line in the inset is a linear fit to the data points excluding the upturn. The y intercept ∼0.122 agrees with the t-matrix
result that the leading order term in EB is quadratic in D with a coefficient of 1/8. The size of the bound state increases with decreasing D,
and the upturns of the curves in the inset shows finite-size effects. (c) Probability amplitude of two magnons in the lowest two-magnon energy
state with one magnon fixed at a reference site ‘0’. The circular dots at central site ‘0’ represent the probability of finding two magnons on the
same site (i.e., a bimagnon |−1〉).

where χ (0) is the Lindhard susceptibility

χ (0)(q, ω) =
∫

ddk

(2π )d

−1

ω + i0+ − (ε−k + εk+q)
. (10)

We define the binding energy of two magnons as

EB ≡ (E2 − E0) − 2(E1 − E0) = E2 − 2E1 + E0 (11)

where E0, E1, and E2 are respectively the energies of
the lowest-lying states in the 0-magnon, 1-magnon, and 2-
magnon sectors. At q = 0, where the two-magnon bound state
energy is minimized, we find that EB, identified by the location
of poles in χ t

2, is

EB = D2

8J
. (12)

The result for the ferromagnet is in sharp contrast to bound
states in high spin antiferromagnets, where the binding energy
was found to be EB =

√
JD/2S2 [37]. We also note that when

the magnon interaction is repulsive, χ t
2 does not allow a pole,

and thus no bound state exists.
We assess the validity of the above approaches with the

help of (almost) exact DMRG calculations for two magnons
(in the Sz = L − 2 sector) for various system sizes. Figure 2(b)
shows our results from DMRG as functions of the anisotropy
D/J . Since the two magnons are only weakly bound for small
D/J , we observe significant finite-size effects in the binding
energy in this regime (the upturn). However, by carefully
extrapolating EB/D2 to the D → 0 limit, we do find that it
approaches a value close to 1/8, which is consistent with the
t-matrix results. Furthermore, Taylor expansion of the exact
solution from Ref. [34] is given by

EB

J
= (D/J )2

8
+ 5(D/J )3

64
+ 57(D/J )4

2048
+ · · · . (13)

This confirms the importance of the on-site interaction pro-
vided by D for magnons near the Brillouin zone center, an
assumption made in the t-matrix approach.

Our results are further strengthened by evaluating the
scalar components ψ (l, l ′) (in the notation of Ref. [34]) of
the two magnon wave function |ψ2〉,

|ψ2〉 = 1

2

∑
l ′�l

ψ (l, l ′)S−
l S−

l ′ |ψ0〉 (14)

where l, l ′ are site indices and |ψ0〉 = ⊗L
i=1 |1〉 is the ferro-

magnetic ground state (with zero magnons), and S−
l (l ′ ) are the

spin lowering operators. We focus on the ground state, which
we find to be in the K = 0 sector. Fixing a reference site 0,
our plot in Fig. 2(c) confirms that for small D/J , the bound
state is indeed of the Bethe type (|ψ (0, 0)| < |ψ (1, 0)|), and
for large D/J it is of the Ising type (|ψ (0, 0)| > |ψ (1, 0)|),
with a crossover (|ψ (0, 0)| ≈ |ψ (1, 0)|) at D/J ≈ 1.15. We
will see later that when the magnon number increases, this
bimagnon formation becomes increasingly important even for
small D/J .

III. MULTIMAGNON PROBLEM

We now consider the case of more than two magnons.
While the main objective of this section is to build an under-
standing of their energetics (which ultimately impacts what
is seen in dynamical experiments), we also explore the qual-
itative nature of the n-magnon ground-state wave functions.
Specifically, do more than two magnons form bound states?
If such bound states do form, what are their spatial extent and
binding energy? Does an additional magnon get assimilated
into an existing “magnon cloud” or does it break up into
magnon molecules? Does the formation of single-ion bound
states become important during this process?
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Before proceeding, we briefly review previous work in this
direction. Both Majumdar et al. [38–40] and Van Himbergen
[41] have independently studied three-magnon excitations in
Heisenberg ferromagnetic chains using Faddeev’s three-body
formalism [42]. Although the approach used is completely
general, the discussions primarily focused on the S = 1/2
case. The study of Southern et al. [43] for S � 1 used the
recursion method [44] to rigorously argue for the existence
of three-magnon bound states based upon the asymptotic be-
havior of recurrence coefficients and the general features of
density of states.

We investigate the nature of the lowest energy n-magnon
state numerically and find that bound states do form for n � 3,
and we study how their properties change with n. For small
n, an analytically inspired simple Jastrow function captures
many of our findings accurately. This allows us to develop
a simple picture for how magnon clouds grow and eventually
saturate, which is when bimagnon formation becomes exceed-
ingly important.

A. Ground state wave function of n magnons

The wave function of n magnons is a superposition of
excitations created on top of the ferromagnet,

|ψn〉 =
∑

x1�x2�...�xn

C(x1, x2, . . .)S
−
x1

S−
x2

· · · S−
xn
|ψ0〉 (15)

where we have generalized the notation ψ (l, l ′) from Eq. (14)
to the case of n � 2, with site indices x1, x2, . . . , xn and ab-
sorbed the factor of 2 from Eq. (14). For the case of S = 1,
no three indices can be the same since there is a maximum
of two magnons on a given site. C(x1, . . .) represents the
amplitude of a particular configuration of magnons, and are
complex-valued in general. Here we focus on the ground state
of each multimagnon sector on a periodic chain, which we
find to have a net momentum of zero, and C(x1, . . .) to be
positive. Instead of evaluating the coefficients, we measure the
correlators

C(n)
i1i2...in−1o = 〈ψ0|S+

i1
S+

i2
...S+

in−1S+
o |ψn〉, (16)

where i1, i2, ..in−1 and o are site indices, with o a fixed ref-
erence site. To do so, we numerically determine the lowest
energy n-magnon state (|ψn〉) using the matrix product state-
based DMRG algorithm.

As in the case of two magnons, we find that uniaxial
anisotropy D plays an essential role in stabilizing multi-
magnon bound states in the spin chain. Figure 3(a) shows
the three-magnon correlator calculated in the lowest-energy
three-magnon state for three representative values of D. For
D = 0, we find that the value of the correlator C(3)

i jo is (almost)
independent of the i and j, suggesting no tendency for the
two magnons at these locations to be close to each other or
the reference site. Thus, the ground state shows no hints of
bound state formation for D = 0. For D > 0, this picture is
dramatically altered, C(3)

i jo is now localized around i = j = o,
and decays with distance. The magnons clearly cluster to-
gether more strongly along the i ≈ j line and particularly near
i ≈ j ≈ o, the larger D is, indicating bound state formations.

