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models in which the inter-band repulsive interactions play the
dominant role. We first demonstrate three different schemes of
constraining the ratios between the three types of inter-band
interactions – density-density, spin exchange, and pair-hopping –
that render the model free of the fermionic sign-problem for any
filling and, consequently, amenable to efficient Quantum Monte
Carlo simulations. We then study the behavior of these sign-
problem-free models in the strong-coupling regime. In the cases
where spin-rotational invariance is preserved or lowered to a
planar symmetry, the strong-coupling ground state is a quantum
paramagnet. However, in the case where there is only a residual
Ising symmetry, the strong-coupling expansion maps onto the
transverse-field J1-J2 Ising model, whose pseudospins are asso-
ciated with local inter-band magnetic order. We show that by
varying the band structure parameters within a reasonable range
of values, a variety of ground states and quantum critical points
can be accessed in the strong-coupling regime, some of which
are not realized in the weak-coupling regime. We compare these
results with the case of the single-band Hubbard model, where
only intra-band repulsion is present, and whose strong-coupling
behavior is captured by a simple Heisenberg model.
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1. Introduction

In systems of interacting electrons, a strong Coulomb repulsion can give rise to correlated
nsulating states in which charge carriers become localized. The low-energy properties are then
sually determined by emergent charge-neutral excitations. A prime example is the Mott-insulating
hase observed in several transition metal oxides, including the parent compounds of the high-
emperature cuprate superconductors [1–3]. The low energy excitations are typically magnetic in
ature, since the local spins usually order at low enough temperatures inside the Mott state. More
xotic correlated phenomena may arise in systems where the electrons have additional degrees of
reedom besides spin. Examples include the orbital-selective Mott transition [4–6] and the Hund’s
etallic state [7,8] in multi-orbital systems, as well as ferromagnetic and Chern insulating phases

n graphene-based systems with valley degrees of freedom [9–12].
From a theoretical perspective, while these materials have important structural and chemical

ifferences, it is useful to consider simple models that may capture universal emergent behaviors
ssociated with these correlated phases [13]. In this regard, the Hubbard model [14–16] is certainly
mong the most studied models in condensed matter physics, consisting of a kinetic hopping term
with coefficient t) and an onsite Hubbard repulsion term (with coefficient U) involving electrons on
single orbital. Upon increasing U , one generally expects a metal to Mott-insulator transition [17].
owever, this is not the full story. As Phil Anderson showed in Ref. [18], a perturbative calculation
n the strong-coupling regime (U ≫ t) reveals that the spins of the localized charge carriers
xperience a superexchange interaction promoted by virtual hopping processes. As a result, at
alf-filling, the insulating state is expected to display long-range magnetic Néel order — unless
rustration is present, in which case spin liquid phases may appear [1]. Moving away from half-
illing, one obtains the rich t-J model [3]. Interestingly, in the weak-coupling regime (U ≪ t),
perturbative calculations generically find a Néel state at half-filling [19,20], which can be a metal
or a Slater insulator depending on additional hopping parameters. As a result, the magnetic order
in the weak-coupling and strong-coupling regimes are the same.

For intermediate coupling strengths and away from half-filling, unconventional superconductiv-
ity is generally expected from both strong-coupling [1,21] and weak-coupling perspectives [22–24].
Assessing this regime of moderate correlations, however, is theoretically challenging due to its non-
perturbative nature. Numerical methods have played an important role in bridging the gap between
the strong- and weak-coupling regimes of the Hubbard model [25]. These include density-matrix
renormalization group methods [26–28], dynamical mean-field theory [17,29–31], and Quantum
Monte Carlo (QMC) simulations [32–34]. While the latter is a powerful method, due to its exact
and unbiased nature, it suffers from the infamous fermionic sign problem, which, in the case of the
Hubbard model, can only be avoided exactly at half filling and for bipartite lattices [35].

One of the main motivations to study the Hubbard model has undoubtedly been the cuprate
high-temperature superconductors. While questions remain about whether this single-band model
can capture their rich phenomenology [36,37], the rise of iron-based superconductors, ruthenates,
and other multi-band systems has revived the interest in multi-orbital generalizations of the
Hubbard model, the so-called Hubbard–Kanamori models (see, for example, Ref. [38]). Several works
have unearthed the unique properties of these models, including the importance of the Hund’s
rule coupling in promoting strong-coupling behavior [7,17] and the rich interplay between nesting-
driven spin-density wave and unconventional superconductivity [39]. Strong-coupling expansions
involving both spin and orbital degrees of freedom have also been widely employed [40], resulting
in complex Kugel–Khomskii effective models [41]. From a numerical perspective, the fact that the
Hubbard model suffers from the fermionic sign-problem may discourage the use of QMC methods
to investigate the more complicated Hubbard–Kanamori models. However, as realized in Ref. [34],
by extending the number of bands of certain low-energy models that describe electrons interacting
with bosonic excitations, it is possible to completely avoid the sign problem due to the emergence of
an anti-unitary symmetry [42]. A similar reasoning was put forward previously in Ref. [43] in the
context of the Hubbard–Kanamori model. Therefore, multi-band interacting models may provide
a unique window into the regime of moderate correlations that is usually difficult to access in

