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A long-standing mystery of high-Tc cuprate superconduc-
tors is the ‘pseudogap phase’1—a correlated electronic state 
whose key characteristic is a loss of coherent quasiparticles 

below onset temperature T* and below critical doping p*. This loss 
of quasiparticles is reminiscent of the superconducting gap that 
opens at transition temperature Tc (hence the name ‘pseudogap’), 
suggesting that the pseudogap phase and superconductivity are 
related. Characterizing what remains of the coherent Fermi surface 
(FS) inside the pseudogap phase is, therefore, a critical step towards 
understanding how this peculiar metallic state gives rise to, or is 
compatible with, high-temperature superconductivity.

Heavily overdoped cuprates are good metals with a well-defined 
FS. Tl2Ba2CuO6+δ (Tl-2201) has been extensively measured in this 
doping regime, and three independent experiments agree on the 
geometry of the FS, namely, angle-dependent magnetoresistance 
(ADMR)2, angle-resolved photoemission spectroscopy (ARPES)3 
and quantum oscillations4. Other cuprates, such as La2−xSrxCuO4 
and Bi2Sr2CaCu2O8+δ, show similar agreement between the mea-
sured FS and band structure calculations for p > p* (ref. 5). As the 
doping is lowered towards p*, the FS measured by ARPES remains 
well defined but the electrical resistivity becomes progressively 
more anomalous, becoming perfectly linear in temperature at p* 
(refs. 6,7). Whether a T-linear scattering rate alone can account for 
this anomalous resistivity has been the subject of much debate: we 
have addressed this topic in a recent study8.

Cuprates enter the pseudogap phase below p*. Although this 
phase is also metallic, its FS—in the limit T → 0 and in the absence of 
superconductivity—remains unknown. ARPES measurements per-
formed above Tc and below T* find discontinuous segments known 
as Fermi arcs5, which defy the conventional definition of a closed 
FS. Quantum oscillations, on the other hand, reveal a small, closed, 

electron-like FS (electron pocket)9. This pocket, however, appears 
only in the presence of the charge density wave (CDW) order10, 
and the CDW order is not always observed over the same range 
of dopings as the pseudogap phase itself. For example, although 
the CDW order extends up to p* in HgBa2CuO4+x (ref. 11), it termi-
nates before p* at p ≈ 0.16 in YBa2Cu3O6+x (ref. 12) and at p ≈ 0.18 in 
La1.6−xNd0.4SrxCuO4 (ref. 13) (Nd-LSCO, the compound studied here). 
The spin density wave (SDW) order has also been found below p* 
in several cuprates14–16. Recent neutron diffraction measurements 
have even found indications of the SDW order in Nd-LSCO at 
p = 0.24, in a zero magnetic field, and at T = 13 K (ref. 15) (Fig. 1). 
Although the SDW order is known to reconstruct part of the FS at 
much lower doping17, our sample at p = 0.24 shows perfectly linear 
resistivity down to 2 K at B = 35 T, without an upturn at T = 13 K that 
would be a characteristic of the SDW order18 (Extended Data Fig. 1). 
This suggests that either there are differences between the samples 
grown by different groups or that a magnetic field suppresses the 
SDW order at p = 0.24.

A crucial question, therefore, remains: what is the FS of cuprates 
immediately below p* in the absence of superconductivity or CDW 
order? There are two possibilities: (1) the FS is the same above and 
below p*, but the quasiparticles become incoherent below p* due 
to scattering or other correlation effects; (2) the FS below p* is dif-
ferent from the FS above p*. Demonstration of the latter scenario 
would imply that either the translational symmetry is broken (on 
some appropriate length scale) in the pseudogap phase or it is a 
phase with a topological order19.

Experiment
To investigate the possibility of FS reconstruction below p*, we turn 
to the cuprate La1.6−xNd0.4SrxCuO4. The critical doping p* = 0.23 that 
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marks the onset of the pseudogap phase in Nd-LSCO has been well 
characterized by transport7,20, specific heat21 and ARPES22 mea-
surements. At p = 0.20, a gap opens along the ‘anti-nodal’ direc-
tions of the Brillouin zone (ϕ = 0°, 90°, 180° and 270°) on cooling 
below T* = 75 K, followed by an upturn in the resistivity; at p = 0.24, 
ARPES detects no anti-nodal gap and the resistivity remains per-
fectly linear down to the lowest measured temperature. Note that 
the highest doping where X-ray scattering detects the CDW order in 
Nd-LSCO is p = 0.17 (ref. 13). As with other cuprates23,24, the onset of 
the CDW order in Nd-LSCO coincides with a downturn in the Hall 
coefficient towards negative values25. At p ≥ 0.20, the Hall coeffi-
cient remains positive at all the temperatures and magnetic fields20. 
This suggests that the quasiparticles responsible for transport (and 
hence, ADMR) do not feel the influence of any remnant CDW order 
at the dopings where we perform our measurements, in agreement 
with the absence of any CDW modulations detected by X-ray dif-
fraction and the Seebeck coefficient at p ≥ 0.18 (refs. 13,26).