These qualitative assertions are made more precise by sys-
tematically studying one dimensional cross sections along

j = i + 1 and j = −i, as shown in Fig. 3(b). The correla-
tor is found to be exponentially decaying with |i| (as may
be anticipated); the precise exponent depends on the cross
section under consideration, as we will explain shortly. For
the regime of interest (D < J), we find that the amplitude for
two magnons on being at the same site (i.e., when two of the
indices i, j, or o are equal) is smaller than the two magnons
being at adjacent sites (i = j ± 1), suggesting the magnons
form a three-magnon analog of Bethe type bound state instead
of a single-ion type bound state.

Based on the above observations, the formation of higher-
order bound states (as ground states of the n-magnon problem)
may be anticipated but is not a priori obvious. This is because
there is an inherent competition between the possibility that
the system forms a heavy “droplet” or “cloud” of multiple
magnons, which stick together, giving up their individual ki-
netic energy for their collective good, and the possibility that
the magnons split apart into smaller clouds, each of which
has its own kinetic energy. To investigate these scenarios,
we carried out calculations for n = 4, which we report in
Appendix B. We find many qualitative similarities with the
cases of n = 2 and n = 3, supporting bound-state formation.

We now unify our findings to qualitatively and quantita-
tively understand what happens for n > 4. We assert that as
long as both the number of magnons and the value of D/J are
sufficiently small, the formation of the single-ion bound state
can be ignored. In this limit, the n-magnon wave function can
be written as a product of pairwise Jastrow factors

C(x1, x2, . . . , xn) ∝
∏
a<b

e−|xa−xb|/ξ . (17)

In the case of two magnons, ξ is simply the size of the magnon
droplet and can be thought of as the correlation length. For
higher number of magnons, it still retains this qualitative
interpretation, but the size of the magnon droplet must now be
quantified differently to account for the existence of multiple
magnons. We find that ξ ∝ J/D to a very good approximation
for the case of two, three and four magnons [see Fig. 3(c) and
Fig. 9(b) of Appendix B].

The power of the Jastrow form becomes most appar-
ent when it is not only used to extract ξ , but also to
understand how a collection of magnons organize them-
selves. Consider, for example, the case of three magnons
with one magnon fixed to the reference site o. Accord-
ing to the Jastrow function, the probability of having two
magnons diametrically apart at j = −i is given by the prod-
uct of three factors exp(−|i|/ξ ) exp(−|i|/ξ ) exp(−2|i|/ξ ) =
exp(−4|i|/ξ ). In contrast, the probability of having the two
magnons at j = i is exp(−2|i|/ξ ). Thus, the decay length in
our fits along the two directions differ by a factor of two.
This is verified by independently fitting the Jastrow function
for each cross section at a given D/J and observing perfect
consistency between the two estimates of ξ , as shown in
Fig. 3(c).

For higher n, the computation of magnon correlators be-
comes prohibitive. For these cases, we estimate the bound
state extent by monitoring 〈Sz

i 〉. The spatial profiles of 〈Sz
i 〉

for open boundary conditions for various n are shown in
Fig. 4(a). With open boundary conditions, the kinetic energy
of the magnon cloud is suppressed and it tends to localize
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FIG. 3. (a) The three-magnon correlator C (3)
i jo obtained by fixing one magnon at a reference site o, computed for the ground state of three

magnons for representative values of anisotropy parameter D, in a periodic chain of length L = 40 using ED. The colors indicate the magnitude
of the correlator. (b) The spatial dependence of the correlator for two one-dimensional cross sections, respectively corresponding to the two
magnons at sites i and j with j = i − 1 (left panel) and j = −i (right panel), while the third magnon is located at o. Both cross sections show
exponential decay with increasing spatial dependence between the magnons. Black solid lines are the fits to the Jastrow wave function∏

a<b e|xa−xb|/ξ , with ξ for each cross section being determined independently. The (almost) exact correlators are calculated for a periodic
chain of length L = 100 with the DMRG algorithm. (c) The two estimates of the correlation length ξ vs inverse anisotropy J/D. The linear fit,
shown by the green dashed line, shows excellent agreement with the data.

spontaneously at either end of the chain: Here, the cloud is
localized at the left end, which is seen by the lower value of
〈Sz

i 〉. On increasing the number of magnons, the value of 〈Sz
i 〉

at the left end approaches −1, consistent with the formation of
bimagnons. We complement this information by also plotting
the spatial profile of 1 − 〈(Sz

i )2〉, which is presented in the
inset of Fig. 4(a). This metric tells us about the distribution
of ‘0’s (i.e., single magnon per site). The two different spatial
profiles show that the formation of single and bimagnons
compete with one another. The formation of bimagnon (−1)
suppresses the exchange terms (kinetic energy), while 0′s can
hop and lower the energy. However, there is no single-ion
anisotropy cost associated with −1 while 0′s do cost energy.
This competition is most prominent at the boundaries of the
cloud; it does not, however, significantly affect the spatial
extent of the cloud itself. This can be seen in the spatial
profile of 〈Sz

i 〉; it saturates to unity roughly at the same length

scale (∼10 lattice constants for the representative value of
D/J = 0.35) for 2 to 10 magnons.

