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ABSTRACT: We propose a new, more efficient, and potentially cost effective,
solid-state nuclear spin hyperpolarization method combining the cross-effect
mechanism and electron spin optical hyperpolarization in rotating solids. We
first demonstrate optical hyperpolarization in the solid state at low
temperatures and low field and then investigate its field dependence to obtain
the optimal condition for high-field electron spin hyperpolarization. The
results are then incorporated into advanced magic-angle spinning dynamic
nuclear polarization (MAS-DNP) numerical simulations that show that
optically pumped MAS-DNP could yield breakthrough enhancements at
very high magnetic fields. Based on these investigations, enhancements greater
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than the ratio of electron to nucleus magnetic moments (>658 for 'H) are possible without microwave irradiation. This could solve
at once the MAS-DNP performance decrease with increasing field and the high cost of MAS-DNP instruments at very high fields.

1. INTRODUCTION

Magic-angle spinning dynamic nuclear polarization (MAS-
DNP) is a powerful solid-state nuclear magnetic resonance
(NMR) (ssNMR) method that reduces the duration of
ssNMR experiments by orders of magnitude.' In short, the
high polarization of paramagnetic species stemming from
microwave (yw) irradiation at the Larmor frequency can be
transferred to nuclei to enable molecular-level characterization
even when the isotope of interest is in low concentration or has
low receptivity.”~> Over the past two decades, there has been
significant progress in the development of hardware,®"!
sample preparation methods,'>™' paramagnetic species used
as sources for DNP'"~** and the theoretical understanding of
MAS-DNP.>*"*® MAS-DNP most commonly uses biradicals®’
to generate the nuclear hyperpolarization via the cross-effect
(CE) mechanism, which involves fast energy level anticross-
ing 23262829

As in conventional ssNMR, very high field MAS-DNP
(>14.1 T/600 MHz) enables higher resolution but faces
multiple challenges, such as reduced efficiency of the CE with
the field*>’' and significant microwave absorption at high
frequencies,'’ which reduce the large electron polarization
difference and the concomitant nuclear polarization enhance-
ment >>303%33 Finally, the significant cost of high-field MAS-
DNP instrumentation limits widespread availability.

In parallel to DNP developments, optical irradiation has
been used to improve NMR sensitivity. For example, nuclear
hyperpolarization in ssNMR experiments via photo-CIDNP
was observed in certain systems.”*”* Furthermore, optical
electron spin hyperpolarization offers a promising approach for
carrying out solid-state and liquid-state Overhauser DNP,*"**
and the hyperpolarized triplet state has been combined with
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the integrated solid effect at low fields to generate nuclear spin
hyperpolarization.”~*

In this article, we propose a novel method that can provide
much higher hyperpolarization than traditional MAS-DNP at
high fields, in addition to addressing the issues listed above via
the use of optical electron spin hyperpolarization in the solid
state. The concept, dubbed optically pumped MAS-DNP
(MAS-OPDNP), uses optical irradiation to photophysically
generate the electron spin polarization difference required for
the CE mechanism and build on the effect of the sample’s
rotation to hyperpolarize the nuclei. This concept enables
nuclear spin hyperpolarization that is not restricted to the ratio
of electron to nucleus magnetic moments, while potentially
using affordable hardware. Finally, the method is expected to
be field-independent, and therefore, it should be easily added
to most modern ssNMR spectrometers.