single-band models.
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Fig. 1. Phase diagram of the two-band electronic model with inter-band only repulsion, see Eq. (4). The dashed black
ine denotes a metal-to-insulator transition/crossover, whereas the green lines denote the superconducting (SC) dome.
he dashed red line marks a first-order antiferromagnetic (AFM) phase transition. The AFM phase has a dome-like
tructure bounded by two putative quantum phase transitions. The inset depicts the Fermi surface of the non-interacting
amiltonian. The color code refers to the charge compressibility χc .
ource: Figure reproduced from Ref. [44].
2020 by the American Physical Society.

In a previous work [44], together with Y. Schattner, we showed that a particular realization of
he Hubbard–Kanamori model, formulated in band space rather than in orbital space and with spin-
nisotropic interactions, is amenable to be simulated with a sign-problem-free QMC method. The
ey point is to set the intra-band repulsion to zero and consider only inter-band repulsion terms.
hile the opposite limit of large intra-band repulsion and vanishing inter-band terms should map
irectly onto the usual Hubbard model, the inter-band dominated regime that we considered in
ef. [44] has been little explored. As such, it has the potential to provide important insights onto
he properties of multi-band interacting systems. Importantly, such a limit is not as artificial as it
ay first look: a weak-coupling renormalization-group (RG) analysis of this model shows that the

nter-band terms grow much faster than the intra-band ones under the RG flow, in the case of a
early-nested Fermi surface [39]. Moreover, the model remains sign-problem free even away from
alf-filling and for longer-range hopping parameters.
In Fig. 1, we reproduce the temperature-interaction strength phase diagram obtained by us

n Ref. [44], via QMC simulations for a model with nearly nested bands (see the inset). Despite
he absence of intra-band repulsion, a metal-to-insulator crossover takes place for intermediate
oupling strengths (dashed black line). Superconductivity (SC, green line) is also found in the
etallic state near the onset of Néel antiferromagnetic (AFM) order. The main feature of this phase
iagram, however, is the emergence of an AFM dome (red line). Starting from the weak-coupling
imit, it is not surprising that AFM order is only seen after the interaction strength overcomes a
hreshold value, since the nesting between the two bands is not perfect. What is more surprising
s the apparent lack of AFM order in the strong-coupling limit, since Néel order is a hallmark of the
ott insulating state of the standard Hubbard model. In Ref. [44], we performed a strong-coupling
xpansion of this inter-band interacting model, and found the ground state to be in the quantum
aramagnetic phase of an effective transverse-field Ising model, in agreement with the QMC results.
In this paper, we perform a strong-coupling expansion of the inter-band interacting model

or an arbitrary band dispersion and for different types of spin-anisotropic interactions, thereby
xtending our previous results. In the case of inter-band interactions that preserve the SU(2) spin
otational symmetry or lower it to a planar symmetry, we find a non-degenerate ground state for
he single site problem, indicating a ‘‘trivial’’ quantum paramagnetic ground state in the strong-
oupling regime. On the other hand, for the case of inter-band interactions that lower the SU(2)
ymmetry to an Ising symmetry, the ground state of the single-site problem is doubly degenerate.
3
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This gives rise to a pseudospin that corresponds to the two polarizations of the inter-band Ising-
like magnetization. In terms of this pseudospin, the strong-coupling expansion of our microscopic
interacting model maps onto a transverse-field Ising model with extended exchange interactions,
i.e. nearest-neighbor interactions, next-nearest-neighbor interactions, etc. In particular, we show
that, by changing the band dispersion parameters across a reasonable range of values, one can in
principle access the entire phase diagram of the transverse-field J1-J2 Ising model. This includes
he regime where the critical behavior is that of the simple transverse-field Ising model – as was
he case for the particular band parameters we considered in Ref. [44] – or that of the transverse
ield Ashkin–Teller (four-state clock) model. We discuss how the latter can shed new light on the
mergence of vestigial nematicity in systems that display stripe-type magnetic order, with possible
mplications for the coupled magnetic-nematic transitions of iron-based superconductors [45].
verall, our work reveals the richness of the strong-coupling regime of microscopic models in which
nter-band interactions dominate, which can be quite different from the strong-coupling behavior
f the standard intra-band dominated Hubbard model.
Our paper is organized as follows: In Section 2 we introduce the microscopic two-band model,