To shed further light on the properties of the magnon cloud,
we compute the magnon pair correlation

ρi j = 〈nin j〉, (18)

where ni is the operator that counts the number of magnons
at site i. Substituting ni = 1 − Sz

i , the pair correlation takes
the form (in terms of local spin operators) ρi j = 1 − 〈Sz

i 〉 −
〈Sz

j〉 + 〈Sz
i Sz

j〉. In Fig. 4(b), we plot the pair correlation
function for up to five magnons. We find that the av-
erage separation between magnons scales as 1/n. This
suggests that magnons get closer to each other on aver-
age with more magnons in the system. This is broadly
consistent with the cloud being constant in size (for a
small number of magnons) with its size being D de-
pendent. Said differently, as the magnon cloud absorbs
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FIG. 4. (a) 〈Sz
i 〉 and 1 − 〈(Sz

i )2〉 calculated with DMRG for D/J = 0.35 in the lowest-energy states of various magnon number sectors, on
a chain of length L = 100 with the open boundary conditions. The initial states are chosen such that the magnons are on the left end of the
chain. (b) Normalized pair correlation function ρi j ≡ 〈nin j〉 for D/J = 0.35 in a periodic chain of length L = 80 for 2 and 3 magnons, L = 68
for 4 magnons, and L = 62 for 5 magnons. Solid lines are fits to the exponential form e|i− j|/ζ and dotted lines are the extrapolations from the
long-distance fits. The inset shows the pair correlation length ζ vs 1/n obtained from the fits. (c) Successive energy gaps between consecutive
magnon sectors as a function of magnon number for various anisotropy parameters D with J = 1 fixed in a periodic chain of length L = 180.
For small n, �En decreases with increasing n. With increasing n, oscillatory behavior is observed for D/J � (D/J )c ≈ 0.5. (d) A schematic
showing the reduction in transition frequency due to multimagnon bound state formation in different magnon sectors.

additional magnons, it gets heavier and its size does not ex-
pand significantly. However, this cannot continue indefinitely
for an arbitrarily large number of magnons, since bimagnon
formation eventually saturates the cloud.

B. Energetics of magnon clouds

We now discuss the energetics of multimagnon states. The
energy to introduce an additional magnon into the cloud of
n − 1 magnons is

�En = En − En−1, (19)

where En and En−1 are the lowest energies of the n- and n −
1-magnon sectors, respectively. Our calculations for various
representative D/J , plotted in Fig. 4(c), show that �En for
small n decreases with n, as is expected from the picture that
magnons effectively attract one another. Starting at �E1 = D,
�En decreases with increasing n up to a D-dependent n.

Since the extent of the magnon cloud does not increase
appreciably with increasing n, it is expected that the Ising
type bound states become energetically more favorable than
the Bethe type. When a large number of magnons form a
bound state, kinetic energy (XY terms) is highly suppressed,
and thus its energetics can be understood from considering the
interactions between the magnons (Ising terms). The z com-
ponent of Heisenberg exchange and uniaxial anisotropy [i.e.,
−J

∑
〈i, j〉 Sz

i Sz
j and −D

∑
i(S

z
i )2], both lower the energy for

single-ion Ising like (| · · · ,−1,−1,−1, · · · 〉) bound state.
However, both terms contribute nothing to the sites where
the Bethe-like (| · · · , 0, 0, 0, · · · 〉) bound state is located. The
even-odd oscillations observed in Fig. 4(c) beyond certain
numbers of magnons for large values of D/J are due to the
fact that an unpaired magnon (|0〉) in the odd magnon sectors
raises energy because the single-ion anisotropy term favors
bimagnon state (|−1〉). Furthermore, the oscillatory behavior
is observed for D � 0.5J , which coincides with the range of
D where the lower energy branch of the two-magnon bound
states is of Ising type with significant bimagnon contribution.

C. Dense magnon limit: Domain walls

A complementary picture to the magnons is provided
by domain walls (DWs), which captures the behavior of
systems with a large number of magnons since the two
ends of a multimagnon droplet can each be viewed as
DWs. In the Ising limit for S = 1, there are two types of
DWs: |· · · , 1, 1,−1,−1, · · ·〉 with its center on a bond, and
|· · · , 1, 1, 0,−1,−1, · · ·〉 with its center on a site. Easy-axis
anisotropy term prefers the former. With the inclusion of XY
interaction, they acquire thicknesses larger than one lattice
constant. The two types, however, reside in different Sz sec-
tors, and tunneling between one type and the other is allowed
only when there are multiple DWs in the system. The os-
cillatory behavior in �En, shown in Fig. 4(c), can then be
ascribed to the fact that the even magnon sector allows for
two bond-centered DWs, which have lower energy, while the
odd magnon sector forces one of the DWs to be site-centered.

Figures 5(a) and 5(b) show spatial profiles of the two types
of DWs at various values of D/J on a L = 180 lattice with
open boundary conditions, calculated using DMRG. A DW
here is defined as the lowest energy state in the total Sz = 0
(for “even”) or −1 (for “odd”) sector, starting from the cor-
responding configuration in the Ising limit as the initial state.
The DWs have exponential profiles, and their thicknesses de-
crease with increasing D/J [see Fig. 5(c)]. At small D/J with
thick DWs, the two types of DWs track each other closely; the
two start diverging significantly at D/J ∼ 0.3, where ξDW ∼ 1
and on-site correlations between magnons become important.
Furthermore, the amplitude of the oscillation in �En for large
n matches the energy difference between the two types of
DWs. [Compare Fig. 5(d) and its inset with Fig. 4(c).]

IV. RECAP OF FINITE TEMPERATURE DYNAMICAL
EXPERIMENTS AND CONNECTION TO OUR RESULTS

Till this point, our focus has been on multimagnon states
which are ground states of their respective magnon number
sectors. However, an explanation of the finite temperature
dynamical susceptibility requires us to develop the connection

054413-7



SHARMA, LEE, AND CHANGLANI PHYSICAL REVIEW B 105, 054413 (2022)

FIG. 5. [(a),(b)] Spatial profiles of the domain walls at various
values of D/J for L = 180 chain. The labels “even” and “odd” refer
respectively to the total Sz = 0 and −1 sectors. (c) Thickness ξDW

of the domain wall vs D, from fits to 1 − 〈(Sz
i )2〉 ∼ e−|x−xDW |/ξDW .

The inset plots the same data as functions of J/D, which shows the
scaling ξDW ∼ J/D for D 
 J . (d) Energy of a domain wall EDW vs
D. The inset shows the energy difference between the “odd” domain
wall and “even” domain wall.

to excited states (and corresponding matrix elements), which
enter the response functions. In this section, we briefly recap
crucial aspects of the THz optics experiment [15] on the
S = 1 chain compound NiNb2O6 (which we refer to as the
“JHU experiment”) and summarize the key findings. We build
on results presented in earlier sections with the objective of
explaining the findings of the JHU experiment.

