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ABSTRACT: Structural, magnetic, and spectroscopic data on a Mn3+ spin-crossover
complex with Schiff base ligand 4-OMe-Sal2323, isolated in crystal lattices with five
different counteranions, are reported. Complexes of [Mn(4-OMe-Sal2323)]X where
X = ClO4

− (1), BF4
− (2), NO3

− (3), Br− (4), and I− (5) crystallize isotypically in the
chiral orthorhombic space group P21212 with a range of spin state preferences for the
[Mn(4-OMe-Sal2323)]

+ complex cation over the temperature range 5−300 K.
Complexes 1 and 2 are high-spin, complex 4 undergoes a gradual and complete
thermal spin crossover, while complexes 3 and 5 show stepped crossovers with
different ratios of spin triplet and quintet forms in the intermediate temperature
range. High-field electron paramagnetic resonance was used to measure the zero-field
splitting parameters associated with the spin triplet and quintet states at temperatures
below 10 K for complexes 4 and 2 with respective values: DS=1 = +23.38(1) cm−1,
ES=1 = +2.79(1) cm−1, and DS=2 = +6.9(3) cm−1, with a distribution of E parameters
for the S = 2 state. Solid-state circular dichroism (CD) spectra on high-spin complex
1 at room temperature reveal a 2:1 ratio of enantiomers in the chiral conglomerate, and solution CD measurements on the same
sample in methanol show that it is stable toward racemization. Solid-state UV−vis absorption spectra on high-spin complex 1 and
mixed S = 1/S = 2 sample 5 reveal different intensities at higher energies, in line with the different electronic composition. The
statistical prevalence of homochiral crystallization of [Mn(4-OMe-Sal2323)]

+ in five lattices with different achiral counterions
suggests that the chirality may be directed by the 4-OMe-Sal2323 ligand.

■ INTRODUCTION

Manipulation of the internal electronic arrangement in spin-
crossover (SCO) complexes,1−5 with the attendant changes in
magnetic,6−8 optical,9−14 and electric properties,7,15−22 con-
stitutes one of the most versatile ways to build switchable
molecular magnets. This versatility is underscored by the varied
thermal evolution profiles which characterize spin-state switch-
ing. These can range from extremely sharp and hysteretic,23,24

particularly suitable for memory applications,25,26 to more
gradual transitions which have good potential in neuromorphic
or sensing roles.27−29

The most studied Mn3+ SCO complexes are the mononuclear
examples with a hexadentate Schiff base ligand from the R-
Sal2323 family prepared from condensation of 1,2-bis(3-
am inop ropy l - am ino) e t h ane w i t h a s ub s t i t u t ed
2-hydroxybenzaldehyde; for example, see Scheme 1. Metal
complexes prepared with hexadentate chelates will be inherently
chiral as the Schiff-base ligand has chirogenic amine nitrogen
atoms. Crystallization of racemates of the Δ and Λ isomers in
centrosymmetric space groups is typical, although recovery of
mechanical mixtures of chiral conglomerates of the two forms is
also possible but is less common. Here we report the

serendipitous crystallization of the SCO complex cation
[Mn(4-OMe-Sal2323)]

+ in conglomerate chiral form in five
different lattices with achiral counterions. Such homochirality,
without use of a chiral anion, has not previously been observed
so systematically as is the case for [Mn(4-OMe-Sal2323)]

+

which suggests a ligand-directed effect. In total, [Mn(4-OMe-
Sal2323)]

+ was isolated in conglomerate chiral form in lattices
with ClO4

−, BF4
−, NO3

−, Br−, and I−, all crystallizing in
spacegroup P21212 and all with a crystallographic C2 axis
bisecting the complex cation. A sixth example, that with a Cl−

counterion, was also recovered in space group Pccn and the
structure only of that complex is included (in the Supporting
Information) for the sake of completeness. A check of the
CCDC database reveals that only 6 of the 78 unique [Mn(R-
Sal2323)]

+ complexes30 published before 2021 crystallize
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adventitiously in a chiral space group,31−36 with a seventh
example targeted by introduction of a chiral anion.37 The
interplay between SCO and chirality38−58 is increasingly
recognized as an important route to switchable nonlinear optical
(NLO) materials51,59−64 and spin-state dependent changes in
optical activity may also constitute an economic and low energy
route to follow SCO in sensing applications. Here we use
circular dichroism to confirm the spontaneous resolution in the
case of the ClO4

− complex (1) and to demonstrate that the
complex is stable toward racemization in solution.
Another less studied aspect of the SCO phenomenon is the

associated change in magnetic anisotropy which accompanies
the spin pairing/unpairing process and, in particular, the change
in magnitude of the zero-field splitting (ZFS) contribution.65

The most commonly studied SCO complexes often include the
Kramers ions Fe3+ and Co2+ which have a spin doublet ground
state in the fully paired low-spin (LS) configuration and, hence,
no ZFS at low temperature, or the non-Kramers Fe2+ ion which
has a spin singlet ground state when fully paired, i.e., again no
ZFS in the cryogenic regime. In contrast, Mn3+, which is also a
non-Kramers ion and for which thermal SCO is now well-
established,30,31,66−71 switches between the fully unpaired spin
quintet and partially paired spin triplet forms; therefore, a
considerable ZFS is expected to persist at low temperature. Spin
triplet Mn3+ is generally not common, with about 20 examples at
room temperature,32,72−88 and the ZFS interactions have been
quantified via the D and E parameters in just two cases.32,83