The present work first demonstrates experimentally, in the
solid state and X-band (low field), that optically driven
electron spin hyperpolarization is possible for nitroxides
commonly used for MAS-DNP.”””%*' We subsequently
investigate the field dependence of optical electron spin
hyperpolarization and its characteristic time scales. Based on
these results, we propose a chromophore-radical-radical
polarizing agent and present simulations that were conducted
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Scheme 1. (A) Structures and Acronyms of the Molecules Examined in This Study and (B) Key Processes Involved in Electron
Spin Hyperpolarization in a Chromophore-Radical Adduct at Low Magnetic Field (~0.3 T)
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The laser pulse excites the molecule from the D; to the D, state (termed sing doublet), which then decays from D, to Q;/D; (mixing of the
triplet and the doublet) via SO-ISC, followed by the quenching of the D, state (termed trip-doublet) to Dy at a rate of ky Two mechanisms lead to
hyperpolarization in the Dy state: (i) the selective transition of the SO-ISC and (ii) the reversible transitions between D; and Q; states (RQM).
Black dots represent the initial photoexcited populations, and the blue and green dots denote the population redistributions after processes (i) and
(ii), respectively. For process (ii), after decay via SO-ISC, the populations in the Q, state are equilibrated via longitudinal relaxation and driven by
the RQM pathway via the D; — Q, transitions, thanks to cross-relaxation, with rates defined by the k' between Q' and D} (red arrows) to
generate hyperpolarization in the Dj, state. The ratio of rates Ry, = Y. ki &2 X kb 172 (red solid and red dashed arrows) quantifies the selective
polarization in the D, states. w,, represents the Zeeman Larmor frequency, and 3]CR (<0) represents the magnitude of the exchange splitting
between the Q, and D states.

(A) (B)

Int ted fi
ntegrated from .

e 1t derivative ] 18.8 T/527 GHz o
z (thermal equilibrium)
) B
£ m
s x100 104 g
2 g
£ - &
© < A 5
S 5
4 5 5
o 10 H
w Time resolved

(hyperpolarized)

I 1 T T 1 1 1 1
321 3225 340 325.5 327 328.5 330 3315 0 2 4 6 8 10 12 14
Magnetic Field (mT) Exchange interaction |J| (cm)

Figure 1. (A) Experimental EPR spectrum (integrated from the first derivative) of ANCOOT in toluene at 100 K (black line) and its
hyperpolarized EPR spectrum recorded for 2.5 us after a 35S nm laser pulse (blue line) and integrated using a boxcar averager over 0.3 us (see SI
for experimental details). The gain factor of —100 for the Boltzmann signal represents the ESP enhancement obtained from time-resolved
experiments (TREPR), see Appendix 4. (B) Plot of the RQM selectivity factor, Rp; (black squares), and the corresponding values of P, (red
squares) as a function of the exchange parameter, [Jczl (Jeg < 0), for the case of pure RQM, that is, process (ii) (Scheme 1). N.B. solid black and
dashed red interpolating lines are provided as a guide to the eye.

with a high-performance MAS-DNP numerical tool”™** to dissolved in toluene and placed in a quartz tube (O.D.: 4 mm,
explore the potential of the CE MAS-DNP mechanism at a LD.: ~3 mm, Wilmad Glass, USA) and then degassed by three
high magnetic field using optical electron spin hyperpolariza- cycles of freeze-pump-thaw under a vacuum of 105 mbar. The
tion. The results are then discussed in light of experimental low-temperature experiments were performed by passing cold
considerations. N, gas through a Dewar that contained the sample tube. The

temperature at the sample tube was calibrated by inserting a
2. METHOD thermocouple inside the cavity. Additional experimental details

are available in the Supporting Information.
2.2. Numerical Simulations. The simulation models of
the reverse quartet mechanism at high field is based on

2.1. Experimental Details. Steady-state and time-resolved
EPR spectra were recorded in a laboratory-built X-band
electroparamagnetic resonance (EPR) spec'a'ometer.°3 For the

time-resolved EPR, the exciting source was the third harmonic previously published results,”* and the input parameters are
of an Nd:YAG laser (Quantel Model: YG-981C, wavelength: detailed in the Supporting Information.
35S nm, repetition rate: 15 Hz, and energy at the sample: 1—4 The MAS-OPDNP simulations are based on a previously
mJ/pulse). Because of the extremely strong spin-polarized EPR published MAS-DNP simulations method.”>** The model
signals, the laser energy was reduced to its lowest output value. simulates biradicals in a box to account for the inter-biradical
The absorbance of all the solutions at the exciting wavelength interactions, thus accounting for the biradical concentration.
was less than 1. The samples, ANCOOT and AnqlPr, were The model was modified to account for optical electron spin
2601 https://doi.org/10.1021/acs.jpca.2c01559
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Scheme 2. Schematics of the Proton CE MAS-DNP Mechanism in the Ideal Case of a Biradical with Two Nonoverlapping EPR