nd show how restrictions placed on the interaction parameters lead to the emergence of an
nti-unitary symmetry, which allows the model to be simulated using sign-problem free QMC.
n Section 3 we perform a strong coupling expansion of the model with an inter-band spin–spin
nteraction of the Ising-type, and show that it is mapped onto the transverse-field J1-J2 Ising model.
n Section 4, we discuss the rich phase diagram of the transverse-field J1-J2 Ising model, as well as
the choice of microscopic tight-binding parameters to achieve each ground state. Our conclusions
are presented in Section 5.

2. Multi-band interacting model

We start from a two-band electronic Hamiltonian with onsite interactions only:

H = H2 + H4,

H2 =

∑
ij,µ

[
(tcij − µcδij)c

†
iµcjµ + (tdij − µdδij)d

†
iµdjµ

]
,

H4 =

∑
i,µν

[
U1c

†
iµciµd

†
iνdiν − U2c

†
iµciνd

†
iνdiµ +

U3

2

(
c†
iµc

†
iνdiνdiµ + h.c.

)
+U4c

†
iµciµc

†
iνciν + U5d

†
iµdiµd

†
iνdiν

]
.

(1)

ere, c†
i,µ (d†

i,µ) creates an electron in band c (d) at site i of a square lattice with spin µ. The non-
nteracting electronic dispersions εc(k) and εd(k) are obtained from the corresponding hopping
arameters tc,dij . The terms µc and µd contain implicitly both the chemical potential, given by
µc

+µd)/2, and the onsite energies ±(µc
−µd)/2 associated with each band. There are five types of

nsite electronic interactions, corresponding to intra-band density-density repulsion (U4 and U5),
nter-band density-density repulsion (U1), spin exchange (U2) and pair hopping (U3). The model
an been viewed as a projection of the usual two-orbital Hubbard–Kanamori model on the band
asis [39], with the assumption that the angle dependence of the projected interaction parameters
an be neglected.
Depending on the choice of band and interaction parameters, various low-energy phenomena

an be explored. For example, if the non-interacting band dispersions are nearly nested (i.e. one
ole-like Fermi pocket and another electron-like Fermi pocket of similar size and shape), density-
ave order in different channels (i.e. spin, charge, loop-current) can be promoted at weak coupling
epending on the values of the inter-band interactions U1, U2, and U3 [39]. Unconventional super-
onductivity, characterized by gaps of opposite signs on the two bands, is a close competitor of the
ensity-wave order. On the other hand, if the intra-band interactions U4 and U5 are dominant, the
odel reduces to two nearly-independent copies of the single-band Hubbard model. Alternatively,
4
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by constraining the inter-band interactions U1, U2, and U3 to be twice the strength of the intra-
and interactions, the model maps onto a two-layer Hubbard-model with nearest-neighbor hopping
etween the layers, which has been employed to study Cooper pairing due to an incipient band [46].
As discussed in the introduction, our interest here is on the strong-coupling limit in the regime

f dominant inter-band repulsion, as a counterpoint of the more widely studied regime of dominant
ntra-band repulsion. Therefore, hereafter we set U4 = U5 = 0. An appealing feature of the model
ith inter-band interactions only is that, by properly setting the ratios between the three inter-band

nteractions, U1, U2, and U3, the Hamiltonian can be efficiently solved numerically via sign-problem-
ree QMC simulations. This is because the interaction term can then be written as an effective
ttractive term in the inter-band spin-channel. Introducing the notation ψi = (ci↑, ci↓, di↑, di↓)T ,

we define the inter-band spin order parameter as: Ma
i ≡

∑
αβ ψ

†
iα(σ

aρx)αβψiβ , where σ and ρ are
auli matrices acting in spin and band space respectively, and (α, β) are indices of the vector space
panned by ψi.
There are three different possibilities to do such a rewriting of the interaction term. The first one

orresponds to choosing U1 = 4U , U2 = 2U , and U3 = 6U , which leads to:

H4,Heisenberg = −U
∑

a=x,y,z

∑
i

Ma
i M

a
i . (2)

ere, the subscript ‘‘Heisenberg’’ is used to emphasize the fact that the interaction term is invariant
nder spin SU(2) rotational symmetry, reminiscent of the Heisenberg model. Other ratios between
1, U2, and U3 allow for similar types of rewriting in terms of ‘‘XY’’ and ‘‘Ising’’ inter-band spins.

