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Human biology is tightly linked to proteins, yet most measurements do not precisely determine alternatively
spliced sequences or posttranslational modifications. Here, we present the primary structures of
~30,000 unique proteoforms, nearly 10 times more than in previous studies, expressed from

1690 human genes across 21 cell types and plasma from human blood and bone marrow. The results,
compiled in the Blood Proteoform Atlas (BPA), indicate that proteoforms better describe protein-level
biology and are more specific indicators of differentiation than their corresponding proteins, which
are more broadly expressed across cell types. We demonstrate the potential for clinical application, by
interrogating the BPA in the context of liver transplantation and identifying cell and proteoform
signatures that distinguish normal graft function from acute rejection and other causes of graft dysfunction.

uman biology is tightly linked to proteins,

and mass spectrometry-based proteo-

mics has established a strong linkage

between phenotype and protein-level

biology (1, 2). Notable efforts for the
compositional mapping of proteins include
two drafts of the human proteome in 2014
(3, 4); the Human Protein Atlas, with various
tissue- and cell-specific resources available
(5, 6); and the recent release of the Human
Blood Atlas (HBA), with transcriptomic data
from 18 cell types (7). However, these datasets
do not capture posttranscriptional and post-
translational processing or how mRNA splic-
ing combines with modifications to create
protein-level diversity. Measurement of proteo-
forms (8) can close these gaps by capturing
the complete molecular composition of pro-
teins, refining phenotypic correlations. Fur-
thermore, a reference map of experimentally
identified proteoforms would serve as a refer-
ence for next-generation technologies, includ-
ing single-cell proteomics (9, 10).

Protein isoforms vary by cell type (11, 12).
With the growth in cell atlas projects, includ-
ing the Human Biomolecular Atlas Program
(HuBMAP) (13), the Human Cell Atlas (5), and
others (6, 7), conditions are set for cell-based
proteomics. Determination of protein com-
position in specific cell types using bottom-up
proteomics has been accomplished in differ-
ent studies (3, 14, 15). In this study, we used
top-down proteomics (TDP) (16), which avoids

the problem of inferring proteins using peptide
data from shotgun proteomics analysis (17), to
obtain cell- and proteoform-specific informa-
tion (Z8) from the major cell types present in the
blood and bone marrow. In the past decade,
TDP has gained momentum, but limitations in
protein separation and coverage of large proteo-
forms (>30 kDa) are still present (79). In this
work, we employed negative or positive cell se-
lection using specific antibodies to cell surface
markers and fluorescence-activated cell sorting
(FACS) to isolate cells of interest that were then
analyzed for their proteoform content (table
S1). In characterizing proteoforms across hema-
topoietic cell ontogeny, we took a three-pronged
approach to protein fractionation, depending
on cell numbers available (Fig. 1A).

Proteins and proteoforms

Table 1 captures a total of 29,620 nonredun-
dant proteoforms and 1690 proteins (i.e., spe-
cific genes assigned from proteoform spectral
matches) across 21 different human hemato-
poietic cell types and plasma. Many proteoforms
discovered have posttranslational modifica-
tions; lysine acetylation (32.9%) and C- and
N-terminal cleavage (30.6%) are the two most
common, with coding polymorphisms (7.6%)
or alternative splicing (3.8%) being minority
occurrences (fig. S1 and table S2). The num-
ber of experimentally determined proteoforms
exceeded that of previous reports by ~10-fold
(16) and were identified in a dataset com-

prising 1553 liquid chromatography tandem
mass spectrometry (LC-MS/MS) runs per-
formed on Fourier transform (FT) mass spec-
trometers. In total, 4,042,173 database searches
required ~9 days to complete, with a con-
sistent proportion (34%) of them yielding a
hit using a conservative 1% global false dis-
covery rate (FDR) at the protein and proteo-
form levels (20) (see materials and methods
section of the supplementary materials). Sam-
ple preparation required a total of ~1600 hours
for all studies, and acquisition of mass spectra
required ~3660 hours. Total proteoforms dis-
covered from each category of cells through-
out hematopoiesis are indicated in Fig. 1B and
are interactively viewable at http://blood-
proteoform-atlas.org/. Proteoform identifiers
(PFRs) are cross-referenced to gene-specific
accessions in UniProtKB/Swiss-Prot and linked
to 19,670 transcripts in the HBA (7). For the
BPA, the average number of proteoforms
arising from each “protein” (i.e., proteoform
hits mapped back to their corresponding
human gene) was 17.5. Despite the accelerat-
ing pace of development for TDP, most iden-
tified proteoforms (~93%) are <20 kDa, even
analyzing GELFrEE fractions containing pro-
teins up to 50 kDa.