In the JHU experiment, the direction of the chain of the
magnetic atoms was referred to as the z axis, the direction of
the incidence of light as the x axis, and the light is linearly
polarized with its oscillating magnetic field along the y axis.
(As a first approximation, we will ignore any possible canting
of the easy-axis of the spins with respect to the z axis, i.e., the
easy-axis anisotropy is perfectly along the one-dimensional
chain of spins.) The absorption cross section of linearly po-
larized light is inferred from the transmission coefficient,
from which the dynamical susceptibility is determined. The
locations of peaks in the dynamical susceptibility reveal in-
formation about the energy levels of the system, allowing
indirect inference of which transitions are most active at a
given temperature. In a longitudinal applied field, the most
prominent peak in the low-frequency susceptibility moves
to a lower frequency with increasing temperature. This shift
is not seen in CoNb2O6 with effective S = 1/2 magnetic
ions [45] (albeit with different exchange interactions [46,47]),
strongly hinting that the S = 1 nature of the magnetic ions
is at the heart of the effect. Additionally, the direction of the

temperature-dependent shift was reported to depend on the
direction of the applied static magnetic field.

For the case of longitudinal field with strength B, magnon
number is a good quantum number and all our analyses in
the previous sections apply straightforwardly. The additional
Zeeman term −gμBBSz does not alter the wave functions in
a given magnon sector, all it contributes is an overall en-
ergy shift. For example, the energy of the one-magnon state
(with respect to the ferromagnetic ground state) is given by
δ1 = D + gμBB. More generally, the energy for an additional
magnon is δn = (En − En−1)B=0 + gμBB where the subscript
refers to the corresponding values for the B = 0 case. The shift
in the peak absorption frequency seen in the JHU experiment,
on going from low to high temperature, depends only on the
change δn=high − δ1. This shift is independent of B, which is
why it is sufficient to analyze only the B = 0 case to explain
its value seen in the experiment.

For the case of transverse applied magnetic fields, applied
along the x axis (which we have not considered in this paper),
magnon number is not well defined at small field strengths.
For large field strengths B � J, D, however, magnon number
is approximately conserved on choosing the quantization axis
to be along the direction of the applied field. In this descrip-
tion, magnons mutually repel each other [15]. Due to this
repulsion, the peak frequency in the dynamical susceptibility
increases with increasing temperature.

The JHU experimental findings call for a closer look at
the mechanism by which this temperature-dependent energy
shift occurs for the S = 1 chain. Within linear response the-
ory (Kubo formalism), the dynamical susceptibility at finite
temperature is given by

χyy(ω, T ) = π (1 − e−βω )

Z

×
∑
p,q

e−βEp |〈q|Sy|p〉|2δ(Ep − Eq + ω) (20)

where ω is the frequency being probed, T and β = 1/kBT
are the temperature and inverse temperature, respectively, Z =∑

p e−βEp is the partition function, |p〉 are the eigenstates of
the Hamiltonian with the energy eigenvalues Ep, and Sy =∑

i Sy
i . Therefore, the transition matrix element 〈q|Sy|p〉 is

nonzero only for |p〉 and |q〉 that differ in total Sz quantum
number by one unit of angular momentum. Thus, the tran-
sition frequency ω = Eq − Ep is the energy difference that
involves states in two consecutive magnon sectors. (We will
attach an additional label to the state label to indicate the
magnon number sector it belongs to.)

In the previous section, we showed that this energy dif-
ference decreases from D to zero with increasing magnon
number, followed by even-odd oscillations. (For D/J = 0.35
we find these oscillations to be fairly weak. However, they are
significantly strengthened at larger D/J , for D/J � 0.5, which
is when the Ising type/bimagnon bound states become impor-
tant. This effect is potentially observable in systems where a
large anisotropy can be realized.) Since higher magnon sectors
are entropically favored at high temperature, our calculations
suggest that the peak frequency should be reduced by an
amount of D when the temperature is increased from low tem-
perature T 
 J, D to the high-temperature limit T � J, D.
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FIG. 6. Matrix elements |〈 j (n+1)|Sy|i(n)〉|2 for transitions between
(a) (left panel) for n = 1 and (b) (left panel) n = 2 magnon lev-
els calculated in a periodic chain of length L = 24 using ED and
for parameters relevant to NiNb2O6, i.e., J = 0.308 THz and D =
0.108 THz. The size of each black dot represents the square of the
absolute value of the corresponding matrix element. Right panels of
both (a) and (b) represent the frequency ωi,max at which the transitions
in the left panels are most active for a given |i(n)〉, i.e., corresponding
to the | j (n+1)〉 with the largest absolute value of the matrix element
|〈 j (n+1)|Sy|i(n)〉|2.

This observation is consistent with the findings of the JHU
experiment for the case of longitudinal fields (Fig. 3 for B =
65 kG in Ref. [15])—the peak in the dynamical susceptibility
moves from 0.28 THz to 0.20 THz on increasing the temper-
ature from 5 K to 50 K. Given the simplistic modeling of the
spin chain, this observed shift of 0.08 THz is in reasonable
agreement with the theoretical estimate of D = 0.108 THz.

The above argument relies on a simplifying assumption
that only the transitions between the lowest energy states of n-
and n + 1-magnon sectors are important. However, according
to the Kubo formula in Eq. (20), all possible contributions
arising from transitions must be accounted for. χyy(ω, T )
measures the appropriately weighted sum of all possible
transitions consistent with the selection rules (no change in
linear momentum, and change of spin angular momentum
by one quantum), but does not provide sufficient information
for inferring individual contributions from each eigenstate.
Numerical exact diagonalization calculations provide this ad-
ditional knowledge (for small number of magnons), which
we use in Fig. 6 to plot the transition matrix elements be-
tween 1 → 2 magnon and 2 → 3 magnon energy levels for
material-specific parameters. The many-body eigenstates in
the n- (n + 1)-magnon sector, organized by increasing energy,
are on the horizontal (vertical) axis. The size of each black
dot is proportionate to the matrix element |〈 j (n+1)|Sy|i(n)〉|2
representing the transition between a pair of energy levels
|i(n)〉 (with energy E (n)

i in the n-magnon sector) and | j (n+1)〉
(with energy E (n+1)

j in the n + 1-magnon sector).

The results suggest that not all (symmetry allowed) transi-
tions are equally important: For each E (n)

i , most of the weight
is concentrated on a single E (n+1)

j , and other contributions are

small. For each |i(n)〉 we identify the frequency ω = E (n+1)
j −

E (n)
i for which the matrix element is largest and refer to it as

ωi,max. For the cases considered (n = 1 and n = 2) we find that
ωi,max is largely independent of |i(n)〉 in a given n − magnon
sector. Importantly, this average/typical value of ωi,max (indi-
cated by the red line in each panel) decreases with increasing
magnon number. Although this shift across 1 → 2 and 2 → 3
magnon sectors is small, the general trend is consistent with
our earlier findings. Said differently, the effective energy cost
to add an additional magnon (with zero additional momentum,
as dictated by the matrix element selection rules) decreases
with increasing magnon number. This holds not only for the
lowest energy state of each n-magnon sector but also for the
excited states.