These studies have however demonstrated that spin triplet Mn3+

has the highest ZFS parameters for any manganese ion, with D
values in the range +15 to +20 cm−1,65 while the axially
elongated spin quintet form shows small but negative values in
the range of −4.5 to −1.2 cm−1 with only a small number of
published spin quintet Mn3+ examples with positive D values,
i.e., axial compression of the Jahn−Teller ion.65,89−104 In these
examples, the sign and magnitude of the ZFS parameters have
been examined in selected examples by Tregenna-Piggott,89,90

Krzystek and Telser,91,101−103 and Duboc and Neese,92,93,99,100

who have built on the earlier studies of Gregson in probing the
electronic structure.98 Thermally induced switching to a
different spin state in Mn3+ can therefore be expected to
profoundly affect the magnitude and possibly also the sign of D.
Identification of the sign of D is particularly relevant to the
current work because, although the majority of known (HS)
Mn3+ complexes display a pronounced axial elongation due to
the Jahn−Teller effect, most Mn3+ SCO complexes appear to
have a marked compression in the spin quintet
form.19,31,33,37,69,88,105−112 An axially compressed89−100 form
may assist the transition to a spin triplet arrangement as the

energetic order of orbitals should match that expected in the S =
1 form of the ion (Figure 1). Diffraction alone, however, is not
sufficient to discern if this is a genuine compression, but it can be
resolved by measuring the sign of D by EPR at high fields.
Here we use low-temperature multifrequency EPR spectros-

copy to establish the magnitude and sign of the axial D
parameter in the spin quintet and triplet forms of the [Mn(4-
OMe-Sal2323]

+ complex cation105 when it is crystallized in BF4
−

and Br− lattices, respectively complexes 2 and 4 in Scheme 1.
In SCO complexes, the geometric structure is heavily

dependent on the spin state due to population/depopulation
of antibonding orbitals and associated bond length changes.
Therefore, we present the temperature-dependent magnetic
data at the outset as this guides the choice of temperature for the
diffraction studies. The EPR investigation is new and knowledge
of the spin state at the temperature of the measurement is
essential for the study. Hence, we report EPRmeasurements and
analysis in close alignment with the magnetic results, before
discussing structural and optical properties.

■ RESULTS AND DISCUSSION

Synthesis. Complexes 1−5 were prepared in a one-pot
synthesis, Scheme 1, resulting in the formation of dark red/black
crystals of the [Mn(4-OMe-sal2323)]

+ compounds (hereafter
termed [MnL1]

+) after filtering and standing in air for a few days.
[MnL1]ClO4 (1), [MnL1]NO3 (3), and [MnL1]Br (4) were
synthesized directly from the respective Mn(II) salt, while the

Scheme 1. Synthesis Route for Complexes 1−6 with the 4-OMe-Sal2323 Liganda

aThis ligand type is usually abbreviated as R-Sal2323 to indicate the 323 8-carbon alkyl connectivity in the starting tetraamine and the substitution
(R) on the phenolate ring. Chirogenic amine nitrogen donors are indicated by an asterisk.

Figure 1.Orbital populations for the spin triplet and axially compressed
spin quintet forms of Mn3+.
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remaining two complexes were formed by a salt metathesis
procedure: Introduction of a tetrafluoroborate or iodide salt led
to the formation of [MnL1]BF4 (2) and [MnL1]I (5),
respectively. The structures of all compounds were determined
by single-crystal X-ray diffraction before magnetic character-
ization by SQUID magnetometry and further spectroscopic
investigation by high field EPR, UV−vis, and circular dichroism
spectroscopies in selected cases (vide inf ra).
Using MnCl2·4H2O instead of Mn(ClO4)2·6H2O under the

same reaction conditions led to the formation of [MnL1]Cl·
0.34MeOH·3.93H2O (6), which does not crystallize isomor-
phously and will therefore not be used further in the magnetic
and spectroscopic investigation reported here on 1−5. Synthesis
and structural details of 6 can be found in the Supporting
Information (section S1).
Magnetic Characterization of Complexes 1−5. The

magnetic susceptibility, χM, of the bulk samples of compounds
1−5 was measured using a SQUID magnetometer on cooling
from 300 to 5.0 K under an applied direct current (dc) field of
1000 Oe, shown as temperature dependence in the form of the
χMT product (Figure 2).
Complexes 1 and 2 are high-spin over the measured

temperature range with values close to the expected spin only
value of 3.0 cm3 K/mol for a monomeric Mn3+ complex with
S = 2 and g = 2. The room temperature value of 2.9 cm3 K/mol
for complex 3 indicates that the full high-spin S = 2 state is not
reached at room temperature and, on cooling, the χMT value
decreases steadily in a two-step transition, which becomes
clearer in the derivative of the χMT product (see Figure S1),
where maxima at 142 and 37 K are apparent. The χMT value
displays a plateau at 2.3 cm3 K/mol between these two
temperature points, which is indicative of a 2:1 ratio of HS/LS
sites. In order to confirm the second step at lower temperatures,
the susceptibility was additionally measured in warming mode
(see Figure S1). Bromide complex 4 is the only compound that
exhibits a full thermal spin transition from S = 2 to S = 1
(expected spin-only value of 1.0 cm3 K/mol using S = 1 and g =
2) between 300 and 70 K, following a gentle sigmoidal pathway
and withT1/2 of 136 K. The χMT value of 2.0 cm3 K/mol at room
temperature for complex 5, with the larger iodide counterion,
indicates a likely 1:1mixture between the spin triplet and quintet

sites within the crystal lattice. The χMT product remains almost
constant over the measured temperature range upon cooling,
before a decrease below 35 K, suggesting a further adjustment to
the spin-state ratio, as this temperature is too high for zero-field
splitting effects, which are typically observed below 25 K.