To determine whether the FS is transformed across p*, we mea-
sure variations in the c-axis resistivity ρzz of Nd-LSCO at p = 0.21 
and p = 0.24 as a function of the polar (θ) and azimuthal (ϕ) angles 
between the sample and external magnetic field B (Fig. 1b–d)—a 
technique known as ADMR. These variations are determined by 
the three-dimensional (3D) geometry of the FS and the momen-
tum dependence of the scattering rate. The basic premise of ADMR 
is that the velocities of charge-carrying quasiparticles are modi-
fied by the Lorentz force in a magnetic field. Within the standard 

relaxation-time approximation, ρzz is given by the Chambers’ solu-
tion to the Boltzmann transport equation:

1/ρzz =
e2
4π3

∮
d2kD (k) vz [k (t = 0)]

∫ 0

−∞

vz [k (t)] et/τdt, (1)

where ∮d2k is an integral over the FS, D (k) is the density of states 
at point k, vz is the component of the Fermi velocity in the z direc-
tion and 

∫ 0
−∞

vz [k (t)] et/τdt is an integral of vz weighted by the 
probability that a quasiparticle with lifetime τ scatters after time 
t (ref. 27). The magnetic field B enters through the Lorentz force 
h̄ dk

dt = ev× B, where ℏ is the reduced Planck constant and e is the 
elementary charge, which induces the quasiparticles into cyclotron 
motion around the FS (Fig. 2c).

For a quasi-two-dimensional FS with simple, sinusoidal warp-
ing, ρzz can be analytically calculated using equation (1) in the limit 
where τ is long28. The exact calculation contains special Yamaji 
angles where all the cyclotron orbits have the same cross-sectional 
area perpendicular to the magnetic field and where the vz compo-
nent of the Fermi velocity averages to zero around each orbit. This 
cancellation of vz results in the maxima in the c-axis resistivity at 
these angles. The Yamaji angles are determined by the geometry 
of the FS; therefore, by measuring the angular positions of the 
resistivity maxima, one can construct the FS geometry. For more 
complex FS geometries, equation (1) must be numerically calcu-
lated, but the intuition still holds—at certain angles, the resistivity 
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Fig. 1 | ADMR above and below the pseudogap critical doping p* in Nd-LSCO. a, Temperature–doping phase diagram of the hole-doped cuprate Nd-LSCO 
in zero magnetic field. The pseudogap phase is highlighted in red (onset temperature T* is taken from the resistivity7,20 and ARPES22 measurements). 
The critical doping where the pseudogap phase ends is p* = 0.23 (red diamond20). The superconducting dome is marked by a solid black line and can be 
entirely suppressed with B∥c ≥ 20 T. The onset of a short-range CDW order, as detected by resonant X-ray scattering13, is indicated by the blue circles. The 
onset of an SDW order, as detected by neutron scattering, is indicated with green circles15 and green squares58. The red and blue bars correspond to the 
dopings and temperature ranges measured in this study. b, Geometry of the ADMR measurements. The sample is represented in grey with silver contacts. 
The black arrow identifies the direction of electric current J along the c axis. The angles ϕ and θ indicate the direction of magnetic field B with respect to 
the crystallographic a and c axes. c, Angle-dependent c-axis resistivity ρzz(θ) of Nd-LSCO at p = 0.21 (<p*). All the data are taken at T = 25 K and B = 45 T 
as a function of θ for ϕ = 0°, 15°, 30° and 45°, and normalized by the θ = 0 value, ρzz(0). d, Data taken under the same conditions as c, but for Nd-LSCO at 
p = 0.24 (>p*). Note that certain features change substantially across p*, including the peak near θ = 40° and the ϕ dependence near θ = 90°.
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is maximized because vz is more effectively averaged towards zero  
(Supplementary Fig. 1).

To reconstruct the FS geometry from the ADMR data, we start 
with a tight-binding model ϵ(k) that respects the geometry of 
the transfer integrals of the material, define the Fermi velocity as 
v = 1

h̄∇kϵ, and then tune the tight-binding parameters until the 
calculated ρzz matches the measured data. In addition to the FS 
geometry, ADMR is sensitive to the momentum dependence of qua-
siparticle scattering. This is captured in equation (1) by introducing 
τ(k)—the full expression for ρzz in this case is given in Methods. 
We separate the scattering rate into isotropic and anisotropic com-
ponents, that is, 1/τ(k) = 1/τiso + 1/τaniso(k). These two components 
can have distinct temperature dependencies, as demonstrated for 
Tl-2201 (ref. 29). The approach of using equation (1) to determine 
FSs has been particularly successful in two-dimensional (2D) met-
als such as organic conductors30 and Sr2RuO4 (ref. 31). In cuprates, 
ADMR has been measured in the overdoped regime (p > p*)2,8, in 
the underdoped regime with the CDW order (p ≈ 0.1 ≪ p*)32 and in 
electron-doped materials33, but never in the pseudogap phase in the 
absence of the CDW order.

Doping above p*
Figure 1d shows the ADMR of Nd-LSCO at p = 0.24, at T = 25 K and 
B = 45 T. We fit the data using a single-band tight-binding model 
that is commonly used for cuprates with a body-centred tetrago-
nal unit cell (Methods provides the full model). We then perform 
a global optimization over the tight-binding and scattering rate 
parameters using a genetic algorithm, placing loose bounds on the 
parameters around values determined by previous ARPES mea-
surements22,34. Figure 2b (right) shows the results of this optimi-
zation: the key features reproduced by the fit include the position 

of the maximum near θ = 40°, the onset of ϕ dependence beyond 
θ = 40° and the ϕ-dependent peak/dip near θ = 90°. The best-fit 
tight-binding parameters are in good agreement with those deter-
mined by ARPES (Extended Data Table 1), demonstrating excellent 
consistency between the two techniques.

The peak in ρzz near θ = 40°, which is captured well by the fit, can 
also be checked against the intuitive picture of ADMR described 
earlier: the position of this peak should be related to the length of 
the Fermi wavevector kF. For an FS with the simplest sinusoidal dis-
persion along kz, an analytical calculation of equation (1) shows that 
the ADMR changes with the angle as ρzz ∝ 1/(J0(ckFtanθ))2, where c 
is the interlayer lattice constant, kF is the Fermi wavevector and J0 is 
the zeroth Bessel function of the first kind. Although the analyti-
cal expression for ρzz is not exact for the particular form of inter-
layer hopping found in Nd-LSCO, Supplementary Fig. 1 shows that 
the maxima in resistivity coincide with the angles where vz is best 
averaged to zero. Our analysis including proper interlayer hopping 
shows that the peak in ρzz near θ = 40° suggests that kF ≈ 7 nm−1 
along the zone diagonal, which is very close to the FS shown in Fig. 
2c. This suggests that the ADMR at p = 0.24 exhibits features consis-
tent with a large, unreconstructed FS, as also observed by ARPES.