Of course, in these cases the interactions must break spin-rotational symmetry. This is not an
unreasonable assumption, since spin–orbit coupling naturally breaks spin-rotational symmetry in
actual materials. In our treatment, such effects are treated on a phenomenological level only. In
particular, setting U1 = 4U(1 − δµν), U2 = 0, and U3 = 4U we obtain

H4,XY = −U
∑
a=x,y

∑
i

Ma
i M

a
i . (3)

ote that the interaction term possesses a residual U(1) (or planar) symmetry, similar to the XY
model. Finally, in the case where U1 = 4Uδµν , U2 = 2U , and U3 = 2U , H4 can be rewritten as

H4,Ising = −U
∑

i

Mz
i M

z
i , (4)

where only a Z2 symmetry is preserved.
The key motivation to introduce these restrictions on the inter-band repulsions is that the

resulting Hamiltonian can be simulated with QMC without the sign-problem. This can be seen by
decoupling the quartic terms via a Hubbard–Stratonovich field {φa

i (τ )}, where τ denotes imaginary
time. As a result, the partition function can be represented as

Z =

∫
D[φ] det{̂G−1(φ)}exp(−Sφ) . (5)

Here Sφ =
∫ β
0 dτ 1

4U [φa
i (τ )]

2 and Ĝ ≡ (∂τ + H2 + Hφ2 )
−1 is the fermionic Green’s function, with

Hφ2 =
∑

i φ
a
i (τ )M

a
i . In the single-particle Hilbert space, the quadratic Hamiltonian (H2 + Hφ2 ) has

n anti-unitary symmetry Û = iσ yρzK , where K denotes complex conjugation. Since Û2
= −1,

he eigenstates of the single particle spectrum are always doubly degenerate (an analogue of a
ramer’s doublet), which guarantees a positive fermionic determinant [42]. In Ref. [44], we used
eterminantal QMC to study the Ising case in Eq. (4), resulting in the phase diagram of Fig. 1
iscussed in the Introduction.
It is interesting to note that the restriction on the ratios between U1, U2, and U3 that is needed

o ‘‘eliminate’’ the fermionic sign-problem is a much milder constraint than the corresponding
estriction on the single-band Hubbard model. In the latter case, one needs to impose half-filling and
opping parameters that preserve the bipartite nature of the square lattice. In the present case, on
he other hand, there are no restrictions on the filling and on the type of hopping parameters. The
eason is because the avoidance of the fermionic sign-problem arises from an anti-unitary symmetry
elated to the intrinsic two-band nature of the problem, in the same spirit as in Ref. [42].
5
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Fig. 2. Energy spectrum and level degeneracy of the single-site interacting Hamiltonian H4 for the Heisenberg [Eq. (2)],
Y [Eq. (3)], and Ising [Eq. (4)] cases. States in the n = 2 filling sector are denoted in red. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

. Strong-coupling expansion

While in our previous work [44] we performed a strong-coupling expansion of the Ising case
Eq. (4)] for a specific tight-binding parameters set, here we explore the strong-coupling regime
f the three cases presented in Eqs. (2)–(4) for an arbitrary tight-binding parametrization. The
rocedure consists of first neglecting the kinetic terms and then solving the interacting Hamiltonian
xactly on a single site. Next, we treat the kinetic terms perturbatively, and discuss the strong-
oupling physics using an effective Hamiltonian in terms of the available degrees of freedom [47]. As
e will show, the Ising case provides the only non-trivial ground state at strong-coupling, mapping
nto the rich transverse-field J1-J2 Ising model.

.1. Single-site exact solutions

The energy spectra of the interacting Hamiltonians in Eqs. (2)–(4) on a single site are illustrated
n Fig. 2. The local Fock space can be written as |ηc; ηd⟩ where ηc, ηd ∈ {0,↑,↓,↑↓}. This is a 16-
imensional vector space. Due to number conservation, the Hamiltonians can be analyzed within
ny given integer electron filling n = 0, . . . , 4. The linear dimension for each filling factor is given
y the binomial coefficient dn = Cn

4 . The n = 0 and n = 4 states have the highest energy, E = 0.
ll eight n = 1 and n = 3 states have equal energy, E = −3U for the Heisenberg case, E = −2U in
he XY case, and E = −U in the Ising case. In all three cases, the n = 2 sector contains the lowest
nergy states. In total, there are six states in the n = 2 sector, given by:

