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ABSTRACT: Transmetallation of [VCl3(THF)3] and [TlTptBu,Me]
afforded [(TptBu,Me)VCl2] (1, TptBu,Me = hydro-tris(3-tert-butyl-5-
methylpyrazol-1-yl)borate), which was reduced with KC8 to form a
C3v symmetric VII complex, [(TptBu,Me)VCl] (2). Complex 1 has a
high-spin (S = 1) ground state and displays rhombic high-frequency
and -field electron paramagnetic resonance (HFEPR) spectra, while
complex 2 has an S = 3/2 4A2 ground state observable by
conventional EPR spectroscopy. Complex 1 reacts with NaN3 to
form the VV nitride-azide complex [(TptBu,Me)VN(N3)] (3). A
likely VIII azide intermediate en route to 3, [(TptBu,Me)VCl(N3)] (4),
was isolated by reacting 1 with N3SiMe3. Complex 4 is thermally
stable but reacts with NaN3 to form 3, implying a bis-azide
intermediate, [(TptBu,Me)V(N3)2] (A), leading to 3. Reduction of 3
with KC8 furnishes a trinuclear and mixed-valent nitride,
[{(TptBu,Me)V}2(μ4-VN4)] (5), conforming to a Robin−Day class I description. Complex 5 features a central vanadium ion
supported only by bridging nitride ligands. Contrary to 1, complex 2 reacts with NaN3 to produce an azide-bridged dimer,
[{(TptBu,Me)V}2(1,3-μ2-N3)2] (6), with two antiferromagnetically coupled high-spin VII ions. Complex 5 could be independently
produced along with [(κ2-Tp

tBu,Me)2V] upon photolysis of 6 in arene solvents. The putative {VIVN} intermediate, [(TptBu,Me)V
N] (B), was intercepted by photolyzing 6 in a coordinating solvent, such as tetrahydrofuran (THF), yielding [(TptBu,Me)V
N(THF)] (B-THF). In arene solvents, B-THF expels THF to afford 5 and [(κ2-Tp

tBu,Me)2V]. A more stable adduct (B-OPPh3) was
prepared by reacting B-THF with OPPh3. These adducts of B are the first neutral and mononuclear VIV nitride complexes to be
isolated.

■ INTRODUCTION

The nitride functional group can derive from N2 reduction and
splitting by low-valent metal coordination complexes.1 In
biochemistry, the existence of a nitrogenase enzyme with
vanadium in the active-site cofactor (FeV-co) is further impetus
for research into vanadium coordination chemistry with ligands
related to or derived from dinitrogen.2 In solid-state chemistry,
vanadium nitride surfaces may promote catalytic reduction3 or
oxidation4 reactions and even exhibit superconductivity5 at low
temperatures. This promisingmaterial composed of a base metal
is also attractive as an electrochemical capacitor given its high
electronic conductivity, thermal stability,6 high density, and high
specific capacitance.7 Although mononuclear anionic and
neutral VV nitride complexes are known (Figure 1),1o,w,8 very
little, if any, is known about mononuclear VIV nitrides, given
their propensity to bridge and form oligomeric structures.9 This
is rather surprising given how the close derivative, vanadyl

([VO]2+),10 is ubiquitous in coordination chemistry, energy
storage technologies (e.g., redox-flow batteries),11 and biological
systems.12 Moreover, molecular vanadium nitride complexes
offer the enticing possibility of serving as well-defined precursors
for vanadium nitride films.13 However, there is currently a lack of
atomically precise systems that demarcate how the trans-
formation from molecules to a bulk material might proceed. In
particular, a system in which a vanadium center is surrounded by
only nitride ligands (and vice versa), while preserving a discrete
architecture, remains unknown.
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In this study (Scheme 1), we demonstrate synthetic entries to
a rare, pseudo-tetrahedral, high-spin VII complex,
[(TptBu,Me)VCl] (2), which is readily prepared by one-electron
reduction of the VIII precursor, [(TptBu,Me)VCl2] (1, Tp

tBu,Me =
hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate). We show-
case how these VII or VIII precursors can yield mononuclear VIV

and VV nitrides as well as a unique trinuclear and mixed-valent

vanadium system with a central vanadium ion ligated only by
bridging nitrides. We also show how a reactive mononuclear VIV

nitride can be generated by three independent routes and under
the right conditions can be isolated and fully characterized.
These nitride products, along with intercepted intermediates
leading to the nitride functionality, have been isolated and
structurally and spectroscopically characterized. The para-