Confident assignment of isoforms
from RNA splicing

From the HBA, we generated a proteogenomic
database with 50,177 protein sequences, cor-
responding to 95,979 transcripts reconstructed
from RNA sequencing (RNA-seq) data for
19 cell types (table S3) (7). Searching 12 cell
types shared between the BPA and the HBA,
we identified slightly fewer proteins and
proteoforms using the HBA database search
(801 proteins and 4344 proteoforms; table S4)
than with the human UniProtKB/Swiss-Prot
database (887 proteins and 4993 proteoforms;
table S5). Most proteoforms observed with the
HBA database were shared with the UniProtKB/
Swiss-Prot database (82.7%), while 2.2% (114:)
of proteoforms were only in the HBA data-
base (fig. S2), and of these, 49 (0.96%) rep-
resented newly identified proteoforms that
are confidently assigned to being derived
from transcript isoform or sequence varia-
tion (table S6). These results indicate that
RNA splicing produces only a handful of new
detectable proteoforms <30 kDa, which are
expressed from an average of just four in-
trons. However, a few abundant isoforms are
missed without cell type-specific RNA splicing
information.
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Protein-resolved versus proteoform-resolved
maps of hematopoietic cell types

Deep TDP of cell populations results in high-
dimensional data containing cell type and
proteoform identifications (e.g., PFR1033,
which maps to the gene-specific accession
P62805 in UniProtKB/Swiss-Prot for histone
H4). We compared protein- versus proteoform-
level data in t-distributed stochastic neighbor
embedding (t-SNE) plots (Fig. 2, A and B),
accumulation curves (Fig. 2, C and D), and

heatmaps after hierarchical clustering (Fig.
2E). Both protein and proteoform data clus-
tered differentiated cell types along primary
branches of hematopoiesis at the same level
of confidence upon t-SNE analysis. The clus-
ter of antigen-presenting cells (monocytes,
macrophages, and dendritic cells) was sep-
arated from lymphoid lineage cells [T cells,
B cells, and natural killer (NK) cells]. Ad-
ditionally, the lymphoid lineage clustered
together, and the three pre-B cell types from

bone marrow formed a distinct cluster (Fig.
2, A and B).

Cell relatedness at the protein versus
proteoform levels

To probe the specificity of proteins versus
proteoforms, we compared their incidence
frequency across all cell types studied. The
histogram in Fig. 2C shows that most proteins
are shared between two or more cell types
(81%). In contrast, the majority of proteoforms
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Fig. 1. Workflow and number of identified proteoforms in the Blood Proteo-
form Atlas. (A) Human blood or bone marrow samples were subjected to
centrifugation, immunomagnetic enrichment, and/or FACS. Cell types were
submitted to whole-cell, subcellular, and/or protein fractionation on the basis of
the obtained cell amounts, followed by systematic proteoform discovery.
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Proteoforms were identified using a database search against the human
proteome and deposited in the Blood Proteoform Atlas (BPA) website. (B) A
map of hematopoiesis shows the number of proteoforms identified in each cell
type. Certain cell groups (pan B cells, green; pan T cells, pink; and PBMCs,
dashed gray lines) were also analyzed in pools. PTN, proteins; PFR, proteoforms.
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(58%) were identified in only one cell type
(Fig. 2D), which shows that uniqueness is sig-
nificantly more pronounced with proteoform-
level information [x*(21) = 0.519, P = 4.73 x
107™*]. Figure 2E shows the heatmap for all
proteins and proteoforms identified. The high
number of unique proteoforms per cell type is
evident, and the clustering distance for proteo-
forms is one order of magnitude higher than
for proteins. The average number of cell types
in which a proteoform was found was 2.19,
whereas for proteins it was 6.51. The mean
number of identified nonredundant proteo-
forms per cell type was 1346, compared with
only 76 for proteins (more statistical measures
are presented in table S7). These results indicate
that proteoforms are better markers of a cell

type than monitoring gene expression using
just protein-level assignments.