Φ =
(
|0; ↑↓⟩ |↑; ↑⟩ |↑; ↓⟩ |↓; ↑⟩ |↓; ↓⟩ |↑↓; 0⟩

)T
, (6)

he matrix elements of H4 in this sector are

H4,Heisenberg = −U

⎛⎜⎜⎜⎜⎜⎝
6 0 0 0 0 −6
0 4 0 0 0 0
0 0 2 2 0 0
0 0 2 2 0 0
0 0 0 0 4 0

−6 0 0 0 0 6

⎞⎟⎟⎟⎟⎟⎠ , (7)

H4,XY = −U

⎛⎜⎜⎜⎜⎜⎝
4 0 0 0 0 −4
0 4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 4 0

⎞⎟⎟⎟⎟⎟⎠ , (8)
−4 0 0 0 0 4
6
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H4,Ising = −U

⎛⎜⎜⎜⎜⎜⎝
2 0 0 0 0 −2
0 0 0 0 0 0
0 0 2 2 0 0
0 0 2 2 0 0
0 0 0 0 0 0

−2 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠ . (9)

he single-site energy spectrum of each case is shown in Fig. 2. The states for the filling n = 2 are
hown in red, whereas the states for the other filling sectors are shown in blue. Both the Heisenberg
nd XY Hamiltonians have a unique ground state given by |a1⟩ ≡

1
√
2
(|↑↓; 0⟩ − |0; ↑↓⟩), with

energies −12U and −8U respectively. For the Ising Hamiltonian, on the other hand, the lowest-
energy state −4U is two-fold degenerate, consisting of both |a1⟩ and |a2⟩ ≡

1
√
2
(|↑; ↓⟩ + |↓; ↑⟩). A

eneral ground state can therefore be written as:

|ϕ⟩ = α |a1⟩ + β |a2⟩ , (10)

where |α|
2

+ |β|
2

= 1. This degeneracy is a result of the commutation relation [H4,Ising,Mz
i ] = 0,

hich does not hold in the Heisenberg or XY cases. Because Mz
i |a1⟩ = −2 |a2⟩ and Mz

i |a2⟩ =

−2 |a1⟩, the combinations 1
√
2
(|a1⟩−|a2⟩) and 1

√
2
(|a1⟩+|a2⟩) are eigenstates of Mz

i with eigenvalues
±2. These combinations can thus be interpreted as the two possible polarizations of the inter-band
Ising magnetization. Therefore, in the two-dimensional space spanned by the spinor in Eq. (10), the
inter-band magnetization is represented by the τ x pseudospin.

This analysis shows that, in the strong-coupling limit, the Heisenberg and XY cases display only
a featureless quantum paramagnetic state. On the other hand, the Ising case has a residual SU(2)
degeneracy related to the inter-band magnetization degree of freedom. Perturbative interactions
between the local inter-band magnetizations, which we will study in the next subsection, may result
in non-trivial ground states. Therefore, within our model, the Ising case is the closest analogue
of the single-band Hubbard model, whose strong-coupling limit is characterized by perturbative
interactions between local (intra-band) spins.

3.2. Effective Hamiltonian of the Ising case

We proceed to discuss the effects of the kinetic terms given by H2. For the Heisenberg and XY
cases, the many-body ground state is unique and gapped, given by |Ψ0⟩ = Π L2

i=1 |a1⟩. Note that this
is a quantum paramagnetic state with ⟨M⃗ieiQ·ri⟩ = 0 for arbitrary wavevector Q. In the Ising case,
however, the lowest energy state on each site is a spinor, analogous to the physical electron spin in
the one-band Hubbard model. As a result, the ground state has an SU(2)L

2
-degeneracy. Perturbations

due to the kinetic terms can lift this degeneracy, leading to non-trivial correlations in the Hilbert
space spanned by the local spinors.

The energetics of low-energy excitations can be studied using an effective Hamiltonian ap-
proach [47] in terms of the pseudospins τµ previously introduced. Recall that, in the basis of Eq. (10),
inter-band magnetic order corresponds to a finite expectation value for τ x. For the Ising Hamiltonian
we find, up to second order in peturbation theory,

Heff,ss′ ≈ −4UL2δss′ +
⟨
Ψ0,s

⏐⏐H2
⏐⏐Ψ0,s′

⟩
+

∑
n̸=0,t

⟨
Ψ0,s

⏐⏐H2
⏐⏐Ψn,t

⟩ ⟨
Ψn,t

⏐⏐H2
⏐⏐Ψ0,s′

⟩
E0 − En

, (11)

where
⏐⏐Ψ0,s

⟩
= Π L2

i=1

⏐⏐ϕi,s⟩, and ⏐⏐ϕi,s⟩ = αi,s |a1⟩ + βi,s |a2⟩ is a configuration of the local spinor.
⏐⏐Ψn,t

⟩
denotes an excited state, having e.g. 1 electron on site i1 and 3 electrons on site i2.