In addition to the FS geometry, ADMR is sensitive to the 
momentum-dependent quasiparticle scattering rate. We find that the 
data for p = 0.24 are best described by a highly anisotropic scattering 
rate that is the largest near the anti-nodal regions of the Brillouin zone 
and the smallest near the nodal regions. More details of the scattering 
rate model and its temperature dependence are provided elsewhere8.

Doping below p*
We now turn to Nd-LSCO at p = 0.21, below p* and inside the 
pseudogap phase, where ARPES finds discontinuous segments of 
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Fig. 2 | ADMR and FS of Nd-LSCO at p = 0.24. a, The ADMR of Nd-LSCO at p = 0.24 as a function of θ at T = 25 K and B = 45 T. b, Simulations obtained from 
Chambers’ formula using the tight-binding parameters from Extended Data Table 2 and the scattering rate model from equation (4). c, The FS of Nd-LSCO 
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c/2 is the distance between the copper oxide layers). d, The full 3D FS. The colouring corresponds to the vz component of the Fermi velocity, with positive 
vz in light blue, negative vz in purple and vz = 0 in magenta. A single cyclotron orbit, perpendicular to the magnetic field, is drawn in black, with the Fermi 
velocity at different points around the orbit indicated with grey arrows. The strong variation in vz around the cyclotron orbit is what leads to ADMR.
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FS known as ‘arcs’5. On comparison of Fig. 1c,d, it is immediately 
apparent that the structure of the ADMR qualitatively changes on 
entering the pseudogap phase. In particular, the resistivity peak 
near θ = 40° has disappeared at p = 0.21. The qualitative differences 
in the data arise either from a change in the FS geometry or from a 
large increase in the scattering rate for the anti-nodal quasiparticles 
(for example, the generation of Fermi arcs).

We test several different scenarios to understand the change 
in the ADMR across p*. These scenarios can be divided into two 
classes: those that change only the quasiparticle scattering rate and 
those that reconstruct the FS. First, we use the same FS model and 
scattering rate that fit the ADMR at p = 0.24 and simply adjust the 
chemical potential to decrease the hole concentration to p = 0.21. 
The simulated data for this model are shown in Fig. 3a. Instead of 
describing the data for p = 0.21, however, this simulation appears 
close to that for p = 0.24. This is to be expected: only the FS near the 
anti-nodal region appreciably changes on lowering the doping, and 
the ADMR is less sensitive to this region due to its high scattering 
rate. Therefore, something beyond a simple change in the chemical 
potential must occur when crossing p*.

Next, we test three other scattering rate models (on the large, 
unreconstructed FS): the same model used at p = 0.24, but now 
the scattering rate parameters are allowed to vary (Extended Data  
Fig. 2c); isotropic scattering around the entire FS (Fig. 2b); and a 
model of ‘Fermi arcs’ where the quasiparticle lifetime rapidly dimin-
ishes past the antiferromagnetic zone boundary on the FS (Fig. 3c). 
Even after performing fits using the genetic algorithm, allowing 
for a broad range of band structure and scattering rate parameters, 
none of these scattering rate models on the large unreconstructed 

hole-like FS are able to reproduce the ADMR at p = 0.21 (Methods 
provides a description of the fits and Extended Data Fig. 2). Note 
that the average strength of scattering does not seem to change 
much as the system crosses p*, since the magnitude of the ADMR, 
which is essentially governed by the magnitude of 1/τ, is roughly the 
same at p = 0.21 and p = 0.24 (Fig. 1). The inability of any of these 
scattering rate models to fit the ADMR at p = 0.21 suggests that the 
FS must be reconstructed into a new, geometrically distinct FS in 
the pseudogap phase.

To confirm a change in the FS geometry across p*, we test 
two models for FS reconstruction. First, we try a small electron 
pocket at nodal positions in the Brillouin zone (Fig. 3e). This FS 
is the result of a biaxial CDW, as found in several underdoped 
cuprates35,36, and is probably the origin of the small electron pocket 
found in YBa2Cu3O6+x and HgBa2CuO4+x (ref. 9). This FS accounts 
well for the ADMR of YBa2Cu3O6.6 at p = 0.11, where there is CDW 
order32. We simulate the ADMR using the method described ear-
lier, now calculating the Fermi velocity and density of states using 
the reconstructed band structure (Fig. 3f shows the results). Even if 
one allows the tight-binding and gap parameters to vary, or if one 
uses a d-wave form factor for the CDW gap37, these simulations do 
not agree at all with the ADMR for Nd-LSCO at p = 0.21 (Methods 
and Extended Data Fig. 3). This suggests that the FS transforma-
tion at p = 0.21 is not due to the same CDW order that produces 
the nodal electron pocket found in other underdoped cuprates. This 
is consistent with the Hall and Seebeck coefficients, which remain 
positive at all the temperatures and magnetic fields in Nd-LSCO at 
p = 0.21 (refs. 20,38), whereas negative (or negative-trending) Hall and 
Seebeck coefficients are a ubiquitous signature of charge order in 
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cuprates, observed in four distinct families of cuprates23,24,39, includ-
ing Nd-LSCO at p = 0.12 (ref. 25). It is also consistent with recent 
X-ray scattering experiments, which find no charge order at dop-
ings greater than x = 0.17 in Nd-LSCO (ref. 13).