Figure 1. Examples of mononuclear vanadium nitrides. Counterions and solid-state aggregations are excluded for clarity. X and L represent a
monoanionic and a neutral ligand, respectively. Specific details are provided in each case. Tp represents TptBu,Me.

Scheme 1. Synthesis of Chloride Precursors 1 and 2, along with THF/DMAP Adducts of 2, 2-THF, and 2-DMAP, Demonstrating
Lewis Acidity of the VII Centera

aMetathesis of 1 with NaN3 and Me3SiN3 produces azide and/or nitride species 3 and 4, respectively. Complex 3 likely forms via intermediates 4
and A as reaction of 4 with either NaN3 or excess Me3SiN3 (at elevated temperatures) generates 3. Metathesis of 2 with NaN3 produces bis-azide
complex 6. One-electron reduction of 3 produces trinuclear 5 via intermediate B; an alternative route commences with photolysis of 6 in arene
solvents. Photolysis of 6 in THF stabilizes intermediate B by generating the adduct B-THF. B-THF gradually releases THF to form 5 and [(κ2-
TptBu,Me)2V]. Reaction of B-THF with OPPh3 forms the more stable adduct B-OPPh3.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c00276
J. Am. Chem. Soc. 2022, 144, 10201−10219

10202

https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=sch1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c00276?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


magnetic vanadium systems have been studied by solution- and
solid-state magnetometry. Conventional continuous wave
(CW) X-band electron paramagnetic resonance (EPR) has
been applied to half-integer (i.e., VIV) species. In the case of
complex 1, which has an S = 1 electronic ground state and, thus,
is less suited for conventional EPR spectroscopy, we have
applied high-frequency and -field EPR (HFEPR) to better
understand its electronic structure. Theoretical studies
performed in parallel with experiments have also yielded a
detailed picture of the bonding and electronic structure for this
family of vanadium complexes and their respective nitrides.

■ RESULTS AND DISCUSSION

Tri- and Divalent Vanadium Complexes Supported by
a Tripodal Monoanionic Ligand. Recently, Petrov and co-
workers reported the synthesis of a pseudo-tetrahedral divalent
VII complex, [(TptBu,tBu)VCl] (2tBu,tBu, TptBu,tBu = hydro-tris(3,5-
di(tert-butyl)pyrazol-1-yl)borate),14 but did not explore its
reactivity. Our own reaction studies revealed that the steric
encumbrance imposed by the two tBu groups on the pyrazolyl
moieties imparted too much strain on the B−N bonds for this
chemistry to flourish. The degree of twisting of the sterically
encumbered pyrazolyl groups in both 1tBu,tBu and 2tBu,tBu (Figure
2, left) may be taken as a portent of this system to decompose via
ligand degradation. As a result, attempts to explore the chemistry

of 2tBu,tBu via transmetallation reactions with NaN3 led to
undesired decomposition pathways, such as borotropic
rearrangements that are common for early-transition metals
bearing Tp ligand(s) (Scheme 2).15 When excess NaN3 was

added to 2tBu,tBu in the presence of the crown ether, 15-C-5, the
bis-azide ate complex [Na(15-C-5)][(TptBu,tBu)V(N3)2]
(XtBu,tBu) was isolated in 92% yield (Scheme 2) and
characterized by single-crystal X-ray diffraction (sc-XRD). On
the other hand, performing the reaction in the absence of 15-C-5
under thermolytic conditions led to the dimeric (VIV)2 complex
[{hydro-bis(3,5-di(tert-butyl)pyrazol-1-yl)boraneimide}V(3,5-
di(tert-butyl)pyrazol-1-yl)]2 (Y