The contribution from the single-particle onsite µc,d terms to the effective Hamiltonian is given
by

H (µ)
eff ≈ −

∑[
(µc

+ µd) +
1
8U

(µc
− µd)2

]
τ 0i −

∑ 1
8U

(µc
− µd)2τ zi , (12)
i i

7
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Note that only the difference in the onsite energies between the two bands, but not the chemical
otential, gives non-trivial energetics. It corresponds to a transverse field, since magnetic order
s given by τ x. This difference between onsite energies is a tuning parameter absent from the
strong-coupling limit of one-band Hamiltonians, such as the Hubbard model.

The hopping parameter tij generates spinor correlations between sites {i, j}. To second order, this
eads to the superexchange interactions:

H (t)
eff ≈

∑
:ij:

(
−

(tcij)
2
+ (tdij )

2

6U
τ 0i τ

0
j +

tcij t
d
ij

3U
τ xi τ

x
j

)
, (13)

here : ij : denotes an ordered pair of sites, i.e., permuting the two indices does not lead to a
new term in the Hamiltonian. We note that the superexchange interaction is of an Ising-type, as
expected from the fact that the model lacks spin-rotational symmetry. Furthermore, the signs of
the exchange interactions depend on the relative signs between the hopping parameters of the
two bands. Hence, equal (opposite) signs favor antiferromagnetic (ferromagnetic) alignment of the
inter-band magnetization. To summarize, in the strong coupling limit, the two-band electronic
model with Ising interaction maps onto the generalized transverse-field Ising model containing
longer-range exchange interactions:

Heff ≈

∑
:ij:

Jijτ xi τ
x
j − h

∑
i

τ zi , (14)

here hi ≡ (µc
i − µd

i )
2/8U and Jij ≡ tcij t

d
ij/3U . Note that we have omitted an overall shift of the

ground state energy.

4. The transverse-field J1-J2 Ising model

Let us focus on the case where H2 has hopping parameters defined up to next-nearest-neighbor
onds, yielding the band dispersions εi(k) = −µi

+2t i1(cos kx + cos ky)+4t i2 cos kx cos ky. According
to Eq. (14), this leads to the square-lattice transverse-field J1-J2 Ising model, with

J1 =
tc1t

d
1

3U
, J2 =

tc2t
d
2

3U
, h =

(µc
− µd)2

8U
. (15)

This model has been studied extensively in the recent literature [48–53], and here we give a brief
overview of the proposed phase diagrams of the frustrated case, where J2 > 0. Because the model is
invariant upon changing the signs of J1 or h, hereafter we focus on the case of J1, h > 0. For h = 0,
the classical phase diagram is rather well-established, and is schematically shown in Fig. 3(a) based
on the Monte Carlo results of Ref. [48]. For J2 < J1/2, the ground state is a Néel antiferromagnet
described by the order parameter ∆N = L−2∑

i⟨τ
x
i e

iQN·ri⟩, where QN ≡ (π, π ) is the ordering
wave-vector (note that the ground state would be a ferromagnet if J1 < 0). On the other hand,
for J2 > J1/2, the ground state is a striped antiferromagnet (regardless of the sign of J1), with an
order parameter ∆Sn = L−2∑

i⟨τ
x
i e

iQSn ·ri⟩, where QS1 = (π, 0) and QS2 = (0, π ). The transition
between the Néel and the stripe phases is first-order, as expected from the fact that they break
different symmetries.

Upon increasing temperature, the Néel to paramagnetic (PM) transition is second-order and
belongs to the 2D-Ising universality class — except possibly in a narrow region near J2 = J1/2,
where the transition may become first order [48]. As for the stripe ground state, it is important to
note that it is four-fold degenerate, since there are two stripe ordering wave-vectors and two Ising
spin polarizations. In the range 1/2 < J2/J1 ⪅ 0.67, the stripe-PM transition is first-order. However,
for J2/J1 ⪆ 0.67, the stripe-PM transition is second-order and described by the 2D four-state clock
model [48]. A special property of this model is that it only has weak universality, in the sense
that only the anomalous critical exponent η (and consequently the δ exponent) is universal, while
the other critical exponents are non-universal [54]. In the particular case of the classical J1-J2 Ising
model, it was shown in Ref. [48] that the non-universal critical exponents as a function of the ratio