Spectra Separated by the Proton Larmor Frequency”
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?(A) Conventional MAS-DNP where the spins of electron b are saturated, while the spins of the electron a are at thermal equilibrium. The
proposed optically pumped hyperpolarization method in which the polarization of electron spin a is increased while the electron b is at thermal

equilibrium (B) or saturated by microwave irradiation (C).

hyperpolarization. Details about the modifications and the
parameters used can be found in the Supporting Information.

3. RESULTS

3.1. Photophysical Electron Spin Hyperpolarization.
Optically pumped electron spin hyperpolarization can be
generated in chromophore-radical (CR) systems during
photophysical quenching processes.”> ®* The electron hyper-
polarization generation in CR systems is well understood in the
liquid state.”*~®® Two mechanisms contribute to the electron
hyperpolarization (see energy diagram in Scheme 1): (i) the
spin-orbit-induced inter-system-crossing (SO-ISC)***” and
(ii) the D;—Q, conversion via the reverse quartet mechanism
(RQM).>* The first mechanism is due to the spin-orbit
coupling, while the second involves the large zero-field splitting
(ZFS), Dgps, both in the excited triplet state of the
chromophore.

Recently, ANCOOT and AnqlPR (Scheme 1A), two
efficient CR-systems, were reported to 7%enerate a large
electron hyperpolarization in solution.””' We examined
their hyperpolarization efficiency in the solid state as a
preliminary assessment for MAS-DNP applications. Figure
1A shows the EPR spectra of ANCOOT in toluene at 100 K in
thermal equilibrium (black curve) and hyperpolarized (blue
curve) states. The hyperpolarized EPR spectrum is emissive
and a near-mirror image of the thermal equilibrium one,
without any signature of the quartet EPR spectrum. From the
signal intensity ratio, we estimated the electron polarization
enhancement to be about —100 times the thermal spin
polarization (30% polarization, see the SI for details on the
evaluation of experimental hyperpolarization). The hyper-
polarization is generated on a very fast time scale <100 ns (the
instrument response time is 100 ns), which is important for
applications in MAS-DNP.

The solid-state hyperpolarized EPR spectrum and its time
dependence for the anthraquinione nitroxides are determined
by the SO-ISC and RQM mechanisms. Their relative
contributions at X-band frequencies are beyond the scope of
the current work and will be described in a future publication.

At high magnetic fields the SO-ISC mechanism may become
less efficient as the net (rotationally invariant) component of
the polarization generated during the ISC has an inverse field
dependence (see eq $16).”"” It is therefore suspected that the
SO-ISC-induced hyperpolarization would likely decrease by
orders of magnitude at a high magnetic field (18.8 T). Thus, at
a high field and low temperature (~100 K), the RQM is likely
the only mechanism that can generate the electron hyper-
polarization needed to observed OPDNP.