High-Field Electron Paramagnetic Resonance Spectra
of 2 and 4. High-field EPR (HFEPR) spectra were recorded at
low temperatures (∼10 K) on polycrystalline powder samples of
compounds 2 and 4 in order to characterize the ZFS parameters
associated with the HS and LS species, respectively. We first
present the results for compound 4, which undergoes a complete
transition to the LS state below ∼50 K, resulting in very clean
and simple HFEPR spectra, some of which are displayed in
Figure 3.
Resonance peak positions determined from HFEPR spectra

for 4 such as those in Figure 3 (and several others not shown)
were then used to construct a 2D frequency versus field map, as
shown in Figure 4, with colors denoting turning points due to
the three principal (x, y, and z) components of the powder-
averaged spectra. These data were then fit to the following spin
Hamiltonian:113

μ̂ = ̂ + ̂ − ̂ + ⃗· · ̂H DS E S S B g S( )z x y
2 2 2

B
’◊

(1)

assuming a spin S = 1 ground state. The first and second terms in
eq 1 respectively denote the axial and rhombic second-order
ZFS interactions, with the associated D and E parameters.
Meanwhile, the last term parametrizes the Zeeman interaction in
terms of an anisotropic g’◊-tensor. Ŝ is the total spin operator with
components Ŝi (i = x, y, and z), B

÷◊÷
is the magnetic induction, and

μB is the Bohr magneton. The data indicate more than one zero-
field energy gap,114 requiring a finite, albeit relatively small
rhombicity factor E/D = 0.117 (the lowest frequency intercept

Figure 2. Temperature dependence of the χMT products at 1000 Oe in
cooling mode for all five complexes 1−5.

Figure 3. Derivative mode (dI/dB0, where I is the microwave intensity
transmitted through the sample and B0 the applied magnetic field)
HFEPR spectra of 4 recorded at 10 K and frequencies as indicated. The
experimental spectra are shown in blue and simulations in red,
generated using the parameters given in the main text. The resonances
are labeled according to the associated components (x, y, and z) of the
powder spectrum. The sharp feature at the g = 2.00 position, marked
with an asterisk (*), is attributed to a Mn2+ impurity; # denotes a weak
signal possibly due to a small S = 2 Mn3+ contaminant.
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corresponds exactly to 2E = 167 GHz = 5.58 cm−1).115 The
spectral simulations in Figure 3 were then generated with the
following parameters: gx = 1.97(2), gy = 2.13(5), gz = 2.00(1), D
= +23.38(1) cm−1, and E = +2.79(1) cm−1. The relative
intensities of the z and x spectral peaks confirm the positive sign
of the axial ZFS (D) parameter. These parameters were used to
simulate the low-temperature dc magnetic susceptibility of 4
(Figure S2). We note that the obtained D and E values are
slightly larger than those reported previously for a similar LS
Mn3+ compound, [Mn(napsal2323)]NTf2.

32

Finding one g-tensor component that is larger than 2.00 for a
d4 electronic configuration is initially surprising, as one normally
anticipates values lower than 2.00 for a less than half-filled d-
shell. However, the non-Hund’s rule LS configuration may be
reduced to that of a greater than half-filled t2g set for an
octahedral coordination, i.e., 4 electrons (2 holes) occupying the
three t2g orbitals.

116 Distortions away from octahedral geometry
may then give g-tensor components greater than 2.00.
Compound 2 was selected because magnetic measurements

(Figure 2) suggest that it remains in the S = 2 HS state down to
the low temperatures necessary for achieving sufficient HFEPR
sensitivity. The resultant powder spectra turned out to be
surprisingly difficult to interpret. First, the increased spin
multiplicity inevitably results in many more spectral features,
especially when considering both parallel and perpendicular
mode transitions and off-axis peaks.117 The 2D frequency versus
resonance field maps generated from multifrequency measure-
ments collected at 5 K are displayed in Figures 5 and S3−S5.
Attempts to simulate the results start by following the evolution
of signals to zero field, thus gaining information on the ZFS
without dependence on the g-tensor. In the present case, there
are very obvious high-frequency intercepts at ∼560 and
∼675 GHz that fit well with the S = 2 model. However, there
is another series of weaker peaks (red open circles) with an
intercept at ∼600 GHz that is incompatible with an S = 2 state,

which appears to better fit to the S = 1 parametrization in Figure
4 (with a slightly lower intercept value). These resonances can
be fit assuming S = 1 and gx = 2.03(6), gy = 2.16(2), gz = 2.0(2),D
= +23.3(8) cm−1, and E = +3.1(8) cm−1; they are, thus, not very
different from the ZFS parameters of 4 and also exhibit the same
gy > 2 issue. The parameter errors are large due to the relatively
small number of available data points and low signal quality.
Therefore, we suspect that either some sites in crystals of 2
convert to a LS state or that the powder sample is contaminated
with a small fraction of microcrystals that undergo a transition to
a LS state, perhaps caused by stresses induced when grinding the
sample. These findings illustrate the value in carrying out
HFEPR in order to deduce ZFS parameters, as the mixtures of
spin states would render any parameters deduced from a purely
thermodynamic measurement highly unreliable.
After constraining the high-frequency intercepts, it is found

that the best S = 2 simulation [based on eq 1] results in
additional zero-field intercepts at lower frequencies that fall in a
range (150−275 GHz) where many low-field peaks are
observed. However, no single parametrization reproduces all
peak positions.We therefore believe that the powder sample also
contains multiple S = 2 species with a small spread in ZFS
parameters;118 to reflect this, we employ broader/lighter
simulated curves in Figure 5. The existence of different species
may be due to distinct sites within the lattice of an individual
crystal,119 or they could be due to crystal-to-crystal variations
within the powder. A conservative analysis indicates the
following axial ZFS parameter, D = +6.9(3) cm−1, and a much
more significant spread in E, with values from 0.17 to 0.63 cm−1

needed to reproduce all observed resonances (see Figures 5 and
S3−S5). Again, the sign of D is constrained via the relative
intensities of the different peaks. Indeed, a high-frequency
spectral simulation that assumes D = +6.9(3) cm−1, E =
+0.63 cm−1, gx = 1.97, gy = 1.98, and gz = 1.94 is in excellent
agreement with the corresponding experimental spectrum, as