tBu,tBu) in 47% yield, which was
characterized by sc-XRD studies and multinuclear NMR
spectroscopy. The latter complex is likely to form via the
intermediacy of a reactive VIV nitride, [(TptBu,tBu)VN], which
then undergoes ligand degradation and dimerization steps.
The molecular structure of XtBu,tBu (Figure 3A) reveals the

lack of threefold symmetry for the TptBu,tBu ligand owing to
significant skewing of the pyrazolyl arms to the same extent, if
not greater, as in 1tBu,tBu. The torsion angle,∠V−N1,pz1−N2,pz1−
B, for the most twisted pyrazolyl arm (pz1), defined as ξtwist,
provides a measure of the extent of skewing (a perfectly
threefold symmetric Tp ligand would have ξtwist = 0°; cf. Table
S20 for the full list of ξtwist angles of all pyrazolyl arms of all
compounds discussed herein). In the case of XtBu,tBu, the ξtwist
value is 52.0(1)°. In complex YtBu,tBu (Figure 3B), the average
V−N and VN bond distances are 1.986(3) Å and 1.735(3) Å,
respectively, which are reminiscent of Cloke’s [(L)V(μ2-
N)2V(L)] complex (L2− = (Me3Si)N{CH2CH2N(SiMe3)}2),
where the average V−N and VN bond distances are 1.886 Å
and 1.740 Å, respectively.9b

Based on the aforementioned results, we examined the less
sterically encumbered, methyl-derivatized ligand, TptBu,Me,
reported originally by Trofimenko16 and popularized by
Theopold,17 Parkin,18 Takats,19 and Anwander,20 among
others.21 Accordingly, transmetallation of [VCl3(THF)3] with
[TlTptBu,Me]22 in toluene at 65 °C afforded [(TptBu,Me)VCl2] (1)
in 75% yield as brick-orange plates after workup (Scheme 1).
Single crystals of 1 could be obtained by Et2O/toluene vapor

Figure 2. Structural representation of [(TptBu,tBu)VCl2] (1
tBu,tBu) and

[(TptBu,tBu)VCl] (2tBu,tBu) (left) along with 1 and 2 (right; 50% thermal
ellipsoid probability). Only one of the two molecules in the asymmetric
unit (for 1 and 2) is shown for simplicity. Disorder and hydrogen atoms
(except B−H’s) are excluded for clarity.

Scheme 2. Reactivity Studies of Petrov’s [(TptBu,tBu)VCl]
(2tBu,tBu) with Excess NaN3 with or without Crown Ether

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c00276
J. Am. Chem. Soc. 2022, 144, 10201−10219

10203

https://pubs.acs.org/doi/suppl/10.1021/jacs.2c00276/suppl_file/ja2c00276_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c00276/suppl_file/ja2c00276_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c00276?fig=sch2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c00276?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


diffusion at −35 °C. An sc-XRD study confirmed a five-
coordinate VIII complex supported by a κ3-TptBu,Me chelate. With
a τ5 value23 of 0.53 (Figure 2, top right), compound 1 falls
midway between the limiting square pyramidal (SP) and
trigonal bipyramidal (TBP) geometries,23 whereas the chloride
ligands are essentially orthogonal to each other (Cl−V−Clavg,
95.8(8)°). Complex 1 crystallizes with two crystallographically
independent, but chemically equivalent, molecules in the
asymmetric unit (space group Cc), having B−V−Clanti angles
of 149.5(1) and 150.2(3)°. The V−Clavg bond distance of 2.249
Å in 1tBu,tBu is similar to the V−Clavg bond distance of 2.264 Å in
1. Figure 2 shows a side-by-side comparison of 1tBu,tBu and 1,
which clearly reveals less twisting of the pyrazolyl arms in the
methyl-substituted complex: ξtwist = 62.0(5)° in 1tBu,tBu and
31.0(2)° in 1. This structural difference is even more
pronounced for the four-coordinate VII species (vide inf ra).
The UV−vis spectrum of 1 shows two absorption bands with