2602

The polarization generated by the RQM is determined by
the rates ki3’ (see eq 1, Scheme 1 and Appendix 2, eq (S11)),
which depends on the ZFS and exchange interaction (Jcg)
between the chromophore and radical in the excited D;—Q,
state.”>”* Because of the solid-state nature of the sample, kb
would also depend on the orientation of the ZFS tensor with
respect to the magnetic field. However, the ZFS (~0.3 cm™) is
relatively small compared to the electron Zeeman term at high
fields (>S cm™), and the exchange interaction. Thus, the
manifestation of anisotropy in kg, is expected to be weak.
Furthermore, because the CR is dissolved in a glass matrix, all
crystal orientations are present in the matrix; we thus used
average RQM rates, as it is done in the liquid state:**

o (QH,D}?
DQ X T S a2

AE(Q], DY) (1)
%, %, %], n € [—%, %], and AE(QY, DY) is
the energy difference between states Q' and Dj. An estimate of
kpg at a low temperature was obtained by numerical fitting of
the time-resolved EPR time profile of ANCOOT recorded at
100 K (see eq S7).

At high fields, k3§, can be tuned by adjusting AE(QY', DY) ~
3Jcr + (m — n)w,, which is dominated by Jc and the Larmor
frequency of the electron @,y The optimal value of Joy to
maximize the efficiency of the RQM can be determined
through the selectivity factor, Rp,, which is the ratio of the sum
of all the rates from Q, levels to the D/? and the D72 energy
levels, which is written as follows:

where m € [—%, -

Qrs/zDiH/z Ql—l/zDiH/z Ql_s/zDiH/Z
R = pQ DQ DQ
D1 — — — - —
Q1+3/2D1 1/2 er/le 1/2 Q; 3/2D1 1/2
DQ DQ DQ 2)

Rp, quantifies how the spin populations redistribute itself
within the D, states, which ultimately dictate nitroxide
hyperpolarization (see Appendix 3 in the SI). Rp; was
calculated at 18.8 T (a typical high field for MAS-DNP),
and the resulting plot (Figure 1B) reveals a large RQM
efficiency for Iyl in the range of 9—14 cm™. It is maximum at
~12 cm™! where AE(Q7%%, DY?)= 0. In this case, the D2 «
Q7>/? transition becomes the dominant RQM pathway, as the
mixing rate constants originating from the other D;—Q,
transitions are too small to have an effect (see Figure S3).
This special case enables a selective enhancement of the
population of D;"/? state and the generation of a very large
electron hyperpolarization in the D, state via the D; — D,
pathway.

https://doi.org/10.1021/acs.jpca.2c01559
J. Phys. Chem. A 2022, 126, 2600—2608
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The model predicts an electron hyperpolarization level after
laser irradiation, P, (red curve, Figure 1B, see the SI for
derivation), that can reach —1 at the optimal Jcg; however, it
also shows that smaller exchange interactions (i.e., 4—8 cm™")
already yield significant hyperpolarization P, & — 0.5. Such
exchange interactions can be attained in existing CR systems,
given that earlier studies on the chromophore TEMPO showed
Jer values in the range of 1—5 cm™.>*

Hence, we conclude that solid-state optical electron spin
hyperpolarization is possible at X-band frequencies (Figure 1).
In addition, at high fields, strong electron hyperpolarization in
the solid state can be obtained via an “RQM-only” mechanism,
provided that the Jp falls within a favorable range. In turn, this
allows us to explore the potential of MAS-DNP using optically
pumped hyperpolarized nitroxides.

3.2. Optically Pumped CE for MAS-DNP. From the
mechanistic analysis of the photophysical hyperpolarization, it
is now possible to assess how optical pumping could benefit
CE under MAS-DNP. CE MAS-DNP requires the use of
biradicals, that is, molecules with two coupled unpaired
electrons in their ground state.

Scheme 2 shows an ideal CE biradical model with two
interacting moieties (a) and (b) with electron Larmor
frequencies, v,4), and difference matching the Larmor
frequency of the proximate nuclear spins,*>”*”> 1,, such that
lv, — vyl~ | v,|. When an electron spin polarization difference,
IP,, — Pl is generated, this results in nuclear hyper-
polarization.””*> Under DNP, it is the yw irradiation that
generates |P, , — P, | (Scheme 2A). The nuclear polarization,
IP,J, in a steady state, is related to IP, , — P, ,| by

P

ea

— Byl 2 1Bl 3)

If instead a is hyperpolarized via optical means, two other
cases can be envisioned: (i) a is hyperpolarized, and b is at
thermal equilibrium (Scheme 2B); or (ii) a is hyperpolarized,
and b is saturated with a microwave irradiation (Scheme 2C).