Depth of proteome coverage

The BPA currently provides 8.3% coverage
(fig. S3) of the total human proteome (20,395
genes) and 16% of the predicted proteome
<30 kDa in UniProtKB/Swiss-Prot. However,
the accumulation curve for proteins shows
that ~80% of possible protein identifications
(fig. S3) were made from the analyzed cell
types using current workflows. In contrast,
the collector’s curve for proteoforms did not
reach a plateau (fig. S3), with just ~37% of
projected proteoforms identified. This mod-
eling indicates that saturation of primary
hematopoietic cells would uncover >50,000

additional proteoforms in this size regime. We
expect that larger proteins that act as hubs
of cellular decision-making could have more
proteoforms per protein [e.g., tumor sup-
pressor protein p53 (21)]. Further, to estimate
the number of human proteoforms, we mul-
tiplied the theoretical number of proteins by
three times the standard deviation of the
mean number of proteoforms observed per
protein. From this, we estimated the number
of proteoforms to be ~1.1 million in a human
cell type, close to a previous estimation (22).
Hence, this study likely accounts for at most
~3% of human proteoforms distributed from
1 to 59 kDa (fig. S3), demonstrating a clear
need to improve technologies for systematic
proteoform discovery (23).

Table 1. Proteins and proteoforms identified across 21 human cell types and plasma, aggregated in redundant and nonredundant fashion. Analysis
methods used: Nuc/Cyt, nuclear and cytosolic fractions were analyzed individually; WC, whole-cell lysate; IEX, ion exchange used before the GELFrEE-LC-

MS/MS; PM, ProteoMiner equalized cell lysates.

. T Proteins  Unique proteins Proteoforms Unique proteoforms
CRllLVPS Analysis method ~ LC-MS/MS runs o, "cpp 1% FDR 1% FDR (C-score > 30) 1% FDR
Hematopoietic stem cell” Nuc/Cyt 57 756 16 3,349 (2,520) 596
PBMC Ygg 112 457 27 3,510 (2,618) 1,507
[EX
Pan T cell WC 367 1,065 116 9,991 (5,839) 4,163
Nuc/Cyt
Cytotoxic T cell e 68 542 2 2,650 (963) 436
y Nuc/Cyt '
WC
Helper T cell Nuc/Cyt 89 624 2 3,408 (1,319) 617
Regulatory T cell Nuc/Cyt 58 217 0 2,776 (477) 899
WC
Pan B cell Nuc/Cyt 118 643 8 3,689 (1,653) 745
Pan B cell* WC 12 334 1 1,225 (602) m
Pre-B-I cell* WC 4 100 0 309 (253) 13
Pre-B-Il cell* WC 4 149 0 400 (323) 26
Pre-B-IIl immature cell* WC 4 123 3 406 (334) 33
Naive B cell WC 3 150 0 303 (176) 19
Memory B cell WC 5 169 0 385 (208) 20
Natural killer cell Nuc/Cyt 98 704 25 4,903 (1,859) 1123
Monocyte Nuc/Cyt 128 650 8 7,026 (3,029) 2,391
Immature dendritic cell Nuc/Cyt 52 683 20 2,257 (1,343) 376
Macrophage Nuc/Cyt 46 520 15 1,847 (1,082) 472
Eosinophil Nuc/Cyt 52 426 10 1,774 (1,427) 391
WC
Neutrophil [EX 104 318 27 3,348 (2,784) 1,728
Nuc/Cyt
WC
Erythrocyte (RBC) PM 41 123 6 1,199 (555) 477
Platelet \év'a 78 344 14 1,595 (1,122) 728
Plasma PM 50 79 17 462 (326) 232
Total - 1,553 9,239 317 56,813 (30,812) 17,103
Total (nonredundant) — 1,553 1,690 317 29,620 (17,630) 17,103
*Cell types isolated from human bone marrow.
Melani et al., Science 375, 411-418 (2022) 28 January 2022 3of8
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Quantitative TDP of hematopoietic cell types