Finally, we consider small hole pockets centred around the nodal 
directions of the FS (Fig. 4). Such nodal hole pockets arise in various 
theoretical scenarios19,40–43 and the Fermi arcs seen by ARPES could 
correspond to the front side of such pockets. In practice, we gener-
ate an FS made of four nodal hole pockets by reconstructing the 
large FS using antiferromagnetic order with a Q = (π, π) wavevec-
tor, employing the same tight-binding parameters as in the p = 0.24 
simulation. The ADMR for this FS is shown in Fig. 4b. This FS 
reproduces all the critical features of the data at p = 0.21: the resis-
tivity initially decreases with increasing θ; there is a minimum near 
θ = 60°; and the peak at 90° is the strongest along ϕ = 0° and the 
weakest along ϕ = 45°. Note that despite the success of this model in 
reproducing the relative change in magnetoresistance as a function 
of angle, the absolute value of the resistance is off by approximately 
a factor of three (Methods).

The key structures present in the reconstructed hole pockets, 
which are not present in the model of the arcs, are the sharp cor-
ners where the front and back sides of the hole pockets are con-
nected: it is these corners that produce qualitatively different 
ADMR data than those produced by the model of arcs. The gap 
magnitude (strength of the potential associated with FS reconstruc-
tion) that best reproduces the data is 5 meV or ~55 K—this gap sets 
the ‘sharpness’ of the corners on the hole pockets. Note that this 
gap is insufficient to remove the anti-nodal electron pockets that 
also result from a Q = (π, π) reconstruction: we remove the electron 
pocket to produce agreement between the calculated and mea-
sured Hall coefficients (our data are also consistent with the inclu-
sion of electron pockets with a much higher scattering rate than 
that found for hole pockets; Methods and Extended Data Fig. 4). 
We find that a momentum-independent scattering rate is required 

to reproduce the data. This reduction in scattering rate anisotropy 
between p > p* and p < p* may be due to the substantial reduc-
tion in the anisotropy of the density of states when moving from 
p = 0.24 to p = 0.21 (Extended Data Fig. 5 shows a reduction in the 
anisotropy of the density of states from a factor of 25 at p = 0.24 to 
a factor of 2 at p = 0.21). Thus, the change in ADMR moving from 
p = 0.24 to p = 0.21 has two sources: a transformation to an FS con-
sisting of four nodal hole pockets and a reduction in the scattering  
rate anisotropy.

Discussion
Our main finding is a qualitative change in ADMR that indicates 
a transformation of the FS at p*. For p > p*, excellent agreement is 
found between the FS measured by ADMR and the one measured 
by ARPES, both giving the same large, diamond-like FS8. For p < p*, 
however, the ADMR is strikingly different. This difference is not 
due to a simple lowering of the chemical potential through the Van 
Hove point nor is it solely due to a change in the scattering rate 
across p*: it must, therefore, be due to a change in the geometry of 
the FS. The data below p* are best described by an FS composed 
of nodal hole pockets. These nodal hole pockets can result from a 
Q = (π, π) reconstruction. Such a reconstruction is consistent with 
the transition from the carrier density n = 1 + p at p > p* to n = p at 
p < p*, as revealed by the Hall coefficient20,44 (Extended Data Fig. 
4 shows a comparison of the measured and calculated Hall coef-
ficients). Similar nodal hole pockets were recently detected by 
both quantum oscillations and ARPES in the five-layer cuprate 
Ba2Ca4Cu5O10(F,O)2 at a doping level where long-range antiferro-
magnetic order is known to exist17; the question is whether a similar 
reconstruction takes place in Nd-LSCO at p = 0.21, given that the 
SDW correlations at this doping are short ranged and quasistatic14,15.

Many proposals that break translational symmetry in the same 
way as long-range antiferromagnetism—with a wavevector of 
Q = (π, π)—have been put forward, including d-density wave order41, 
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Fig. 4 | FS reconstruction into nodal hole pockets in Nd-LSCO at p = 0.21. a, Measured ADMR of Nd-LSCO at p = 0.21 as a function of θ at T = 25 K 
and B = 45 T. b, Calculated ADMR for the FS shown in c with an isotropic scattering rate. c, FS consisting of four nodal hole pockets. These pockets are 
implemented via a model of antiferromagnetic order with the wavevector Q = (π, π) and a gap of 55 K, with the electron pockets removed to produce 
agreement with the measured Hall coefficient. d, The full 3D FS at p = 0.21 after reconstruction.

NATuRE PhYSiCS | www.nature.com/naturephysics

http://www.nature.com/naturephysics


Articles NATuRE PHySiCS

staggered loop-current order45 and, of course, local-moment anti-
ferromagnetism or SDW order43,46. There are also proposals that 
produce nodal hole pockets without breaking translational sym-
metry, including the Yang–Zhang–Rice ansatz42, staggered fluxes40 
and topological order19. In Supplementary Fig. 2, we show that the 
nodal hole pockets from the Yang–Zhang–Rice ansatz also fit the 
ADMR data at p = 0.21. This suggests that the nodal hole pockets 
themselves, rather than the particular details of any one model, are 
what is important to describe the FS transformation across p*.

Even if no static, long-range order is present in Nd-LSCO at 
p = 0.21, scattering at the antiferromagnetic wavevector is known to 
be important to many models of the pseudogap47–49, and it may be 
enough for an order parameter to appear static on time scales of the 
order of the quasiparticle lifetime (approximately 0.1 ps) and over 
length scales of the order of the cyclotron radius (approximately 
20 nm at B = 45 T)50. We note that there is evidence for fluctuating, 
short-range SDW correlations in Nd-LSCO near p* (refs. 14,15), and 
a short-range magnetic order has been found to onset below p* in 
the related compound, namely, La2−xSrxCuO4 (ref. 16). It may be that 
some form of this SDW reconstructs the FS at p = 0.21. Note, how-
ever, that a reduction in the Hall coefficient within the pseudogap 
phase is universal in cuprates20,51–53, and that our model of FS trans-
formation produces the correct Hall coefficient (both above and 
below p*), which strongly suggests that the model proposed here 
for the FS below p* itself is universal, whereas the tendency towards 
SDW order substantially varies between different cuprates.