V. NONEQUILIBRIUM DYNAMICS OF MAGNONS IN
ULTRACOLD ATOMIC SETTINGS

We now consider the implications of our findings on re-
cent ultracold atomic experiments performed with the same
spin Hamiltonian as in Eq. (1) (the sign convention of D in
Ref. [27] is the opposite of what we have considered here
and elsewhere [15]). The authors of Ref. [27] implemented
this Hamiltonian using a Mott insulator of doubly occupied
sites and demonstrated the dynamical properties associated
with the presence of single-ion anisotropy. In this setup, two
hyperfine states of 87Rb, denoted by |a〉 and |b〉, are mapped
to S = 1 degrees of freedom via Sz

i = 1
2 (a†

i ai − b†
i bi ), S+

i =
a†

i bi, S−
i = b†

i ai, where ai and bi are boson annihilation oper-
ators at site i for |a〉 and |b〉, respectively, with the constraint
that a†

i ai + b†
i bi = 2. This mapping between hyperfine states

and S = 1 degrees of freedom is depicted in Fig. 1(c). We
henceforth refer to this setup and the associated experiment as
the “MIT experiment.”

The MIT experiment studied spin dynamics by first prepar-
ing the state of all atoms as an equal superposition of |a〉 and
|b〉, using a combination of microwave pulses,

|ψ〉 =
L⊗

i=1

( |a〉 − i|b〉√
2

)
i,atom1

⊗
( |a〉 − i|b〉√

2

)
i,atom2

(21a)

=
L⊗

i=1

(
1

2
|1〉 − i

√
2|0〉 − | − 1〉

)
. (21b)

When written out in terms of spin degrees of freedom,
this wave function is a superposition of multiple magnon
sectors with the most dominant contribution coming from
the Hilbert space that corresponds to Sz = 0. This initial
state was allowed to time-evolve and the operator A = 2 −
3 1

L

∑L
i=1〈(Sz

i )2〉 was measured as a function of time. (The
material equivalent of the above experiment will require
measurements of oscillation and thermalization time scales
≈2π h̄/D of the order of 10 picoseconds.)

Motivated by the MIT experiment, we propose a modifi-
cation with the objective of demonstrating the importance of
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FIG. 7. Time profiles of 〈Sy(t )〉/〈Sy(0)〉 and the Loschmidt echo (revival fidelity) for various representative θ , corresponding to different
starting states |ψ (θ, t = 0)〉, calculated using TEBD on spin chains with open boundary conditions. A maximum bond dimension of m = 100
was used for θ � 20◦ (L = 200), and m = 50 (L = 100) was used for the rest of the calculations. (Times beyond which the bond dimension
reaches the maximum value m with truncation cutoff of ε = 10−8 are not shown to rule out any truncation errors from the growth of
entanglement). In each panel representative small D/J and large D/J values at fixed θ are shown. Thermalization is slow (or virtually absent
on the time scale of the plot) for small θ and small D/J , but becomes rapid when either parameter is made large.

magnon-magnon interactions and magnon density on spin dy-
namics and thermalization. We prepare an initial state, which
corresponds to spins rotated about the x axis by angle θ with
respect to the z axis, i.e., with direction vector (0, sin θ, cos θ ).
(In our notation, the angle realized in the MIT experiment is
θ = −90◦.) The starting ket is given by

|ψ (θ, t = 0)〉 =
L⊗

i=1

(
cos θ + 1

2
|1〉 + i sin θ√

2
|0〉

+ cos θ − 1

2
| − 1〉

)
. (22)

Rotation by an arbitrary angle θ (which can be controlled by
applying the microwave pulse for a shorter duration) has the
effect of introducing a tunable finite density of magnons. (We
will drop the θ label in |ψ (θ, t )〉 from here on for brevity.)
This initial product state is a linear combination of states with
definite magnon number n,

|ψ (t = 0)〉 =
∑

n

Pn|ψ〉 =
∑

n

cn|n〉 (23)

where Pn is the operator which projects the wave function to
the n-magnon sector, and |n〉 is the n-magnon wave function
whose amplitude is given by cn = 〈n|ψ〉.

What should one expect to observe in the above setup
given the framework developed in the previous sections? If
the magnons were truly noninteracting, the energy spacings
between the n- and n + 1-magnon sectors would be exactly
D. This has a direct measurable consequence in the time
domain. The measurement of the Sy operator as a function of

time 〈Sy(t )〉 ≡ 〈ψ (t )|Sy|ψ (t )〉 would yield the characteristic
frequency En+1 − En = D, i.e., the oscillation time scale T =
2π/D. However, magnon-magnon interactions renormalize
this energy difference and hence corresponding time period.
At low magnon density (small θ ) the magnons are essentially
noninteracting. At higher magnon density, this energy differ-
ence decreases due to magnon attraction, and thus a larger
time scale of oscillation is expected.

While oscillations do dominate the short time behavior,
signatures of thermalization are to be expected at long times.
This manifests itself in multiple metrics, for example, at
large t , 〈Sy(t )〉 → 0 and the Loschmidt echo (revival fidelity)
|〈ψ (0)|ψ (t )〉|2 → 0. (We note that the results for θ < 0 are
directly related to the case of θ > 0. For example, 〈Sy(t )〉
differs by an overall minus sign for θ → −θ , and thus we
discuss only the case of θ > 0.)

To go beyond the qualitative arguments presented above,
we perform matrix product state-based second-order TEBD
calculations, preparing |ψ (0)〉 as in Eq. (22). A maximum
bond dimension of m = 100 and a time step of t = 0.02 (in
units of J = 1) were employed. We rescale the time axis to be
in units of tD/2π . In these units, the maxima of the Loschmidt
echo and 〈Sy(t )〉 must occur at every integer for perfectly non
interacting magnons.