Quantitative comparison of proteoforms using
label-free TDP (24) was applied to compare
pools of B cells (CD19") against T cells (CD3")

from the same donor (fig. S4 and supplemen-
tary text in the supplementary materials). We
also compared five B cell subtypes from a sin-
gle donor sorted by FACS, including pre-B-1,

pre-B-11, and pre-B-III from bone marrow and
memory and naive B cells from blood (table
S1and Fig. 3). Many proteins or proteoforms
are shared by cells from the bone marrow or
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Fig. 2. Display of protein and proteoform analysis for entries in the Blood
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T-cell Help, helper T cells; T-cell Reg, regulatory T cells; HSC, hematopoietic
stem cells; DC, dendritic cells; RBC, red blood cells. Histograms of (C) proteins

and (D) proteoforms shared by different cell types. (E) Heatmaps and cell
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proteins (1690) and proteoforms (29,620) at 1% FDR, with proteoforms
exhibiting higher specificity for distinct cell types. NBC, naive B cells; MBC,

memory B cells; PBI, pre-B-I cells; BC-BM, B cells from bone marrow; Eosino,

eosinophils; Macro, macrophages; Neutro, neutrophils; BC, B cells from
blood; Mono, monocytes; TC, T cells.
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Fig. 3. Comparison of B cell subtypes using quantitative top-down proteomics.
Venn diagram analysis of (A) proteins and (B) proteoforms observed in pre-B-, pre-B-Il,
and pre-B-lll cells; naive B cells; and memory B cells. (C) Heatmap and hierarchical
clustering of quantified proteoforms from B cells subtypes. Numbers 1 to 3 represent the
three major clusters of proteoforms found. (D) Volcano plot of up- and down-regulated
proteoforms from naive B cells (NB) relative to memory B cells (MB). (E) Box-and-whisker
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plots of proteoforms PFR1464 (TMSB4X) and PFR1215 (S100A6) levels show their variance
among the five B cell subtypes. Fragmentation maps of (F) PFR1464 and (G) PFR1215.
Red box indicates N-terminal acetylation. Single-letter abbreviations for the amino
acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; |, lle; K, Lys;
L, Leu; M, Met; N, Asn; P, Pro; Q, GIn; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
(H) Distributions of proteoforms PFR1464 and PFR1215 in blood cell types of the BPA.
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between their mature forms in the blood,
indicating that these cell types are distinct
(Fig. 3, A and B). The same pattern is observed
in the expression heatmap generated from
the standardized intensities scores (Fig. 3C),
separating the two cell groups by >66% of
the total clustering distance. Three clusters
of proteoforms were observed: (i) those up-
regulated in naive and memory B cells, (ii) those
up-regulated in pre-B cells, and (iii) those with
a random regulation pattern.

A closer look into the differentially regulated
proteoforms from the mature B cells showed
10 proteoforms with increased relative abun-
dance in naive B cells, with 50 elevated in
memory B cells (Fig. 3D). The proteoform
PFR1464 from thymosin beta-4 (Fig. 3F) was
elevated by ~10-fold in naive B cells relative to
memory cells, whereas proteoform PFR1215
from the protein S100A (Fig. 3G) was increased
in memory relative to naive B cells. Exploring
the presence of these two proteoforms in the
five B cell subtypes showed that PFR1215 is
present at low levels in naive B cells and at
high levels in pre-B cells and memory B cells
(Fig. 3E). PFR1464 is present mainly in naive
B cells and has low levels in pre-B cells (Fig. 3E).
Expanding this comparison to all cell types
in the BPA, we observe that PFR14:64 is more
abundant in naive B cells, whereas PFR1215 is
more widely observed in different cell types
(Fig. 3H). Quantitative results were consistent
using spectral counting and intact proteoform
quantification methods in both cases.

BPA and peripheral blood mononuclear cells
from liver transplant recipients

With a reference set of proteoforms, the BPA
can inform clinical research and care with
more precise protein information, for exam-
ple, the prostate-specific antigen isoform test
in prostate cancer (25). One area of unmet
need is organ transplantation, in particular
liver transplantation (LT), where episodes of
acute rejection (AR) limit survival (26). AR
arises from an imbalance of immune activa-
tion (TA) related to cellular and humoral anti-
donor responses (e.g., effector CD4", cytotoxic
CDS8" T cells, and donor-specific antibodies)
over immune quiescence (IQ) suppressor
countermechanisms (e.g., regulatory T cells)
(27-30). This key balance of IA versus IQ re-
lating to AR risk is, however, difficult to de-
termine without available objective markers
in LT recipients (LTRs). Given this critical
clinical scenario, we sought to discover and
validate cell-based proteoforms as indica-
tors of LTR immune status for future clinical
applications.