Three families of unconventional superconductors—iron 
pnictides, organics and heavy fermions—share a common phase 
diagram in which long-range magnetic order is suppressed as 
a function of doping or pressure. At the critical point, where 
long-range order is suppressed, the superconducting Tc is typically 
maximal, resistivity is the most anomalous (typically linear in tem-
perature) and the quasiparticle mass is enhanced10,54,55. Long-range 
magnetic order reconstructs the FS in all three classes of materi-
als54,56,57, and thus, the onset of FS transformation, near-optimal Tc, 
T-linear resistivity and enhanced quasiparticle interactions are tied 
together across dozens of superconducting materials, each with 
entirely different microscopic constituents. The phase diagram of 
high-Tc cuprates is superficially similar, with T-linear resistivity, 
near-optimal Tc and enhanced effective mass occurring at a criti-
cal doping where the pseudogap phase appears. What was missing 
until now was direct experimental evidence of the accompanying  
FS transformation.
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Methods
Samples and transport measurements. Single crystals of La2–y–xNdySrxCuO4 
(Nd-LSCO) were grown at the University of Texas at Austin using the 
travelling-float-zone technique, with Nd content of y = 0.4 and nominal Sr 
concentrations of x = 0.20, 0.21 and 0.25. The hole concentration p is given by p = x, 
with an error of ±0.003, except for the x = 0.25 sample for which p = 0.240 ± 0.005 
(more details are provided elsewhere20). The value of Tc, defined as the point of zero 
resistance, is Tc = 15.5, 15.0 and 11.0 K for samples with p = 0.20, 0.21 and 0.24, 
respectively. The pseudogap critical point in Nd-LSCO is at p* = 0.23 (ref. 20).

Resistivity measurements were performed in the 45 T hybrid magnet at the 
National High Magnetic Field Lab. The sample resistance was measured with 
a standard four-point contact geometry using a Stanford Research Systems 
830 lock-in amplifier. The samples were driven with current Ir.m.s. = 1 mA from 
a Keithley 6221 current source. The temperature was stabilized to within 
±1 mK around the target temperature at each angle. Uncertainty of the absolute 
temperature due to thermometer magnetoresistance is negligible at T = 25 K. The 
thermometer was mounted at a fixed point on the probe near the sample but not 
on the rotating platform. Thus, the magnetoresistance of the thermometer did not 
change as the sample was rotated.

At p = 0.21 and 0.24, the upper critical fields of Nd-LSCO are 15 and 10 T, 
respectively, for B∥c (ref. 21). By applying a magnetic field of B = 45 T at T = 25 K, 
both samples remain in the normal state as the field is rotated from B∥c to B∥a.

The polar angle θ between the crystalline c axis and the magnetic field was 
continuously changed in situ from around −15° to ~110° using a single-axis 
rotator. A voltage proportional to the angle was recorded with each angle sweep. 
The angle θ was calibrated by finding symmetric points in the resistivity and 
scaling the measured voltage such that the symmetric points lie at θ = 0° and 90° 
(Extended Data Fig. 6). This procedure resulted in an uncertainty of ±0.5° in θ. 
The azimuthal angle ϕ was changed by placing the sample on top of G-10 wedges 
machined at different angles, namely, 15°, 30° and 45°. An illustration of the sample 
mounted on the rotator stage, with a G-10 wedge to set the azimuthal angle to be 
30°, is shown in Extended Data Fig. 6. The samples and wedges were aligned under 
a microscope by eye to an accuracy of ±2° in ϕ.

Transport calculations in a magnetic field. The semiclassical electrical 
conductivity of a metal can be calculated by solving the Boltzmann transport 
equation within the relaxation-time approximation. The approach most suitable for 
calculating the angle-dependent magnetoresistance was formulated by Chambers27. 
It provides an intuitive prescription for calculating the full conductivity tensor σij 
in magnetic field B, starting from a tight-binding model of the electronic band 
structure ϵ(k). The Chambers solution is

σij =
e2

4π3

∫

d3k
(

−

df0
dϵ

)

vi [k (t = 0)]
∫ 0

−∞

vj [k (t)] et/τdt, (2)

where ∫d3k is an integral over the entire Brillouin zone, 
(

−

df0
dϵ

)

 is the derivative 
with respect to the energy of the equilibrium Fermi distribution function, vi is the 
ith component of the quasiparticle velocity and 

∫ 0
−∞

dt is an integral over the 
lifetime τ of a quasiparticle. The Fermi velocity is calculated from the tight-binding 
model as vF = 1

h̄∇kϵ(k). The magnetic field, including its orientation with respect 
to the crystal axes, enters through the Lorentz force, which acts to evolve the 
momentum k of the quasiparticle via h̄ dk

dt = ev × B. Because the magnetic field 
is explicitly included in this manner, the Chambers solution has the advantage of 
being exact to all orders in the magnetic field.