Figure 4. 2D frequency versus resonance field plot for compound 4 at
10 K. The circles denote experimental data points, and the curves are
fits to an effective spin S = 1 Hamiltonian [eq 1] with the parameters
given in the main text. Colors denote different components (x, y and z;
see legend) of the powder spectra; the solid curves indicate cold
transitions (assuming D > 0) originating from the ground state of the S
= 1 manifold and, therefore, persist to the lowest temperatures. The
dashed curves indicate transitions within excited states of the S = 1
manifold.

Figure 5. 2D frequency versus resonance field plot for compound 2 at
5 K. The circles denote experimental data points [closed (blue) and
open (red) symbols indicate suspected S = 2 and 1 features,
respectively], and the thick curves represent the best simulation (colors
denote x, y, and z components; see legend) based on an effective spin S
= 2 Hamiltonian [eq 1] with the parameters discussed in the main text.
Thick lines are employed to note the much larger uncertainty in the
ZFS parameters in comparison to compound 4.
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displayed in Figure 6. The frequency versus field plots calculated
with the two sets of parameters are shown in Figures S3−S5.
Finally, we comment on a possible relationship between theD

parameters obtained for the HS and LS states. Here, we have
assumed that the main contribution to the ZFS comes from
spin−orbit coupling (SOC). It then follows that the Ligand-
Field theory perturbative expression for D consists of three
terms: (1) a numerator proportional to the SOC constant, ζ, and
the sum of the squared matrix elements of the L̂z operator
between the ground and excited orbital states; (2) a
denominator corresponding to the associated orbital excitation
energies; and (3) a prefactor, 1/S2.120 The first two terms may
not vary significantly between the HS and LS states, as they
primarily involve excitations between essentially the same
orbital states in either (octahedral) case. However, the prefactor
obviously differs by a factor of 4 between LS and HS states,
potentially explaining themajority of the reduction inD between
the two configurations (all other things being equal), i.e., DS=1/
DS=2 = 3.4. Interestingly, for a pure DŜz

2 description of the ZFS
Hamiltonian, the largest zero-field gap in the spectrum is
proportional to (2S − 1) [= S2 − (S − 1)2] and should, thus,
differ by a factor of 3 for the S = 1 and 2 states with identical D
values. The fact that DS=1/DS=2 ≈ 3 in the present case explains
why the zero-field intercepts are close to 600GHz for both states
in Figures 4 and 5, i.e., the differentD values and (2S− 1) factors
more or less cancel, leading to similar aggregate magnetic
anisotropies (as measured by the ZFS) for the two compounds.
Theoretical Calculations. Zero-field splitting is a result of

spin−orbit coupling and ligand field splitting of energy levels of a
paramagnetic atom possessing spin larger than 1/2. Depend-
encies between the ZFS and the ligand field energies for various
electronic configurations are well-known,121−125 but they are

often difficult to apply as the ligand field bands are obscured by
the charge-transfer bands. Calculations of the ZFS parameters
for the Mn3+ ions were thus attempted using the state-averaged
complete active space self-consistent field (CASSCF)method as
implemented in the ORCA 5.0.1 quantum mechanical software
package.126−129 Four electrons in five orbitals were used in the
calculations; five quintets and the lowest ten triplet and ten
singlet states were taken into account.129−131 The initial quasi-
restricted orbitals (qro) were obtained from a DFT calculation
employing the B3LYP/G functional and the diffuse def2-
TZVPP function basis set for all atoms.132 The Ahlrich’s
auxiliary basis sets were embedded into the ORCA soft-
ware.133,134 In the case of complex 2 (BF4

−), the calculation
produced D = +3.84 cm−1, compared to the experimental D =
+6.9(3) cm−1. The calculated E/D ratio of 0.11 compares
reasonably with the experimental values that range from 0.025 to
0.09. The largest contribution to D (2.209 cm−1) comes from
the lowest triplet state, derived from the free-ion term 3H. In
contrast, calculations of D in the S = 1 state of complex 4 (Br−)
were less satisfactory, and despite using the wave functions from
an S = 1 DFT calculation, the CASSCF procedure converged to
the S = 2 state. Using the structures optimized by the ORCA
DFT calculations (Table S1) did not result in an improvement
(see section S2 of the Supporting Information).

Structural Characterization of Compounds 1−5. All
complexes 1−5 crystallize isostructurally in the orthorhombic
space group P21212, with Z = 2, where the asymmetric unit
contains half of a [Mn(4-methoxy-sal2323)]

+ cation, as shown in
Figure 7, and half of the respective anion, both located on a
symmetry center. All complexes crystallized solvent-free.
The coordination around the Mn3+ center is pseudo-

octahedral with two trans-phenolate, two cis-amine, and two
cis-imine donors, in the same arrangement as reported for related
[Mn(R-sal2323)]

+ SCO compounds.19,30,31,33,88,105−107,135

Compounds 1−5 provide a good set of samples to study the
effect of the counterion on the Mn3+ spin state, since all five
compounds crystallize isotypically.
Typically the average bond lengths in [Mn(R-sal2323)]

+ type
complexes change upon spin transition, but only significantly for

Figure 6. Derivative mode HFEPR spectrum of 2 recorded at 5 K and
frequencies indicated. The simulations in red were generated at 540 and
203 GHz using gx = 1.972, gy = 1.978, gz = 1.94,D = +6.87 cm−1, and E =
+0.63 cm−1. The 203 GHz simulation in green used gx = 1.972, gy =
1.978, gz = 1.94, D = +7.17 cm−1, and E = +0.17 cm−1. The resonances
are labeled according to the associated components (x, y ands z) of the
powder spectrum. The sharp feature at the g = 2.00 position in the
203 GHz spectrum is attributed to a Mn2+ impurity.