We first conducted an untargeted quanti-
tative TDP analysis of peripheral blood mono-
nuclear cells (PBMCs) using the 0 to 30 kDa
GELFrEE fractions of whole PBMC lysates
from a cohort of 75 LTRs (Fig. 4, A and B).
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Fig. 4. Quantitative top-down proteomics analysis of PBMC proteoforms from liver transplant
recipients. (A) Workflow used to compare patients with transplant excellent (TX); with acute
dysfunction, no rejection (ADNR); and with acute rejection (AR). (B) The number of patients
whose PBMCs were analyzed in an untargeted fashion. Volcano plot showing differentially
expressed proteoforms in (C) AR patients relative to non-AR (TX+ADNR) and (D) TX patients
relative to non-TX (ADNR+AR). (E) The number of patients whose PBMCs were analyzed for
targeted proteoforms. Volcano plot with the relative levels of the 24 targeted proteoforms in
(F) AR versus non-AR and (G) TX versus non-TX. (H) Distributions of the normalized spectral
(N.S.) counts of proteins (left) and proteoforms (right) observed in BPA cell types.
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Patients were initially divided into three
groups: transplant excellent (TX represent-
ing IQ and healthy graft function; n = 25),
acute dysfunction no rejection (ADNR, rep-
resenting nonrejection causes of graft injury;
n = 25), and AR (n = 25). The AR and ADNR
phenotypes were diagnosed by needle biopsy,
and TX by clinical and laboratory criteria,
as previously described (31-34). The absence
of biopsies in TX was a limitation; however,
transplant centers do not generally perform
surveillance biopsies in LTR with healthy
graft function. Figure 4 shows the results for
AR versus non-AR (TX+ADNR) and TX ver-
sus non-TX (AR+ADNR), grouped for simpli-
fication and alignment with clinical utility.
We identified a total of 198 differentially ex-
pressed proteoforms (DEPs) from 99 proteins
(Fig. 4, C and D), many of which were detected
in our small exploratory study (31). Pathway
and process analysis was performed on the
identified proteins from each group using
Metascape (35) (fig. S5 and table S8). Between
the groups, we found some commonly enriched
pathways involved in T cell activation and graft
migration, including RHO GTPase effectors
(36). TX-specific pathways include regulated
exocytosis, platelet degranulation, and cyto-
skeletal organization. These pathways could be
related to exocytosis of granules from cyto-
toxic T cells, platelet-mediated thrombosis, and
remodeling of the actin cytoskeleton (37).

Next, we performed a targeted validation study
using some of the most significant proteo-
forms from discovery (table S9). A panel
with 24 proteoforms from 23 proteins (table
S10) was deployed on a new cohort of 59
patient PBMCs (TX = 36, ADNR = 10, and
AR = 13) (Fig. 4E) from a multicenter LT
study (NTAID CTOT-14; NCT01672164) (32). We
note that the number of AR subjects is small
but reflects the ~20% prevalence of AR in LTR
(26, 38-40). Statistical analysis comparing AR
and non-AR or TX and non-TX populations
confirmed significantly up-regulated proteo-
forms from the TX or non-AR groups (Fig. 4, F
and G, and table S10). The proteoforms differ-
entially regulated in TX were platelet factor 4
(PF4) N-terminally truncated with five extra
amino acids, PFR18631; nonhistone chromo-
somal protein HMG-17 (HMGN2) canonical
sequence, PFR1006; and a C terminus part of
cytoplasmic actin 1 (ACTB) from amino acid
positions 330 to 375, PFR69028. On the other
hand, 15 proteoforms were significantly in-
creased in non-AR (table S10). The three pro-
teoforms with the higher g values were a piece
of serum deprivation-response protein (CAVIN2)
from amino acid positions 297 to 343, PFR70141;
a C-terminal portion of high mobility group
protein B1 (HMGBI) from amino acid positions
107 to 214, PFR69103; and the canonical se-
quence of profilin-1 (PFN1) N-terminally acet-
ylated, PFR14:39.