The conductivity of a general electronic dispersion ϵ(k) can be calculated 
using equation (2)59. The factor 

(

−

df0
dϵ

)

 is approximated as a delta function 
at the Fermi energy in the limit that temperature T is much smaller than any of the 
hopping parameters in ϵ(k), as is the case for our experiments. This delta function 
transforms the integral over the Brillouin zone into an integral over the FS, and 
introduces a factor of 1/|∇kϵ(k)|, which is the density of states. To numerically 
perform the integrals in equation (2), the FS is discretized, usually into 10–15 layers 
along kz, with 60–100 points per kz layer; each point is evolved in time using the 
Lorentz force equation. This moves the quasiparticles along the cyclotron orbits 
around the FS, and their velocity is recorded at each position and integrated over 
time. The weighting factor et/τ accounts for the scattering of the quasiparticles as they 
traverse the orbit. In general, τ is taken to be a function of momentum τ(k), and then 
the factor et/τ is replaced by e

∫ 0
t dt′/τ(k(t′)). Equation (2) can be used to calculate any 

component of the semiclassical conductivity tensor. We use it to calculate ρzz in  
Figs. 1–4. Note that because of the highly 2D nature of the FS of Nd-LSCO, we 
neglect the off-diagonal components of the conductivity tensor and use ρzz ≈ 1/σzz.

Nd-LSCO band structure at p = 0.24. We use a 3D tight-binding model of the FS 
that accounts for the body-centred tetragonal crystal structure of Nd-LSCO34:

ϵ(kx, ky, kz) = −μ − 2t[cos(kxa) + cos(kya)]

−4t′ cos(kxa) cos(kya) − 2t′′[cos(2kxa) + cos(2kya)]

−2tz cos(kxa/2) cos(kya/2) cos(kzc/2)[cos(kxa) − cos(kya)]2,
(3)

where μ is the chemical potential; t, tʹ and t″ are the first, second and third 
nearest-neighbour hopping parameters, respectively; tz is the interlayer hopping 
parameter; a = 3.75 Å is the in-plane lattice constant of Nd-LSCO; and c/2 = 6.6 Å 
is the CuO2 layer spacing. The interlayer hopping has the form factor cos(kxa/2)
cos(kya/2)(cos(kxa) – cos(kya))2, which accounts for the offset copper oxide planes 
between the layers of the body-centred tetragonal structure60.

The fit results are presented in Fig. 2b (for the ADMR) and Extended Data 
Table 1 (for the tight-binding and scattering rate parameters). Although the genetic 
algorithm was allowed to search over a wide range of parameters, we found that 
the optimal solution converged towards tʹ, t″ and tz values extremely close to 
the ARPES values, with a 7% deviation at most for tz. Only μ, and therefore p, is 
substantially different from the ARPES value. The higher doping found by ARPES 
may be due to the difficulty in accounting for kz dispersion or may be due to 
different doping levels at the surface. Nevertheless, the shape of the FS found by 
fitting the ADMR data (Fig. 2b,c) is electron like and qualitatively identical to the 
one measured by ARPES22, and the doping found by us (p = 0.248) is very close to 
the nominal value, namely, p = 0.240 ± 0.005 (ref. 7).

This demonstrates that the FS is correctly mapped out by our analysis of the 
ADMR data. In the figures and analysis presented in this manuscript, we use the 
tight-binding values from Extended Data Table 1; for simplicity, we refer to them  
as the ‘tight-binding values from ARPES’, as they only differ by the chemical 
potential value.

Nd-LSCO scattering rate model at p = 0.24. We have used a minimal, 
phenomenological, anisotropic scattering rate model to fit the ADMR data of 
Nd-LSCO at p = 0.24, which we refer to as the ‘cosine’ model:

1/τ(T,ϕ) = 1/τiso(T) + 1/τaniso(T)| cos(2ϕ)|
ν , (4)

where 1/τiso is the amplitude of the isotropic scattering rate, 1/τaniso is the amplitude 
of the ϕ-dependent scattering rate and ν is an integer. The best fit using this model 
is plotted in Fig. 2b. The features at θ = 40° and θ = 90° are present with the same 
amplitudes as the data. With as few parameters as possible, this model captures 
the trend of the anti-nodal regions of the FS to have shorter quasiparticle lifetimes 
in the cuprates61,62, particularly close to the Van Hove singularity. This model 
should be seen as the simplest phenomenological model capable of capturing the 
correct shape of the real scattering rate, with the least number of free parameters. 
In another study8, we explore two other scattering rate models and show that they 
converge to the same shape as a function of ϕ.

Nd-LSCO large hole-like FS at p = 0.21. First, we examine the simplest scenario 
to fit the ADMR at p = 0.21, which is to keep the tight-binding values from the fit 
to p = 0.24 and just shift the chemical potential across the Van Hove singularity 
to p = 0.21. We then explore three different types of scattering model: an isotropic 
scattering rate, the anisotropic ‘cosine’ function from equation (4) and a model of 
‘Fermi arcs’. For the Fermi arcs model, the scattering rate is set to a constant  
value inside the (π, π)-reduced Brillouin zone and set to a different, higher value 
outside this zone.

The best-fit results for these three models are shown in Extended Data  
Figs. 2b,c and 3d. All of them fail to capture the correct ϕ dependence of the 
ADMR around the θ = 90° feature. We conclude that the FS transformation 
through p* is not the unreconstructed, hole-like FS.