Figure 7. Molecular structure of complex 2, [MnL1]BF4 (hydrogen
atoms omitted for clarity) (left), and structural overlap of the cationic
species of complex 2, [MnL1]BF4 (yellow) and complex 4, [MnL1]Br
(purple) at 100 K (right).
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the amine and imine bonds in the equatorial positions. Reported
bond length changes for Mn−Nimine donors are of the order of
1.9−2.0 Å (S = 1) to 2.1−2.2 Å (S = 2), while those for the Mn−
Namine bond lengths are 2.0−2.1 Å (S = 1) to 2.2−2.3 Å (S =
2).110 The bond lengths of complexes 1−5 are summarized in
Table 1 and clearly show the impact of the anion in the crystal
lattice on the spin state of theMn3+ cation. At 100K, compounds
1 and 2, with higher volume tetrahedral anions, have bond
lengths typical for an S = 2 species, while those for complex 4
with the Br− counterion are in the correct range for S = 1, in line
with the SQUID data. At 100 K, bond lengths for nitrate and
iodide complexes 3 and 5 suggest a mixture of spin triplet and
quintet states, again in line with the magnetic data.
Upon warming, the bond lengths of complex 3 show the

expected equatorial elongation (see Table 1) and indicate the
transition to a state with a higher percentage of the S = 2 species.
Structural data were also collected at higher temperature
(190 K) for complex 4, [MnL1]Br, revealing the bond lengths
to be similar to those of complex 3, [MnL1]NO3, at 100 K. This
is in good agreement with the magnetic data for complex 4,
[MnL1]Br, where the χMT value at 190 K is 2.48 cm3 K/mol, i.e.,
a value similar to that for complex 3 at 100 K, which shows an
almost identical value of 2.40 cm3 K/mol, indicating a 2:1 ratio
of quintet:triplet sites. Comparison of the Mn−nitrogen (amine
or imine) bond lengths in the pure S = 1 state, for example, those
of complex 4 at 100 K, with equivalent donors in the pure S = 2
state, for example, those of complex 1 at 100 K (Table 1),
provide a useful scale of the bond length difference equivalent to
100% spin conversion. Therefore, distances within that range
can be used tomake a good estimate of the relative percentage of
the two spin states at any temperature. For example, SQUID
data for complexes 3 and 4 at 100 and 190 K, respectively,
indicate a 2:1 ratio of quintet/triplet states (Figure 2). This is in
good agreement with the closeness of the Mn−nitrogen bond
lengths for these complexes at the indicated temperatures
(Table 1). In the case of complex 3, the stepped profile of the
SCO suggests an ordered phase at 100 K, whereas the gradual
profile in complex 4 suggests a Boltzmann distribution of spin
states at 190 K.
Since compounds 1−5 crystallize isotypically in the

orthorhombic space group P21212, the difference in spin state
must be due to packing and intermolecular interactions. In all
cases the [MnL1]

+ cations arrange in a parallel way forming 1D
chains along the b-axis (see Figure S7). These chains pack into a
zigzag formation due to the crystallographic symmetry elements
of the orthorhombic P21212 space group. We suggest that the

consistent recovery of enantiopure individual crystals of either
the Λ or Δ forms of the associated manganese complex with a
range of achiral counterions may be due to the unique position
and size of the ligand substituent in the 4-OMe-Sal2323 ligand,
i.e., a methoxy group para to the phenolate donor. We also
suggest that steric effects of this substituent arrangement
disfavor packing of both the Λ and Δ enantiomers of the
complex cation in the presence of the medium sized counterions
reported here: ClO4

−, BF4
−, NO3

−, Br−, and I−. With smaller
counterions, including Cl− (compound 6, structure reported in
the Supporting Information), or larger counterions including
CF3SO3

−, PF6
−, and BPh4

−,105 the packing pattern is altered,
and the crystallization of both enantiomers is observed, as is
typical for this type of chiral complex with achiral anions.
Compounds 1 and 2 with tetrahedral perchlorate and

tetrafluoroborate anions have closely related intermolecular
interactions, with H-bonding between one anion and four
neighboring cations leading to a 3D network (see Figure S8). A
similar behavior is observed in the room-temperature structure
of complex 3, [MnL1]NO3 (see Figure S9). Upon cooling, the
packing arrangement shows a weakening of the H-bonds, but
each anion still exhibits short contacts to four neighboring
cations. Complex 4, [MnL1]Br, exhibits intermolecular H−Br
bonds at 100 K, where one bromide anion shows close contacts
to three neighboring cations (see Figure S10), which increases
to four neighboring cations upon warming to 190 K. Complex 5,
containing the slightly bigger iodide anion, exhibits short
contacts at 100 K to four neighboring cations (see Figure S11),
in a fashion similar to that observed for compounds 1 and 2 and
the room-temperature structure of complex 3.
Spin-crossover Mn3+ compounds exhibit a stronger distortion