Melani et al., Science 375, 411-418 (2022)

With a cell-based expression atlas in hand,
we could identify the cell types in which these
24 proteoform targets are typically present.
Figure 4H shows the heatmaps of proteins
(left) and their proteoforms (right). Most pro-
teoforms are found in a narrower range of cell
types; for example, PFR70141 from the CAVIN2
gene was only identified in NK cells, naive B
cells, B cells, and T cells, while at the protein level
(095810) it was additionally observed in plate-
lets, PBMCs, and hematopoietic stem cells (HSCs).
Moreover, transcriptome data from the HBA
point to the CAVIN2 gene as highly expressed in
PBMCs, supporting the results. All proteoforms
from the panel were identified in T cells, 23 in B
cells, and 22 in NK cells—collectively the most
abundant PBMC types (41). Five were identified
in red blood cells (RBCs), neutrophils, and plas-
ma, suggesting nonspecific cell proteoforms. On
the basis of the protein and proteoform hits in
Fig. 4H, we performed a cell enrichment test
against all BPA identifications (fig. S6). Con-
sistent with a narrower distribution of proteo-
forms, one proteoform of PF4, PFR18631, was
observed in six cell types (platelets, plasma, B
cells, T cells, and HSCs). A second proteoform,
PFR18628, was identified in 11 cell types, and
the corresponding protein (P02776) in 15 dif-
ferent cell types. In this case, platelets showed
the highest normalized spectral counts for the
protein that is an archetype of the chemokine
family essential in platelet aggregation and
inflammation (42).

Some of the identified proteoforms derive
from proteins with immune functions, includ-
ing PF4 and PFNI. PF4 expression is reduced
in humans and mice with acute liver injury
and inhibits ischemia-reperfusion injury in LT
mouse models (43, 44). PFNI1 is involved in
actin organization, which inhibits CD8" cyto-
toxicity by reducing migration and degran-
ulation (45). Box-and-whisker plots showing
the prominent striation in individual patient
responses are presented in fig. S7. Proteoforms
related to ACTB, PFN1, and PF4 were statisti-
cally significant in TX and non-AR groups,
supporting the discovery-stage experiments.
Notably, the protein PF4 had two proteoforms
in the 24 proteoform panel, and only PFR18631
was 1.9-fold up-regulated in the TX group
compared with the non-TX group. This proteo-
form has four extra amino acids (FASA) on the
N terminus compared with PFR18628, which
maps to the canonical isoform in UniProtKB/
Swiss-Prot (42) and was not differentially ex-
pressed. The N-terminal processing of PFR18631
may represent an essential mechanism for
modulating PF4 activity similar to the one
described to inhibit endothelial cell growth
(42). Additional studies are underway to moni-
tor proteoform changes over time and in spe-
cific cell types in LTR patients (32).

The results from this small cohort suggest
that in the clinical context of liver transplan-

28 January 2022

tation (i) leukocyte proteoform levels might
have diagnostic value for IA versus 1Q, and
(ii) clinically relevant immunoproteoforms are
present in select blood cell populations. The
novelty of direct proteoform measurement
versus less specific epitope- or peptide-based
methods could advance care by identifying
early specific signs of IA versus IQ to person-
alize LTR immunosuppressive therapy moni-
toring and modulation.

Summary

By mapping ~57,000 redundant proteoforms
present in human blood, bone marrow, plas-
ma, and within main hematopoietic cell types,
we have advanced fundamental knowledge of
protein components present in the human
body. At the transcript level, the field is ad-
vancing single-cell RNA-seq from a composi-
tional tool to connect with spatial localization
(46). A reference map of human proteoforms
can serve a similar function at the protein level
as we seek to understand the spatial and tem-
poral dynamics of proteins operative in human
tissue (13). Here, both cell- and proteoform-
specific information in the context of organ
transplantation were provided as a potential
clinical application. This cellular and molecu-
lar specificity can help advance the future of
protein-level diagnostics and broader goals for
understanding human biology.
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Getting to know our proteoform

Over the past few years, large-scale proteomics efforts have allowed us to begin to understand phenotype at a

protein level. These research efforts have included studies that map tissue- and cell-specific protein compositions.
However, proteins function in the context of modifications that include alternative splicing and posttranscriptional and
posttranslational processing. Melani et al. compiled an atlas of proteoforms found in 21 cell types in human blood and
bone marrow and show that proteoforms have higher cell-type specificity than proteins and so provide better indicators
of cell type. These data are accessible in the Blood Proteoform Atlas, and as an example of potential applications, the
authors show that the proteome signatures can distinguish normal graft function from graft rejection in liver transplants.
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