Figure 7 shows our results for various representative values
of θ and confirms many of our qualitative expectations. At
large θ , i.e., high average density of magnons, (see θ = 30◦
and θ = 90◦), only a few (or no) coherent oscillations are
observed, and thermalization is rapid. At small θ (i.e., low av-
erage magnon density), on the other hand, the oscillation time
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FIG. 8. Representative results from the approximation in Eq. (24). (a) The amplitude |cn|2
√

L associated with every magnon sector for
θ = 30◦ for representative L. (b) 〈Sy(t )〉/〈Sy(0)〉 for θ = 30◦. (c) Deff/D as a function of magnon density; determination of D̄eff/D using the
average magnon density n̄/L for the case of θ = 10◦, 20◦, 30◦ is represented by the dashed lines. Comparison with the D̄eff/D extracted from
the period of the first oscillation seen in TEBD (for D/J = 0.1) is also shown.

is nearly 2π/D—a more refined renormalized estimate can
be obtained with an approximation we will discuss shortly.
Our investigations suggest that there is a possibility of a
prethermal phase [48–50] for small θ -dependent D/J (for
example, D/J � 0.33 for θ = 10◦, D/J � 0.17 for θ = 15◦,
and D/J � 0.11 for θ = 20◦.). Such long thermalization time
scales occur in systems that are close to integrability or have
scar-like states in the spectrum. (See, for example, Refs.
[51–60].)

A qualitative explanation of this effect is as follows. If
the prepared initial state has finite overlaps with eigenstates,
which form a tower of states (states uniformly spaced in en-
ergy), it will result in perfectly coherent oscillations in several
time-dependent observables. This arises due to the precession
of a superspin of length L (for S = 1), whose 2L + 1 Sz

projected states (appropriately normalized) are Pn|ψ〉 for n =
0, 1, . . . , 2L. For D = 0, all Pn|ψ〉 are exactly degenerate
as a consequence of SU(2) symmetry. For D/J small but
nonzero, these states (which, strictly speaking, do not remain
exact eigenstates) have a spacing, which is approximately (but
not exactly) D. Most importantly, these energy spacings are
nonuniform, which, in turn, leads to thermalization in the
large time limit, the smaller the nonuniformity the longer the
thermalization scale.

We demonstrate these arguments with an approximation
which is quantitatively accurate for short time, especially for
small D/J and small θ . In this limit, the eigenstates can be
considered essentially unchanged from those for the D = 0
model. Thus, we have

exp(−iHt )Pn|ψ〉 ≈ exp(−iẼnt )Pn|ψ〉 (24)

where Ẽn ≡ 〈ψ |PnHPn|ψ〉/〈ψ |PnPn|ψ〉 is the energy of the
state Pn|ψ〉. The computation of arbitrary operator expecta-
tion values within this approximation is straightforward: For
example, 〈Sy(t )〉 is

〈Sy(t )〉 =
∑
n,m

〈ψ |PneiHt Sye−iHt Pm|ψ〉 (25a)

≈
∑
n,m

c∗
ncmei(Ẽn−Ẽm )t 〈n|Sy|m〉 (25b)

(Similar computations can be carried out for other opera-
tors using the algebra of coherent states, see for example
[55,61,62].)

The only nonzero contributions to 〈Sy(t )〉 are from m =
n ± 1. Note that 〈n|∑〈i, j〉 Si · S j |n〉 for an L-site periodic
chain equals L, i.e., it is independent of n, which follows
from the fact that the normalized |n〉 ∝ Pn|ψ〉 are the different
Sz projections of a superspin of length L. Hence the energy
difference Ẽn − Ẽn±1 arises purely from the on-site anisotropy
term and does not depend on J . Hence it is convenient to
define

D(n)
eff ≡ Ẽn − Ẽn−1 (26a)

= −D
∑

i

(〈n|(Sz
i

)2|n〉 − 〈n−1|(Sz
i

)2|n−1〉). (26b)

An exact computation yields

〈n|
∑

i

(
Sz

i

)2|n〉 = L − n + 2

∑[n/2]
m=0

m
22m

( L
L−n+m,n−2m,m

)
∑[n/2]

m=0
1

22m

( L
L−n+m,n−2m,m

) (27)

where
( L

i, j,k

) = L!
i! j!k! for i + j + k = L is the trinomial func-

tion. Note that 〈n|∑i(S
z
i )2|n〉 and hence the plot for D(n)

eff /D
versus magnon density n/L is independent of θ . θ has the
effect of selecting the average magnon density and hence the
value of D(n)

eff , which controls the time period of the oscilla-
tions.

Figure 8 shows representative results for periodic chains
within the framework of the approximation. For θ = 30◦, the
amplitude |cn|2

√
L associated with every magnon sector for

representative L is shown as a function of magnon density.
(The profile is expected to approach Gaussian, and hence the
factor

√
L is introduced when comparing different system

sizes.) Since the system sizes are finite, nonzero contributions
arise from a range of magnon densities. In the thermodynamic
limit, however, the only nonzero contribution will be from
n̄/L, the average magnon density. θ thus controls the average
magnon density in the wave function |ψ〉.

n̄/L in turn determines D̄eff, the D(n)
eff with the largest con-

tribution. The right panel of Fig. 8 shows this connection with
the help of dashed lines for the case of θ = 10◦, 20◦, 30◦. The
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value of D̄eff/D decreases on increasing θ (and hence magnon
density). Since this D̄eff sets the time period of oscillations
T ≈ 2π/D̄eff, we are able to infer its value from the TEBD
calculations. We compare the TEBD result for the time of the
first oscillation for D/J = 0.1 with the approximate result and
confirm that the discrepancy is less than a percent. However,
the approximation does not capture higher-order effects in D
and θ and long time behavior, for example, in the (exact)
TEBD calculations oscillations are not seen for large θ � 30◦.
(See Fig. 7.)

The central panel shows 〈Sy(t )〉/〈Sy(0)〉 calculated within
our approximation. For short time, the finite size effects are
essentially negligible. At longer times, 〈Sy(t )〉/〈Sy(0)〉 ap-
pears to decay, but this is a finite size effect. All nonzero
contributions to 〈Sy(t )〉 originate from a single Deff in the
thermodynamic limit; for any finite size system there is always
a spread of contributing energy scales as discussed previously
in reference to |cn|2

√
L. Hence there is no thermalization in

this approximation for the infinite chain limit.
Since the short and long time behavior depend on both

θ and D/J , we also plot our TEBD data for various repre-
sentative values of D/J and analyze their dependence on θ

in Appendix C. We find that the time period increases with
θ (magnon density) consistent with the reduction of D̄eff the
energy spacing between magnon sectors.