J2/J1 map onto the critical exponents of another model that belongs to the four-state clock weak

8
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c
s

u

Fig. 3. (a) Schematic phase diagram at zero transverse field (h = 0), and (b) Schematic phase diagram at zero-temperature
(T = 0) of the transverse-field J1-J2 Ising model for antiferromagnetic exchange interactions. Solid (dashed) lines
orrespond to continuous (first order) phase boundaries. PM denotes the paramagnetic phase and VBS denotes a possible
tring valence-bond solid.

niversality: the Ashkin–Teller model. In particular, for J2/J1 ≈ 0.67, the critical exponents are those
of the four-state Potts model, whereas for J2/J1 → ∞, they are those of the 2D Ising model.

The quantum phase diagram (T = 0) of the model remains widely debated, although some
properties seem to be consistent across different methods [49–53]. In Fig. 3(b), we show a schematic
candidate phase diagram based on these works. As in the classical case, the Néel state is realized for
J2/J1 < 1/2 and the stripe state is realized for J2/J1 > 1/2. For zero transverse field, the transition
at J2 = J1/2 is first-order, like in the classical phase diagram. As h increases, however, the situation
is less clear. For instance, Ref. [50] reported the onset of a string valence-bond solid for finite
transverse fields. The quantum phase transition from the Néel to the PM state is believed to be
second-order and in the 3D Ising universality class [53] — although some methods report a regime
of first-order transition near J2/J1 = 1/2 [51]. The stripe-PM quantum transition seems to display a
tricritical point separating a first-order transition line from a second-order transition line — similarly
to the classical case [52]. Interestingly, the position of the quantum tricritical point seems to be
closer to the degeneracy point than the classical tricritical point [52,53], i.e. (J2/J1)q < (J2/J1)cl ≈

0.67, as illustrated schematically in Fig. 3(a) and (b) by the red dots. The nature of the second-order
quantum stripe-PM transition remains unclear. Because the classical transition is described by the
four-state clock model, it is natural to expect that the quantum transition should be described by
the quantum version of the same model. Based on the recent results of Ref. [55] on the quantum
q-state clock model, this transition is expected to belong to the 3D XY universality class. However,
Ref. [53] found that the quantum stripe-PM transition has non-universal critical exponents.

This rich landscape of possible ground states of the two-band model with dominant inter-band
interactions in the strong-coupling regime contrasts with the simple Néel state obtained for the
single-band Hubbard model. We now show that the (h/J1, J2/J1) phase diagram of Fig. 3(b) can in
principle be traversed with reasonable band structure parameters, contrasting the strong-coupling

and weak-coupling behaviors of the model.

9
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s
r

T
P
c

l
c

Fig. 4. (a–d) Two types of non-interacting Fermi surfaces featuring one hole-like pocket centered at Γ and one electron-
like pocket centered at either (a, (b) QN = (π, π ) or (c, (d) QS = (π, 0)/(0, π ). (e–f) Two identical copies of Fermi
urfaces with a larger hopping parameter for (e) the nearest-neighbor hopping and (f) the next-nearest-neighbor hopping,
espectively. The band parameters are given in Table 1.

able 1
arameters of the dispersions shown in Fig. 4 and discussed in the text, and their respective ground states (G.S.) at strong
oupling.

µc tc1 tc2 µd td1 td2 J2/J1 h/J1 G.S. (U ≫ t)

4(a) t t 0 −t t 0 0 3/2 Néel
4(b) 2t t 0 −2t t 0 0 6 PM
4(c) t 0.6t 0.8t −t 0.2t t 20/3 25/6 Stripe
4(d) 2t 0.6t 0.8t −2t 0.2t t 20/3 50/3 PM
4(e) t t 0 t t 0 0 0 Néel
4(f) t 0.8t t t 0.8t t 25/16 0 Stripe

A commonly studied situation is when the two bands give rise to a hole-like and an electron-
ike Fermi pocket, as illustrated in Fig. 4(a)–(d). In (a), the c-band creates a hole-like Fermi pocket
entered at Γ in the Brillouin zone, whereas the d-band gives rise to an electron-like Fermi pocket
of identical size centered at QN. This is achieved by a dominant nearest-neighbor hopping, as well
as opposite onsite energies, µc

= −µd, of magnitudes comparable to the bandwidth. As shown
10
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in Table 1, the tight-binding parametrization of Fig. 4(a) favors a Néel ground state in the strong-
coupling regime. Upon increasing (µc

−µd), which corresponds to shrinking the sizes of the hole-like
nd electron-like pockets, the value of the effective random field h/J1 increases and moves the

system towards the quantum paramagnetic ground state. The corresponding Fermi surface is shown
in Fig. 4(b). Therefore, without changing the electronic occupation, it is possible to induce a quantum
phase transition from the Néel phase to the paramagnetic phase. Physically, changing the band offset
may be achieved via pressure.