Nd-LSCO (π, π) FS reconstruction at p = 0.21. Several different reconstruction 
scenarios19,41–43,45 produce an FS that is qualitatively equivalent to the one produced 
by a (π, π) antiferromagnetic order parameter43. We simulate such a reconstruction 
by starting with the tight-binding model at ADMR values for Nd-LSCO at p = 0.24 
(Extended Data Table 1) and performing a 2D (π, π) reconstruction, maintaining 
the same interlayer coupling terms used in the unreconstructed case. The 
tight-binding model is then

ϵ(π,π)(kx, ky, kz) = −μ + 1
2
[

ϵ0(kx, ky, kz) + ϵ0 (kx + π/a, ky + π/a, kz)
)]

−

1
2

√

4∆2 +
[

ϵ0(kx, ky, kz) − ϵ0(kx + π/a, ky + π/a, kz)
]2

−2tz cos(kzc/2) cos(kxa/2) cos(kya/2)[cos(kxa − cos(kya))]2,
(5)

where the unreconstructed ϵ0 is given by

ϵ0(kx, ky, kz) = −2t[cos(kxa) + cos(kya)] − 4t′ cos(kxa) cos(kya)

−2t′′[cos(2kxa) + cos(2kya)].
(6)

Here Δ is the gap size; t, tʹ and t″ are the first, second and third nearest-neighbour 
hopping parameters, respectively; μ is the chemical potential; and tz is the interlayer 
hopping parameter.

Note that the above equations consist of a 2D antiferromagnetic model 
with added interplane hopping instead of a fully 3D antiferromagnetic model. 
The reason for this is Nd-LSCO’s tetragonal crystal structure, for which the 
full 3D reconstruction would induce C4 rotation symmetry breaking (coming 
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from the cos(kxa/2)cos(kya/2) term in interplane hopping). By performing the 
2D reconstruction alone, rotational symmetry in the copper oxide planes is 
preserved. Moreover, such a reconstruction is likely to be more consistent with 
the short-length spin correlations that are incoherent between planes. Note also 
that short-range antiferromagnetic correlations could induce a reconstruction as 
long as the thermal de Broglie wavelength of the electron (of the order of a few 
nanometres at 6 K given the effective mass at p = 0.21 (ref. 21)) is shorter than the 
antiferromagnetic correlation length63.

The ADMR was simulated using equation (5) using a procedure similar to 
that described above for p = 0.24. It was found that an isotropic scattering rate 
allows to optimally fit the data. Thus, the scattering rate, gap magnitude and 
chemical potential were the only three parameters allowed to vary using the genetic 
algorithm. The best fit is presented in Fig. 4f, and the fit values can be found in 
Extended Data Table 2.

To understand the influence of the different parameters on the fit, Extended 
Data Fig. 7 shows how the ADMR varies with an increasing gap size. Although the 
magnitude of the overall drop at θ = 90° increases with increasing Δ, the variation 
is rather slow and no strong qualitative change in the simulations is observed. The 
best-fit value is found to be around Δ = 55 K. We show the same but as a function of 
the scattering rate amplitude (Extended Data Fig. 8).

The reduction in scattering rate anisotropy when moving from the 
unreconstructed FS at p = 0.24 to the nodal hole pockets at p = 0.21 may be due 
to the large reduction in anisotropy of the density of states. Extended Data Fig. 5 
plots the magnitude of the Fermi velocity—inversely proportional to the density 
of states—for both unreconstructed FS and nodal hole pockets. Here vF varies 
by a factor of 25 for the unreconstructed FS, which is probably the origin of the 
anisotropic elastic scattering rate. At p = 0.21, however, vF varies by just over a 
factor of two—a huge reduction in anisotropy. This may explain why the scattering 
rate found by us on the nodal hole pockets is roughly isotropic (note that the 
scattering rate is not exactly proportional to the density of states, as it depends on 
the form of the scattering matrix elements). Note that although the relative change 
in resistivity is reproduced by the model, the absolute value is not reproduced: 
the absolute resistivity at θ = 0° is ρzz = 35.80 mΩ cm, whereas the fit produces 
ρzz = 12.93 mΩ cm. The difference between the model and data may be due  
to the incoherent contributions to transport, which are not captured by the 
Boltzmann equation.

Nd-LSCO Hall effect at p = 0.21. A (π, π) reconstruction at p = 0.21, with the gap 
value obtained by our best fit to the ADMR data, also produces small, anti-nodal 
electron pockets. Although a fit can still be obtained with the electron pockets 
included (as their inclusion only adds more free parameters to the model), we 
exclude them from the model based on the calculated Hall coefficient. Extended 
Data Fig. 4 compares the data taken at 30 K on Nd-LSCO at p = 0.21 (ref. 20) with 
the Hall coefficient calculated from several models. The nodal hole pockets on 
their own produce the best agreement with the data.

Nd-LSCO CDW FS reconstruction at p = 0.21. A biaxial CDW with a period near 
to three lattice spacings is thought to underlie the reconstructed pocket observed 
in quantum oscillation experiments32,64. We simulate such a reconstruction by 
starting with the ARPES tight-binding values for Nd-LSCO at p = 0.24 and perform 
a period-three biaxial wavevector reconstruction of the FS. Similar to (π, π) 
reconstruction, we perform a 2D reconstruction and maintain the same interlayer 
coupling terms used in the unreconstructed case. This FS reconstruction produces 
multiple pockets and open sheets, similar to another study37. We calculate the 
ADMR for only the diamond-shaped FS because this is the only surface that has 
been reported by quantum oscillations in underdoped cuprates9,65 and because it is 
the only FS needed to model the ADMR in YBa2Cu3O6.6 (ref. 32). The inclusion of 
any other FSs would lead to a value of the normal-state specific heat that is larger 
than the measured value66.

The Hamiltonian used for finding the in-plane FS can be written as follows67:

H =
∑

k
[ϵ0(k)c†kck −

∑

Q
∆Q(k + Q/2)c†k+Qck], (7)

where the sum over k extends over the entire Brillouin zone of the square lattice, 
ΔQ is the gap of the CDW and Q is the wavevector of charge ordering. For a 
bidirectional CDW with a period of three lattice spacings, the sum over Q extends 
over the four values of (± 2π

3 , 0) and (0,± 2π
3 ). The in-plane electronic dispersion 

is the same as the in-plane dispersion ϵ0 described in equation (6). The FS is found 
by selecting the eigenvalue of the resulting 9 × 9 matrix that corresponds to the 
diamond-shaped FS (Fig. 3e).