VI. CONCLUSION

In summary, we have studied the energetics, dynamics and
thermalization of multiple interacting magnons in a S = 1
chain with ferromagnetic Heisenberg interactions and easy-
axis anisotropy using both analytic and numerical methods.
The model and its analyses presented here are of direct rele-
vance to both real materials [15] and cold atom setups [27],
where different aspects of the dynamics have been recently
investigated.

Building on previous literature [34,38], we established that
the easy-axis anisotropy (D > 0 in this paper) serves as a
source of attractive magnon-magnon interactions, which leads
to the formation of magnon clouds, whose characteristics we
explored. Many of the properties of these clouds are captured
by a simple pair Jastrow function that shows good agreement
with numerical (almost exact) DMRG results. For a small
number of magnons, the cloud does not significantly alter its
size (spatial extent) on the introduction of additional magnons.
The energy cost for having additional magnons decreases
from D towards zero, and once the magnon cloud is saturated
entirely, the formation of Ising-type bound states becomes
important, which manifests itself as an even-odd magnon
number effect in the energy cost for adding a magnon.

Importantly, the lessons learnt from the energetics of the
few magnon problem were used to clarify the origin of
the temperature-dependent frequency shift observed in THz
dynamical susceptibility measurements [15]. The dynamical
Kubo formula involving matrix elements and energy scales
was analyzed, and the energy scales effective at high temper-
atures were identified. The reduction of the effective value
of D with magnon density demonstrated the importance of
magnon-magnon interactions on nonequilibrium dynamics in
the time domain in quench experiments that initialized the

system in a superposition of multimagnon states. An attractive
feature of the cold atom setup that realizes this protocol is
that both the magnitude and sign of the single-ion anisotropy
can be tuned [27], and the average density of magnons can
also be potentially controlled. With the help of matrix product
state-based TEBD calculations, we studied the time evolution
of the Sy expectation value (which is sensitive to gaps between
consecutive magnon sectors, and hence magnon-magnon in-
teractions) and the Loschmidt echo in order to develop an
understanding of revivals and thermalization in this model.
Many of the observed behaviors are akin to those noted in
the context of quantum scars; we showed how a simplified
superspin picture explains our results for small D/J .

It would be interesting to realize the possibility of ex-
perimental measurements that verify the picture we have
developed here. On this front, time-dependent THz mea-
surements offer a potentially exciting route for studying the
thermalization of spin chains. It would also be valuable to
model the evolution of magnon clouds created in a small por-
tion of the lattice, for example, by applying a microwave pulse
only on a section of the optical lattice. Further development of
a quantitative analytic framework for understanding the D/J
dependence of the prethermalization and thermalization time
scales observed in our TEBD calculations should be relevant
for a wide variety of other realistic systems where athermal
(or nearly athermal) states exist, and which show unusually
slow or glassy dynamics. Finally, the study of bound states in
higher spin chains may also be of interest, as has been recently
studied in Ref. [63].

ACKNOWLEDGMENTS

We thank F. Mahmood, P. Chauhan, P. Armitage, and W.
Chung for insightful discussions about several aspects of the
JHU and MIT experiments. We thank Florida State University
and the National High Magnetic Field Laboratory for start
up funds. The National High Magnetic Field Laboratory is
supported by the National Science Foundation through Grant
No. NSF/DMR-1644779 and the state of Florida. H.J.C. was
also supported by NSF CAREER Grant No. DMR-2046570.
The DMRG and TEBD calculations were performed using
the ITensor C + + library (version 2.1.1) [64]. We also thank
the Research Computing Cluster (RCC) and Planck cluster at
Florida State University for computing resources.

APPENDIX A: t-MATRIX APPROXIMATION FOR
TWO-MAGNON BOUND STATE

1. Basic definitions

Consider a bosonic Hamiltonian

H = H[a†, a]. (A1)

The quadratic part of the Hamiltonian, with translation sym-
metry, can be written as

H0 =
∑

q

εqa†
qaq (A2)
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where a†
q = 1√

L

∑
x a†

xeiqx. Using the imaginary time evolved

aq and a†
q

aq(τ ) = eτH aqe−τH , a†
q(τ ) = eτH a†

qe−τH , (A3)

the imaginary time-ordered bosonic Matsubara Green func-
tion can be defined as

D(q, τ ) ≡ −〈Tτ aq(τ )a†
q(0)〉 (A4)

where the bracket indicates the thermal expectation value

〈O〉 = Tr(e−βH O)

Tr e−βH
. (A5)

The imaginary time Green’s function can be written in terms
of Matsubara frequency iωn

D(q, iωn) = 1

2

∫ β

−β

dτ eiωnτD(q, τ ). (A6)

The noninteracting Green function in terms of Matsubara
frequency writes

D(0)(q, iωn) = 1

iωn − εq
. (A7)

The interaction term in general can be written as

V̂ =
∑
{xi}

V x1x2
x3x4

a†
x1

a†
x2

ax4 ax3 (A8a)

= 1

L

∑
{qi}

V q1q2
q3q4

a†
q1

a†
q2

aq4 aq3 , (A8b)

where L is the number of sites of the system, and

V q1q2
q3q4

= 1

L

∑
{xi}

V x1x2
x3x4

e−i(q1x1+q2x2−q3x3−q4x4 ) (A9)

Note that the matrix element of the interaction in terms of the
positions V x1x2

x3x4
, and in terms of momenta V q1q2

q3q4 both are of or-

der O(1) with respect to the number of sites. With translation
symmetry, the interaction term conserves total momentum:

V q1q2
q3q4

= δq1+q2=q3+q4V
q1q2
q3q4

(A10)

2. Feynman rules and t-matrix approximation

The Feynman rules for interacting bosons a and a† are

(A11)

(A12)

with energy momentum conservation
∫

q
≡ 1

L

∑
q

1

β

∑
iωn

T →0,L→∞−−−−−−→
∫

dd q

(2π )d

dω

(2π )
(A13)

The Feynman diagrams of two magnon susceptibility can
be expanded in V as

(A14)

The summation of the checked diagrams and their higher-
order versions is known as the t-matrix approximation, which
can be expressed concisely as

χ t
2 = χ (0) · (1 + V · χ (0) )−1, (A15)

where the objects are understood as matrices in terms of
momenta, and the dots (·) represent matrix multiplications.