To realize the concept presented in Scheme 2B, C, we need
a molecule composed of a chromophore and biradical CR,-R,
where C and R, are much closer to each other than C and Ry,
such that in the excited state, |Jcg,| ~ 5—14 cm™ and Jcg, ~ 0
cm™!. In addition, in the ground state, the biradical, R-Ry,
should have similar properties to typical biradicals that are
used as MAS-DNP polarizing agents. For example, biradicals
composed of trityl and nitroxide moieties are known to be
efficient for MAS-DNP.”"’*7® The three cases in Scheme 2
were simulated using a fictitious “CR,-Ry, = chromophore-
TEMPO-trityl” molecule represented at the top of Figure 2
(herein, electron “a” stands for the nitroxide and “b” for trityl,
unless otherwise specified).

Under MAS, this spin system undergoes fast energy-level
anticrossings (or rotor events)®”> because the EPR spectra of
trityl and TEMPO are anisotropic and therefore overlap with
one another. This means that the nuclear hyperpolarization
results from CE rotor events that transfer the polarization from
the electron pair to the nuclei. These rotor events are active
because of MAS, and it is important to note that they can
perturb the nuclear spin polarization even in the absence of yw
irradiation.”””® In addition, because the EPR spectra overlap,
the dipolar/exchange rotor events are active. This type of rotor
event is key for maintaining the electron polarization difference
and ensures that the transfer of polarization to the nuclei has a
constant sign, allowing for large polarization buildups.****
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Figure 2. (A) Fictitious “Chromophore-TEMPO-Trityl” CR,-R,
molecule. The wavy line represents unspecified bonds. (B) Simulated
EPR spectra of CR,-R,;, in thermal equilibrium (solid black line) with
laser irradiation assuming P, , = — 0.25 (dashed blue line). (C)
Simulations of the MAS-DNP field profiles using the modified Box
model for conventional MAS-DNP (black dots), optically hyper-
polarized MAS-DNP (blue squares), and combined yw and optical
irradiated hyperpolarization (red diamonds). In all simulations, the
optical hyperpolarization leads to P, , = — 0.75, and for clarity, we
plot €5 = — f(B,) for the optical hyperpolarization case. Details about
the spin system are given in the SI.

The complexity of this mechanism and its dependence on
relaxation properties requires treatment with numerical
simulations. Therefore, we used the “Box model,” which
accounts for multiple three-spin systems {2 electron spins — 1
proton spin} distributed in a bounded space that has been
extensively tested and validated.”>**”® This model treats the
inter-biradical interactions to mimic those of a 10 mM
biradical solution (see the SI), which faithfully represents the
spin dynamics of the electrons.”” The model is modified to
account for optical hyperpolarization by assuming that under
continuous (or pulsed) laser irradiation, nitroxide hyper-
polarization is generated on a time scale faster than the MAS
period, as determined by the RQM analysis (see the SI for
details).

Figure 2C displays the nuclear spin polarization gain as
function of the magnetic field (see the SI for calculation
details) for conventional MAS-DNP (black dots), optical
hyperpolarization (blue squares), and optical hyperpolarization
combined with yw irradiation (red diamonds). The field
profile calculated for conventional MAS-DNP spans the entire
EPR spectra of the trityl TEMPO (shown in Figure 2B) and
has a sharp feature at the trity] Larmor resonant
frequency.”””*”® In this case, the maximum polarization gain
is ey ~ 295, with the chosen simulation parameters (see the
SI). On the other hand, the field profile in the presence of both
optical and pw irradiation is very similar in shape but present
now a staggering maximum value, leg | & 2200.