maxima at 521 and 720 nm (d−d transitions: ε = 229, 79 M−1

cm−1) with the first band showing a shoulder at 589 nm (ε = 153
M−1 cm−1), cf. Supporting Information, Section S12.1, for more
detailed discussion. The solution magnetic moment of complex
1 (μeff = 2.71 μB; Evans’ method, 300 K, C6D6) corresponds to

the spin-only value for S = 1, appropriate for a d2 ion. Solid-state
superconducting quantum interference device (SQUID)
magnetization measurements of 1 (two independently prepared
samples) were conducted in the temperature range of 2−150 K
with applied magnetic fields of 1, 3, and 5 T (Figure 4A; only the
first sample shown for clarity; cf. Supporting Information,
Section S7.1). In agreement with solution data, both samples
give μeff = 2.72 μB at 300 K, while below 10 K, the magnetic
moment begins to decrease, ultimately reaching μeff = 1.95 μΒ at
2 K due to zero-field splitting (zfs). Fitting themagnetic data to a
spin Hamiltonian for an S = 1 species yielded the parametersD =
5.9 cm−1, E/D = 0.33, and gavg = 1.93 (averaged fit values of the
two independent batches).
Given the even number of unpaired electrons in 1, we

subjected a sample to HFEPR spectroscopy at 4.5 K. The
frequency dependence of the HFEPR spectra (Figure 4B)24

reveals two distinct species in the solid state, labeled 1A and 1B,
with slightly different spin Hamiltonian parameters. This
observation correlates with two crystallographically independ-
ent molecules of 1 in the crystal structure analysis (vide supra).
Species 1A is characterized by a larger D-value of 5.2 cm−1 and
the maximum rhombicity of the zfs tensor (E = 1.73 cm−1),

Figure 3. Structural representations (thermal ellipsoids at 50% probability) of (A) XtBu,tBu and (B) YtBu,tBu. Hydrogen atoms (except B−H’s), the
second molecule in the asymmetric unit, and the co-crystallized solvent (in B) are excluded for clarity.

Figure 4. (A) VT-VF SQUIDmagnetization data of 1with applied magnetic fields of 1, 3, and 5 T. (B) 2D plot of turning points in the powder spectra
of 1 as a function of frequency (energy), marked as squares. 1A: full squares, 1B: empty squares. The curves (1A: solid, 1B: dashed) were simulated using
spin Hamiltonian parameters as in Table S1. Red curves: turning points with the magnetic field parallel to the x-axis of the zfs tensor; blue: B0||y; black:
B0||z. (C) HFEPR spectrum of 1 at 4.5 K and 321 GHz (black trace). The colored traces are simulations using spin Hamiltonian parameters of species
1B (top) and species 1A (bottom). For species 1B, simulations use positiveD (red) and negativeD (blue). For species 1A, the sign ofD is undefined due
to maximum rhombicity of the zero-field splitting (zfs) tensor. Simulation: 1A, |D| = 5.4 cm−1, E = 1.8 cm−1, giso = 1.96; 1B, D = −4.3 cm−1, |E| = 0.81
cm−1, and giso = 1.96; the resonances at g = 1.96 (11.7 T) most likely originate from a VIV oxidation product.
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while species 1B has a smaller |D| value of 4.3 cm−1 andmoderate
rhombicity of the zfs tensor (|E| = 0.81 cm−1). Simulations of
single-frequency spectra, such as those shown in Figure 4C,
proved that the sign of D for species 1B is negative, while that of
species 1A is spectroscopically undefined because of the
maximum rhombicity condition (|E/D| ≈ 1/3). However,
since the magnitudes of the spectroscopicD values for 1A and 1B

are similar to each other as well as to the D value determined for
the bulk sample of 1 from SQUIDmagnetization, species 1A and
1B could conceivably have the same sign ofD. The magnitude of
D for 1 is less than that observed for six-coordinate,
approximately octahedral VIII complexes (D ≈ 7 cm−1 for
homoleptic complexes with O donors but larger for heteroleptic
ones).25 Four-coordinate, approximately tetrahedral d2 com-
plexes (e.g., VIII, CrIV) have very small (ideally zero) zfs.26 We are
not aware of zfs being determined for a five-coordinate VIII

complex, so at present, the significance of the magnitude of zfs in
1 cannot be put into much context.a A possible structural origin
for the difference in zfs parameters between 1A and 1B may be
the slightly different metrics for the two molecules seen by sc-
XRD (cf. Supporting Information, Section S12.1). This high
sensitivity of HFEPR spectroscopy to structural changes is
underlined by the failure of infrared (IR) (νBH = 2563 cm−1,
solid state) spectroscopy to distinguish crystallographic con-
formers of 1. In solution (300 K, C6D6),