(A16)

The interaction matrix element can be expanded in terms
of momenta

V k1k2
k3,k4

= (V0 + O(k1, k2, k3, k4))δk1+k2=k3+k4

≈ V0δk1+k2=k3+k4 . (A17)

If the interaction is on-site, then the t-matrix two-magnon
susceptibility writes

χ t
2(q, iω) = χ (0)(q, iω)

1 + V0χ (0)(q, iω)
, (A18)

054413-13



SHARMA, LEE, AND CHANGLANI PHYSICAL REVIEW B 105, 054413 (2022)

FIG. 9. The four-magnon correlator C (4)
i jko, obtained by fixing one magnon at a reference site o, computed for the ground state of four

magnons for representative values of anisotropy parameter D, in a periodic chain of length L = 76. (a) The spatial dependence of the correlator
for two one-dimensional cross sections, respectively corresponding to the two magnons at sites i and j with j = i − 1 and k = 1 (left panel), and
j = −i and k = −i + 1 (right panel). Both cross sections show exponential decay with increasing spatial dependence between the magnons.
Black solid lines are the fits with Jastrow factor

∏
a<b e|xa−xb|/ξ . (b) Correlation length ξ vs inverse anisotropy 1/D (with J = 1), obtained

from fitting to the Jastrow form. Just as in the case of three magnons, here too the green dashed line shows that the linear fit is an excellent
approximation to the four magnon correlator data.

where

χ (0)(q, iω) ≡
∫

k
D(0)(k + q)D(0)(−k) (A19a)

=
∫

dd k

(2π )d

−1

iω − (ε−k + εk+q)
(A19b)

is the Lindhard susceptibility.

3. Application to the 1D chain

On a one-dimensional chain, if we approximate εk ≈
αk2 + m,

εk+q + ε−k ≈ α(k + q)2 + m + αk2 + m

= 2α
(

k + q

2

)2
+ 1

2
αq2 + 2m (A20)

and thus the noninteracting susceptibility becomes

χ (0)(q, iω) = 1

2α

1

2
√

q2

4 + m
α

− iω
2α

. (A21)

This shows that the condition to have a pole in χ t , which is
V0χ

(0)(q, iω) = −1, can be expressed as

−V0

4α
=

√
q2

4
+ m

α
− iω

2α
, (A22)

which, after analytic continuation to real frequency iω → ω,
has a solution

ωpole = 1

2
αq2 + 2m − V0

2

8α
= A2q2 + M2. (A23)

The mass of the two-magnon bound state M2 is smaller than
the mass of two independent magnons by V0

2/8α, which is
the binding energy � of a two-magnon bound state when the
interaction is attractive. When the interaction is repulsive, on
the other hand, t-matrix does not allow a pole. In terms of the
parameters of the original Heisenberg spin-chain Hamiltonian

α ≡ JS, m ≡ (2S − 1)D, V0 = −D, (A24)

the binding energy of the magnon is then

� = 2D − M2 = D2

8J
. (A25)

APPENDIX B: FOUR-MAGNON CORRELATOR AND
JASTROW FITS

In Sec. III we discussed the case of three-magnon wave
functions and compared the corresponding correlator with the
Jastrow theory. In this Appendix we show the correspond-
ing calculation for the case of four magnons and find good
agreement as well. To visualize the correlator, we fix one
magnon at reference site o (the middle of the chain) and
consider two representative cross sections, as has been shown
in Fig. 9.

APPENDIX C: NONEQUILIBRIUM DYNAMICS WITH
FIXED D/J FOR DIFFERENT ROTATION ANGLES

In Sec. V, we showed the time profiles of 〈Sy(t )〉 and the
Loschmidt echo (computed with the TEBD method) for the
case of representative θ and studied their D/J dependence.
In Fig. 10 we plot this (and additional data) for various rep-
resentative values of D and compare their θ dependence. In
all cases where an oscillation can be clearly identified, we
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FIG. 10. Time profiles of 〈Sy(t )〉/〈Sy(0)〉 and the Loschmidt echo for various D/J . For each value of D/J representative θ (which controls
the average magnon density) are shown. A maximum bond dimension of m = 100 was used for θ � 20◦ (L = 200), and m = 50 (L = 100)
was used for the rest of the calculations. At short times, there is an increase in the effective oscillation time scale on increasing θ due to a
reduction in Deff as discussed in the text.

observe that the time period is larger for larger θ (i.e., larger
magnon density). This is consistent with the increased role of

magnon-magnon attraction, which effectively reduces D̄eff the
spacing between energy levels.
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[58] B. van Voorden, J. Minář, and K. Schoutens, Quantum many-
body scars in transverse field Ising ladders and beyond, Phys.
Rev. B 101, 220305(R) (2020).

[59] F. M. Surace, M. Votto, E. G. Lazo, A. Silva, M. Dalmonte,
and G. Giudici, Exact many-body scars and their stability in
constrained quantum chains, Phys. Rev. B 103, 104302 (2021).

[60] E. Chertkov and B. K. Clark, Motif magnetism and quantum
many-body scars, Phys. Rev. B 104, 104410 (2021).

[61] H. J. Changlani, D. Kochkov, K. Kumar, B. K. Clark, and E.
Fradkin, Macroscopically Degenerate Exactly Solvable Point
in the Spin-1/2 Kagome Quantum Antiferromagnet, Phys. Rev.
Lett. 120, 117202 (2018).

[62] S. Pal, P. Sharma, H. J. Changlani, and S. Pujari, Colorful points
in the XY regime of XXZ quantum magnets, Phys. Rev. B 103,
144414 (2021).

[63] N. Wu, H. Katsura, S.-W. Li, X. Cai, and X.-W. Guan,
Few-magnon physics in the spin-S periodic XXZ chain,
arXiv:2106.14809.

[64] M. Fishman, S. R. White, and E. M. Stoudenmire, The
ITensor software library for tensor network calculations,
arXiv:2007.14822.

054413-17

https://doi.org/10.1103/PhysRevB.101.241111
https://doi.org/10.1103/PhysRevB.103.235133
https://doi.org/10.1103/PhysRevB.102.224303
https://doi.org/10.1103/PhysRevB.101.220305
https://doi.org/10.1103/PhysRevB.103.104302
https://doi.org/10.1103/PhysRevB.104.104410
https://doi.org/10.1103/PhysRevLett.120.117202
https://doi.org/10.1103/PhysRevB.103.144414
http://arxiv.org/abs/arXiv:2106.14809
http://arxiv.org/abs/arXiv:2007.14822