https://doi.org/10.1021/acs.jpca.2c01559
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While this result is outstanding, the curve with blue squares,
which reports €y in the case of optical hyperpolarization (only)
is also very encouraging: it predicts legy | & 1700. This is seven
times higher than that in the conventional MAS-DNP case and
also corresponds to the baseline of the optical and pw
irradiation cases. This enhancement is the result of the CE
mechanism being always active under MAS.** In the absence
of pw irradiation, this can give rise to nuclear depolariza-
tion”””® for bis-nitroxides as IPe o = Pe pluw, ot < IP,leg, while
trityl-nitroxides do not depolarize significantly, that is, P, , —
P, ilu, of X Pl The centers of mass for the trityl and
nitroxide EPR spectra are separated by the proton Larmor
frequency, leading to little depolarization (¢ & 1), as seen
outside of the EPR resonant field (Figure 2C, black dots).”’
For CR,-Ry, this separation of the centers of mass of the EPR
spectra is key for efficient DNP with optical hyperpolarization,
enabling the existence of an electron spin polarization
difference. At By = 18.8 T and 100 K, the thermal equilibrium
polarization of the trityl is P¢l, =~ 0.12; thus, with electron
hyperpolarization of the nitroxide (Figure 2, blue square and
red diamonds), we have the following relation:

P,

e,a

eq
— Pl > Bl

(4)

which explains the large leg | .

A broad range of scenarios were explored, which report €5 as
a function of the nitroxide hyperpolarization level with and
without yw (Figure 3A). Both sets of simulations display linear
trends, with a steeper slope when biradicals are under pyw
irradiation (because of the larger IP, , — P, ;|). Enhancements
leg | larger than the ratio of electron to proton magnetic
moments (~658) can be achieved for P, , = 0 or P, , — 2P¢3,
0.24. However, with the chosen parameters, nitroxide
electron hyperpolarization must be lower than —0.3 or higher
than 0.4, as shown in Figure 3A. These values are larger than
the ideal case because IP, , — P, is affected by the inter-
biradical interactions. Under MAS, they tend to equilibrate
polarization among all the trityls and the nitroxides contained
in the Box,””” thereby affecting the average electron spin
polarization difference. This effect is spin-system dependent;
therefore, different slopes (Figure 3A) are obtained for
different electron relaxation times, magnetic fields, radical
concentrations, and/or temperatures (see examples in the SI).
The enhancement can also be calculated as a function of the
magnetic field. For a given P, , using (see the SI for full
derivation):

©)

where B is an effective magnetic field.

Figure 3B displays leg| as function of the field with P, , — —
0.75 and without uw irradiation, which confirms legl > 658.
The simulations carried out at 100 and 200 K perfectly fit with
eq S. At higher temperatures, the significantly larger legl is the
result of the lower equilibrium polarizations for both trityl
electrons and the protons. This illustrates yet another potential
benefit of MAS-OPDNP: better efficiency at higher temper-
ature. Of course, this would depend on the relaxation times at
higher temperature, where the CE mechanism may not be as
efficient in terms of total nuclear polarization. Finally, the
MAS-OPDNP simulations of a bis-nitroxide with a structure
equivalent to “AMUPol”*” are reported in the SI. While the
EPR spectra of R, and Ry, have the same centers of mass, the
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Figure 3. (A) Calculated MAS-DNP polarization gain, €, for a trityl-
nitroxide biradical using the modified Box model, with yw irradiation
(red squares), and without (black dots) as a function of nitroxide
hyperpolarization. (B) Calculated leg| as a function of magnetic field
without yw irradiation, assuming nitroxide hyperpolarization of P, ,
— — 0.75 at 100 K (black dots) and 200 K (red squares). All other
simulation parameters were kept constant. Dashed lines: best fits
using eq S.

resulting leg| is on the order of 200 at 14.1 T, which is very
similar to the conventional MAS-DNP for AMUPol.>*