of the octahedral environment in the S = 2 state than in the
almost perfect octahedron associated with the S = 1 state due to
loss of the Jahn−Teller distortion upon cooling, as the
antibonding orbital is depopulated. The degree of distortion
can be analyzed by the distortion parametersΣ andΘ, as defined
by McKee et al.,136 where Σ highlights the angular deviation
from the 90° cis-octahedral angles, and Θ measures the trigonal
distortion from a perfect octahedral environment toward
trigonal prismatic geometry. In the case of a perfect octahedron,
both values are zero. The reported literature values for typical
spin-crossover Mn3+ compounds are Σ = 28−45° for S = 1 (Σ =
48−80° for S = 2) and Θ = 79−125° for S = 1 (Θ = 135−230°
for S = 2)19 and these values can be used to help assign the spin
state.
Σ andΘ have been calculated for 1−5 usingOctaDist 2.6.1,137

and the observed parameters (Table 2) are in line with the
assigned spin states. Some anomalies include the high trigonal
torsion parameterΘ for the spin triplet form of 4, [MnL1]Br, but
the angular distortion is in line with other S = 1 complexes. Upon
warming, the values for complex 3, [MnL1]NO3, increase
slightly to Σ = 58.42° and Θ = 221.46°, highlighting the full
conversion to the high-spin state. In the case of complex 4,

Table 1. Mn3+ Bond Lengths in Different Spin States of 1−5

Mn−X ClO4
− (1) BF4

− (2) NO3
− (3) Br− (4) I− (5)

temp (K) 100 100 100 100 100
Mn−Ophen 1.878 1.881 1.890 1.899 1.887
Mn−Nimine 2.102 2.098 2.060 2.012 2.073
Mn−Namine 2.227 2.221 2.165 2.085 2.178
spin state S = 2 S = 2 mixed S = 1 mixed
temp (K) a a 293 190 a
Mn−Ophen 1.884 1.892
Mn−Nimine 2.092 2.051
Mn−Namine 2.197 2.139
spin state S = 2 mixed

aNot measured as magnetism not temperature dependent above
100 K.

Table 2. Distortion Angle Parameters Σ (Angular Deviation
at the origin) and Θ (Trigonal Torsion Angle) for [MnL1]X
Complexes 1−5 at 100 K

ClO4
− (1) BF4

− (2) NO3
− (3) Br− (4) I− (5)

Σ 61.67 59.61 53.21 39.12 57.43
Θ 233.83 225.89 202.41 141.41 214.87
spin state S = 2 S = 2 mixed S = 1 mixed
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[MnL1]Br, the first temperature increase to 190 K reveals that
the distortion parameters change toΣ = 49.73° andΘ = 179.76°,
reflecting the gradual spin-state change on warming. An overlay
of the complex cations of compounds 2 and 4 in spin quintet and
triplet forms, respectively, highlights the differences in local
distortion (Figure 7, right). While most of the Schiff base ligand
overlaps almost perfectly, there are small discrepancies visible in
the amine backbone as well as the peripheral methoxy
substituent.
CD and UV−Vis Spectroscopy.During the X-ray structure

collection and analysis of compounds 1−5 at various temper-
atures, each single crystal was internally enantiopure, but both
enantiomers have been observed (Table 3). The appearance of
both the dextro,Δ, and laevo,Λ, enantiomers highlights that the
bulk material consists of a conglomerate of both enantiomers.
Within the seven structures determined over different temper-
atures, we have observed a close-to 50:50 ratio distribution of
the two enantiomers Λ/Δ, as highlighted in Figure 8 and Table
3.
Given the chiral nature of the complex and the crystallization

in a chiral space group, circular dichroism (CD) spectroscopy
was recorded at room temperature. Initial attempts to directly
measure individual crystals of all compounds in the solid state
showed optical rotation, although the resolution was poor. A
solution-state study was then completed on high-spin
compound 1 for which there was the highest yield of single
crystals and which therefore offered the best chance of statistical
analysis. The enantiomeric forms were clearly distinguishable on
measurements of methanol solutions of individual single crystals
of 1 (Figure 9), indicating they do not racemize in solution.
Statistical studies in methanol solution on three batches each of
10 single crystals indicate an approximate ratio of 2:1 of the two
enantiomers within each batch, with an overall distribution of
20:10 from 30 investigated crystals. All the solution spectra are
included in Figures S12−S14.
Solid-state UV−vis spectra were collected for complexes 1

and 5 at room temperature, i.e., in a temperature regime where
[MnL1]

+ is fully in the S = 2 form (complex 1) and stabilized
with a mixture of S = 1 and S = 2 forms (complex 5). The spectra
for both have strong features in the 200−400 nm range (Figure
S15). In addition, a broad but weak shoulder around 525 nmwas
observed for both compounds (Figure S15). The intensity ratio
of the peaks at 225, 255, and 305 nm is different for the pure S =
2 sample (1) and the mixed S = 1/S = 2 sample, (5), suggesting
that themore intense feature at 225 nm is associated with the S =
1 electronic state (Figure S15).
Solution UV−vis spectroscopy of the free ligand H2L1 (Figure

S16) in acetonitrile confirms the origin of the peaks at 225, 255,
and 305 nm as being ligand-based and demonstrates that
coordination to the metal ion in different spin states can result in
different ligand-to-metal charge transfer (LMCT) bands in the
solid state (Figure S15). Although the solution spectra of
complexes 1 and 5 were recorded in methanol (Figure S17), a
meaningful comparison with the spin states is not possible as the
SQUID data were recorded only in the solid state. However,

some differences were detected, notably a change in intensity of
the UV absorption at 250 nm and a new absorption at around
770 nm for iodide complex 5 (Figure S17).