It is also interesting to compare the strong-coupling ground state with the weak-coupling one.
The parametrization in Fig. 4(a) satisfies the perfect nesting condition (εck = −εdk+QN

), which leads
o a spin-density wave order, even for infinitesimal small U , described by the same Néel order
arameter. Varying (µc

− µd) does not spoil the perfect nesting condition, and therefore is not
xpected to drive a transition to a paramagnetic phase, in contrast to the strong-coupling limit.
By including sizable next-nearest-neighbor hopping, i.e. increasing t2/t1, the d-band electron-

ike Fermi pockets become centered at QS1 = (π, 0) and QS2 = (0, π ), as shown in Fig. 4(c). Here,
stripe state is preferred at strong-coupling, as shown in Table 1. Similarly to the previous case,
y increasing the onsite energy difference – see Fig. 4(d) – the system moves towards a quantum
aramagnetic state due to the increase in the transverse field value. In the weak-coupling regime,
he stripe magnetic transition temperature is suppressed upon making the nesting conditions
oorer. Moreover, as discussed in Ref. [56], in the weak-coupling regime, strong deviations from
erfect nesting can change the magnetic ground state from the stripe phase to a charge-spin
ensity-wave — i.e. a collinear double-Q state consisting of a linear combination of the order
arameters ∆S1 and ∆S2 . Therefore, the magnetic ground states in the weak- and strong-coupling
egimes may be different.

There is an important difference between the Néel state and the stripe state. The fourfold de-
eneracy of the latter corresponds to two distinct Ising symmetries: one related to the polarization
f the Ising-magnetic order and one related to the tetragonal symmetry of the lattice — since
here are two possible stripe directions that lower the tetragonal symmetry to orthorhombic in
ifferent ways. The latter is thus associated with nematic order [45,57], described in terms of
he composite order parameter ∆2

S1
− ∆2

S2
[58]. Such a nematic phase is called a vestigial order

f the underlying stripe phase [59,60]. In the weak-coupling regime, the quantum nematic phase
ransition is generally expected to be first-order and simultaneous to the stripe one [61]. However,
n the strong-coupling regime of the model, both order parameters can onset simultaneously at
single quantum critical point, which likely belongs to the 3D XY universality class. This result
as important implications for the possibility of nematic and magnetic quantum criticality being
ealized in iron-based superconductors [45,62–64], whose band structure contains hole pockets and
lectron pockets separated by the wave-vectors QSn .
The above examples demonstrate that the magnetic ground states at weak and at strong coupling

an break the same symmetry, therefore allowing for a smooth connection at moderate coupling
trengths. However, this is by no means necessary. To illustrate this point, we consider a simple
xample of identical tight-binding parameters, µc

= µd and tc1(2) = td1(2), as illustrated in Figs. 4(e)
nd (f) . In this case, the transverse field vanishes, and the ground state in the strong-coupling
egime is either a Néel state or a stripe state, depending on the ratio t2/t1 (see Table 1). This is in
tark contrast to what one would expect from a weak-coupling approach, since this case features
wo identical Fermi surfaces, which are far from satisfying any nesting condition.

. Conclusions

In this work, we generalized the strong-coupling expansion of the single-band Hubbard model,
s pioneered by Phil Anderson [18], to a two-band electronic model with dominant inter-band
epulsion. While the former maps onto the Heisenberg model, the latter maps onto the transverse-
ield Ising model with extended exchange interactions. In particular, the onsite energy difference
etween the two electronic bands gives rise to a transverse field, while the Ising superexchange
nteractions arise from virtual hopping processes involving nearest-neighbors and next-nearest-
eighbors. Importantly, by fixing the ratio between the inter-band repulsive interactions, this
11
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electronic model can be simulated using sign-problem free QMC for arbitrary electronic filling and
hopping parameters. In contrast, the Hubbard model, where intra-band repulsion dominates, is only
sign-problem-free at half-filling and for bipartite kinetic Hamiltonians.

We also showed how the rich (h/J1, J2/J1) phase diagram of the transverse-field J1-J2 model can
be probed by appropriately tuning the microscopic band parameters over a reasonable range of
values. This opens an interesting avenue for future sign-problem-free QMC studies to explore the
impact of different types of strong-coupling ground states on the emergence of superconductivity
and other emergent phenomena at intermediate interaction strengths.
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