We calculate the ADMR using the Chambers formula for this model. The result 
is shown (Fig. 3) for a number of different CDW strengths, as well as for a d-wave 
form factor. The simulated ADMR is somewhat reminiscent of the p = 0.24 data, 
except that the peak that was found at around θ = 30° for p = 0.24 has been pushed 
out to θ = 60°. This qualitative similarities arise because both unreconstructed FS 
and small reconstructed diamonds are similar in shape. The features are pushed to 
higher θ for the reconstructed case because kF is smaller. It is clear, however, that 
CDW reconstruction does not match the ADMR for Nd-LSCO at p = 0.21.

Data availability
Source data are provided with this paper. Other experimental data presented 
in this paper are available at http://wrap.warwick.ac.uk/161600/. The results of 
the conductivity simulations are available from the corresponding author upon 
reasonable request.

Code availability
The code used to compute the conductivity is available from the corresponding 
author upon reasonable request.
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Extended Data Fig. 1 | Resistivity of Nd-LSCO at p = 0.24 near TSDW. In-plane resistivity data at B = 35 T as a function of temperature (reproduced  
from ref. 20). The resistivity ρxx (red line) is perfectly linear over this temperature range without any sign of an upturn or even a change in slope at 
TSDW = 13 ± 1 K (black arrow) reported by Ma et al.15 at B = 0 T. This suggests that either the SDW is not present in our samples or that the SDW vanishes  
in a magnetic field and thus does not interfere with our measurements performed at B = 45 T.
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Extended Data Fig. 2 | Best fit of Nd-LSCO p = 0.21 data with the large, hole-like, unreconstructed Fermi surface. (a) ADMR data on Nd-LSCO p = 0.21 
at T = 25 K and B = 45 T; (b, c) The best fits for the ADMR data in (a) using the band structure ARPES values for Nd-LSCO p = 0.24 with the chemical 
potential shifted across the van Hove point (at p ≈ 0.23) to p = 0.21, where the Fermi surface is hole-like. Insets represent the scattering rate distribution 
values over the hole-like Fermi surface at p = 0.21. In (b), the scattering is isotropic over the Fermi surface; in (c) we use the cosine scattering rate model 
(this figure differs from Fig. 3b because there we only shift the chemical potential, while here we show the best-fit using this model).
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Extended Data Fig. 3 | Calculation of ADMR for a period three CDW Fermi surface reconstruction. Calculations using two different gap sizes are shown 
in (a) and (b), and using a d-wave form factor is shown in (c).
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Extended Data Fig. 4 | The hall effect in Nd-LSCO at p = 0.21. The data is taken at 30 K and is reproduced from Collignon et al.20. ‘h pocket’ is from the  
fit to the data shown in Fig. 4 of the main text; ‘h+e pocket’ is from a fit that includes both the hole and electron pockets after (π,π) reconstruction;  
‘Fermi arcs’ is from the fit in Fig. 3c,d of the main text; ‘e pocket’ is from just the electron pocket produced by (π,π) reconstruction, scaled down by a  
factor of 20 for clarity.
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Extended Data Fig. 5 | Variation in the Fermi velocity around the Fermi surface above and below p⋆. The red curve plots the magnitude of the Fermi 
velocity around the Fermi surface at p = 0.24, as shown in Fig. 2. The blue curve plots the same quantity for a single nodal hole pocket, as shown in Fig. 4 
(the reduction in symmetry is because each nodal hole pocket is 2-fold symmetric). The total anisotropy in vF around the Fermi surface is a factor of 25 at 
p = 0.24, but just larger than a factor of 2 at p = 0.21.
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Extended Data Fig. 6 | ADMR experimental set up. (a) An illustration of the sample mounting. The two samples here are mounted on a G-10 wedge to 
provide a ϕ angle of 30∘. Additional wedges provided angles of ϕ = 15∘ and 45∘; (b) ADMR as a function of θ angle from − 15∘ to 110∘ and ϕ = 0 at T = 20 K 
for Nd-LSCO p = 0.24, showing the symmetry of the data about these two angles.
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Extended Data Fig. 7 | ADMR dependence on the gap amplitude with (π,π) reconstruction. ADMR calculations with a (π,π) reconstructed Fermi surface 
for different gap amplitudes at fixed isotropic scattering rate value 1/τ = 22.88 ps−1. Note that this within ≈ 40% of the nodal scattering rate at p = 0.24, 
consistent with a nodal hole pockets reconstructed from the larger Fermi surface.
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Extended Data Fig. 8 | ADMR dependence on the scattering rate amplitude with (π,π) reconstruction. ADMR calculations with a (π,π) reconstructed 
Fermi surface for different isotropic scattering rate amplitudes at fixed gap value at Δ = 55 K.
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Extended Data Table 1 | Tight-binding parameters from the fit to the ADMR data at p = 0.24. Best fit tight-binding values for the 
Nd-LSCO p = 0.24 ADMR data (using the cosine scattering rate model of Equation (4)). The results are extremely close to ARPES 
tight-binding values reported in Matt et al.22 and horio et al.34, reproduced here on the second line. Error bars on the AMDR-derived 
hopping parameters and chemical potential are all ± 0.0005, and were obtained following the procedure described in the above 
section. The error bar on the value of tz measured by ARPES is ± 0.02t (J. Chang and M. horio, private communication)
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Extended Data Table 2 | Results of the fit of the Nd-LSCO p = 0.21 data with (π,π) reconstruction. Fit parameter values for Nd-LSCO 
p = 0.21 plotted in Fig. 4f. The band structure parameters were kept fixed at ARPES values22. Error bars were obtained following the 
procedure described in the above section
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