■ CONCLUSIONS
Isolation of a cationicMn3+ complex in lattices with five different
counterions resulted in stabilization of the ion in either the S = 2
state (complexes 1 and 2) or promoted thermal spin crossover
behavior (complexes 3−5). HFEPR was used to estimate the
magnitude and sign of the axial D parameter in both spin states
by recording low-temperature variable-frequency spectra on
complexes 2 and 4. This confirmed that the spin quintet form is
axially compressed with a D value of +6.9(3) cm−1 which
increased to D = +23.38(1) cm−1 in the spin triplet form. Both
spin triplet and axially compressed spin quintet electronic states
are less common for Mn3+ complexes, and the results here are in
line with the small number of published examples of each type.
This study has demonstrated that HFEPR is an effective method
to follow thermal spin transitions in Mn3+ and may also have
potential as a probe for nonthermal switching, for example by
application of light or a magnetic field. Serendipitous
crystallization of complexes 1−5 in the space group P21212
highlights the inherently chiral nature of Mn3+ complexes with
the R-Sal2323 ligand type and how this feature may have
potential to be coupled to changes in spin state. Use of circular
dichroism spectroscopy enabled a statistical analysis of separate
solutions of each of 30 single crystals of high-spin complex 1
which revealed a 2:1 weighting of Λ and Δ enantiomers in this
sample, and solution measurements on the same compound
show that the complex does not racemize over a few days. The
spontaneous homochiral crystallization of [Mn(4-OMe-
Sal2323)]

+ with different achiral counterions suggests a ligand-
directed effect which we have not previously observed. In
contrast the choice of counterion has a more direct effect on the
choice of spin state within the isotypical homochiral series, with
larger counterions (ClO4

− and BF4
−) stabilizing the spin quintet

form, while smaller ones (NO3
− and Br−) tend to promote SCO.

Our studies on related systems continue on both chiral and
nonchiral examples.

■ EXPERIMENTAL SECTION
General Experimental Details. Physical Measurements. All

measurements were recorded on powdered samples of the respective
polycrystalline compound. Elemental analyses (C, H, and N) were
carried out using a PerkinElmer Vario EL instrument and mass spectra
were recorded on a Waters 2695 Separations Module Electrospray
Spectrometer. Solution and solid-state UV−vis spectra were recorded
on an Agilent Cary 60 UV−vis spectrometer. Solution measurements
were carried out on ∼1.5 × 10−5 M methanolic solutions of samples 1
and 5. Solid-state samples of complexes 1, 2 and 5 were prepared for
UV−vis by grinding a small number of crystals with a few drops of
silicone oil. The resulting paste was thinly spread on the edge of a quartz
cuvette for collection.

CD spectra were recorded on a JASCO J-810 spectrometer.
Solutions were prepared by systematically taking a single crystal of 1
and dissolving it in methanol (1 mL). The process was repeated 30
times to acquire a large distribution of samples. Solid-state samples were
prepared by grinding a single crystal of 1 with 50 mg of KBr which was
pressed into a disk under 12.5 tonnes of pressure for 90 s. This was then
pasted onto the side of a cuvette using silicone oil, and the CD of the
solid-state disc was recorded. It is important to note that a variety of
single crystals with different size and shape were chosen. All CD spectra
were recorded with a scan rate of 100 nm/min. Powder X-ray diffraction
(PXRD) experiments were carried out for complex 3, [MnL1]NO3,
using a Bruker D2 Phaser with Cu Kα radiation (λ = 1.5418 Å). The

Table 3. Enantiomer Determination from Single Crystal
Structural analysis on Seven Different Crystals

ClO4
− (1) BF4

− (2) NO3
− (3) Br− (4) I− (5)

100 K Δ Λ Δ Λ Δ
T > 100 K Λ Δ

Inorganic Chemistry pubs.acs.org/IC Article

https://doi.org/10.1021/acs.inorgchem.1c03379
Inorg. Chem. 2022, 61, 3458−3471

3464

https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c03379/suppl_file/ic1c03379_si_001.pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.1c03379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


powder diffraction pattern of complex 3 is shown in section S3 of the
Supporting Information.
Magnetic Measurements. The magnetic susceptibility measure-

ments were recorded on a Quantum Design SQUID magnetometer
(MPMS-XL) operating between 1.8 and 300 K. Direct current
measurements were carried out on polycrystalline samples prepared
in gelatin capsules in a field of 0.1 T. Diamagnetic corrections were
applied to correct for a contribution from the sample holder, and the
inherent diamagnetism of the sample was estimated with the use of
Pascal’s constants.
High-Field EPR Spectroscopy. HFEPR spectra were recorded at

the National High Magnetic Field Laboratory (NHMFL, Tallahassee,
FL) using the homodyne transmission spectrometer equipped with a
15/17 T superconducting magnet.138 Measurements were carried out
on powder samples of 2 and 4 (∼30 mg) mixed with eicosane wax. The
samples were packed into a Teflon sample holder. Spectra were
recorded at different temperatures andmultiple frequencies from 203 to
634 GHz in the 0 to 14.5 T field range.
Materials and Synthesis Procedures. Starting Materials. All

chemicals and solvents if not otherwise mentioned were purchased
from chemical companies and were reagent-grade. They were used
without further purification or drying. All reactions were carried out

under ambient conditions. All measurements were carried out on
powdered samples of the respective polycrystalline compound.