4. DISCUSSION

The low field (0.3 T) EPR experiments showed that significant
electron spin hyperpolarization is achievable at 100 K with a
chromophore covalently bonded to a nitroxide molecule and
dissolved in a glass-forming matrix (toluene). The analysis of
the hyperpolarization mechanism indicates that a very large
exchange interaction between the chromophore and the
nitroxide is needed to yield high electron spin hyper-
polarization at a very high field, as the SO-ISC mechanism
becomes weaker with field.”®”” The strength of the interaction
between C and Ra must be of the order of the electron Larmor
frequency to favor the RQM mechanism, that is, ~10—12
cm™!, which favors the selective transition D2 < Q%2 at
18.8 T. In addition, the analysis of the hyperpolarization
transfer mechanism and the numerical simulations of the MAS-
OPDNP reveals that the success of this proposed concept
requires the synthesis of new CR,-R;, molecules possessing the
appropriate exchange interactions in the excited state and in
the ground state. For successful MAS-OPDNP experiment, the
design of such a molecule must enable both a very strong C-R,
(Jcral ~ 4—12 cm™) and a weak C-Ry, interaction (gl < 1
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cm™) in the excited state, while leading to significant R,-Ry,
(ie, a dipolar coupling D,, ~ 30 MHz and an exchange
interaction I, ,| ~ 10s MHz). This design remains possible. A
large C-Ra interaction in the excited state can be achieved by
tuning the bridge between the chromophore and the nitroxide,
that is, reducing the number of bonds and favoring resonant
structures.””*" The coupling in between the nitroxide and the
trityl (used in the simulations as an example) must be longer,
typically of the order of 5—6 bonds.”® For a successful MAS-
OPDNP, the R,-R;, bridge should avoid conjugated bonds in
order to prevent large C-Rb couplings in the excited state.
Current bridges used in MAS-DNP with trityl-Nitoxides”®”**'
already possess the right properties, which illustrates the
viability of the approach.

The chromophore used to hyperpolarize the nitroxide in the
solid-state is only compatible with organic solvents and
requires samples that are transparent in the near-UV region
(355 nm). In the first development stages of the method,
toluene could be used to prove the viability of the approach.
The application to aqueous samples may be a challenge, but
recent progress indicates that chromophore modifications
could make it possible.44 In addition, water-soluble anthraqui-
nones can also be examined for the hyperpolarization
generation.

Lastly, the sample irradiation could be achieved with a
pulsed or a CW laser source. Setup using irradiation under
MAS has been demonstrated experimentally in CIDNP
experiments, using continuous wave UV sources and (UV
transparent) sapphire rotors.”**” The approach could be
adopted to carry out MAS-OPDNP at cryogenic temperatures
using a commercial MAS-DNP probe to enable good
temperature control.”” A decay of chromophore (bleaching)
could occur under CW UV irradiation, and thus, a pulsed laser
should avoid both the decay of the chromophore yield high
average electron spin hyperpolarization. The ANCOOT and
Anqglpr have demonstrated experimentally a significant
stability in toluene and pulsed laser irradiation, with very little
decay over time which may make them good molecules to
begin exploring MAS-OPDNP as a mixture with trityl
molecules.

5. CONCLUSIONS

In conclusion, the MAS-OPDNP simulations demonstrate that
even moderate nitroxide hyperpolarization could theoretically
lead to leg | > 658. This new concept might also work at higher
temperatures, which may be beneficial for samples that require
higher peak resolutions.

Importantly, this innovative approach removes the need for
expensive high power yw sources and “sweepable” high-field
NMR magnets. Instead, MAS-OPDNP would rely on much
more affordable high-power lasers that are currently
commercially available and sample spinning. Finally, the
MAS-OPDNP concept has the potential to be a paradigm
shift for high-field MAS-DNP, which will have broad impacts
on the characterization of numerous materials and biological
molecules.
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