Synthesis and Characterization of Complexes 1−5. Complex
[MnL1]ClO4 (1). H2L1 (4-methoxy-Sal2323) was synthesized by mixing
4-methoxylsalicylaldehyde (0.076 g 0.5 mmol) with 1,2-bis(3-amino-
propyl-amino)ethane (0.044 mg, 0.25 mmol), in 1:1 ethanol/
acetonitrile (10.0 mL). The ligand solution was stirred for 1 h under
ambient conditions to complete the Schiff base reaction and was then
used directly without further purification. The ligand solution of H2L1
was added to a solution of Mn(ClO4)2·6H2O (0.097 g, 0.25 mmol) in
1:1 ethanol/acetonitrile (10mL). The solution turned dark red (almost
black) and was stirred for 10 min at room temperature (rt). Any
precipitate was filtered off afterwards, and the reaction was left for slow
evaporation. After a few days, small dark red block-shaped crystals were
isolated by filtration. Mass spectrometry (g/mol): expected: 495.18
(100% complex cation). Found: 495.02. Elemental analysis for 1,
[C24H32N4O4Mn]+[ClO4]

− (%): calculated: C: 48.45; H: 5.42; N:
9.42; Cl: 5.96. Found: C: 48.22; H: 5.39; N: 9.30; Cl: 5.78.

Complex [MnL1]BF4 (2). The ligand solution of H2L1 was added to a
solution of MnCl2·4H2O (0.046 g, 0.25 mmol) dissolved in 1:1
ethanol/acetonitrile (10 mL) together with NH4BF4 (0.030 g, 0.3
mmol). The solution turned dark red (almost black) and was stirred for
10 min at rt. Any precipitate was filtered off afterwards, and the reaction
was left for slow evaporation. After a few days, small dark red−purple
thin plates of crystals were isolated by filtration. Mass spectrometry (g/
mol): expected: 495.18 (100% complex cation). Found: 495.05.
Elemental analysis for 2, [C24H32N4O4Mn]+[BF4]

− (%): calculated: C:
49.50; H: 5.54; N: 9.62; F: 13.05. Found: C: 49.41; N: 5.49; N: 9.63; F:
13.38.

Complex [MnL1]NO3 (3). The synthesis procedure for complex 3 is
analogous to that of 1 except that 0.25 mmol of Mn(NO3)2·6H2O
(0.055 g) was used instead of manganese(II) perchlorate hexahydrate.
After a few days, small dark red plates of crystals were isolated by
filtration. Mass spectrometry (g/mol): expected: 495.18 (100%
complex cation). Found: 495.27. Elemental analysis for 3,
[C24H32N4O4Mn]+[NO3]

− (%): calculated: C: 51.71; H: 5.79; N:
12.56. Found: C: 51.64; H: 5.77; N: 12.46. The phase purity of 3 was
determined by powder X-ray analysis (Supporting Information, section
S3).

Complex [MnL1]Br (4). The synthesis procedure for complex 4 is
analogous to that of 1 except that 0.25 mmol of MnBr2 (0.054 g) was
used instead of manganese(II) perchlorate hexahydrate. After a few
days, small dark red prismatic shaped crystals were isolated by filtration.
Mass spectrometry (g/mol): expected: 495.18 (100% complex cation).
Found: 495.02. Elemental analysis for 4, [C24H32N4O4Mn]+[Br]− (%):
calculated: C: 50.10; H: 5.61; N: 9.74. Found: C: 49.70; H: 5.55; N:
9.57.

Complex [MnL1]I (5). The ligand solution of H2L1 was added to a
solution of MnCl2·4H2O (0.046 g, 0.25 mmol dissolved in 1:1ethanol/

Figure 8. Left: Structures of 2-Λ (left) and 1-Δ (right) shown as representative enantiomers. Right: Overlay of enantiomers of bromide complex 4-Λ
and 4-Δ, collected on different crystals at different temperatures, where the O−Mn−O axes from both are aligned (hydrogen atoms and counterions
omitted for clarity).

Figure 9. Solution circular dichroism spectroscopy on two dissolved
crystals of 1 each dissolved separately in methanol indicating the two
enantiomers. Smoothing applied for the eye; unsmoothed graph
available in the Supporting Information.
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acetonitrile (10 mL) together with NaI (0.045 g, 0.3 mmol). The
solution turned dark red (almost black) and was stirred for 10 min at rt.
Any precipitate was filtered off afterwards, and the reaction was left for
slow evaporation. After a few days, small dark red−purple thin plates of
crystals were isolated by filtration. Elemental analysis for 5,
[C24H32N4O4Mn]+[I]− (%): calculated: C: 46.32; H: 5.18; N: 9.00.
Found: C: 46.34; N: 5.12; N: 8.85.
Crystallography. Crystal Data Collection and Refinement.

Suitable single crystals of complexes 1−5 were mounted on an Oxford
Diffraction Supernova A diffractometer fitted with an Atlas detector;
data sets were measured using monochromatic Cu Kα radiation or Mo
Kα radiation and corrected for absorption.139 The temperature (100 K)
was controlled with an Oxford Cryosystem instrument. Structures were
solved by direct methods (SHELXS)140 and refined with full-matrix
least-squared procedures based on F2, using SHELXL-2016. Non-
hydrogen atoms were refined with independent anisotropic displace-
ment parameters; organic H atoms, i.e., bound to C or N or OH groups
from methanol, were placed in idealized positions. Not all hydrogen
atoms of disordered solvents could be located. The hydrogen atoms of
watermolecules that could be located were first located in the difference
Fourier map. In subsequent refinements the O−H bond lengths (0.84
Å) and H···H distances (1.33 Å) were restrained to their ideal values.
After convergence, the water molecules were refined as rigid groups.
Selected crystallographic data and structure refinements are summar-
ized in Table S3, and crystallographic data for the structures reported in
this paper have been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication numbers CCDC 2105399−
2105406. Copies of the data can be obtained free of charge from
https://www.ccdc.cam.ac.uk/structures/.
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