1H NMR of complex 1
gives a single BH resonance and a single 1H NMR chemical
environment for the pyrazolyl groups, suggesting rapid
fluctuation of the molecule in solution (cf. Supporting
Information, Section S4.3, Figure S14) and thus an ideally
trigonal average structure.
Despite showing only non-reversible features, cyclic voltam-

metry (CV) studies of 1 (using 0.1 M [nBu4N][PF6] in THF)
revealed both anodic and cathodic processes, thus suggesting
chemical accessibility of oxidized and reduced derivatives of 1
(cf. Supporting Information, Section S10.1, Figure S106). Thus,
chemical reduction of 1 with KC8 in THF generates a green
solution, presumably containing five-coordinate [(TptBu,Me)-
VCl(THF)] (2-THF). Upon removal of THF in vacuo, putative
2-THF converts to four-coordinate [(TptBu,Me)VCl] (2),

isolated as pink crystals in 62% yield (Scheme 1, and Figure
5A). sc-XRD studies of 2 established a slightly distorted
tetrahedral geometry (τ4 = 0.72)27 around the VII center with a
tridentate grip of the TptBu,Me ligand (Figure 2, bottom right).
Akin to 1, complex 2 has two crystallographically independent
molecules in the asymmetric unit, with slightly different metrics.
The average B−V−Cl angle of 168.4(5)° reveals some deviation
of Cl from the B−V vector, presumably stemming from a Jahn−
Teller effect, which is operative in a d3 ion in tetrahedral
symmetry (4T1 ground state; e

2t2
1). The B−V−Cl angle is closer

to linearity in 2 than in Petrov’s 2tBu,tBu complex (157.7(9)°),
most likely due to the lesser steric encumbrance of the Tp ligand.
In 2tBu,tBu and 2, ξtwist equals 46.6(1) and 7.1(7)°, respectively,
revealing a distorted TptBu,tBu ligand in 2tBu,tBu as opposed to a
near-ideal threefold symmetric TptBu,Me ligand in 2. It is also
notable that [(TptBu,R)VCl] (R = tBu or Me) has roughly a Td
geometry when for a d3 system, ideal SP would be of lower
energy than ideal Td (cf. Supporting Information, Section
S12.2). Indeed, a four-coordinate VII complex with homoleptic
monodentate ligands, [V(OAr)4{Li(THF)}2] (Ar = 2,6-di-
isopropylphenyl), has an SP geometry.28 Due to the larger ionic
radius of VII versus VIII, the average V−Cl bond distance in 2
exceeds that in 1 (V−Clavg: 2.356(1) Å in 2 and 2.264(3) in 1).
An Et2O solution of 2 retains the pink color of the solid,
indicative of a four-coordinate structure in solution. The vis−
near IR (NIR) spectrum of 2 can be assigned and semi-
quantitatively analyzed by ligand-field theory (LFT) as
described in the Supporting Information (see Section S12.2).
However, as discussed before, complex 2 readily binds THF to
form 2-THF (Scheme 1 and Figure 5D, left) as manifested by a
reversible color change from pink (Et2O) to green (THF).
When changing solvents from Et2O to THF, the electronic
absorption for 2 at 520 nm (ε = 160M−1 cm−1) undergoes a blue
shift to 457 nm (ε = 65 M−1 cm−1). In addition, the intense
absorptions extending into the NIR region [893 (infl), 924
(max), and 960 nm (infl), with ε = 130, 150, and 130M−1 cm−1,
respectively] are replaced by weaker and broader features at 668
and 855 nm (ε = 32, 19M−1 cm−1). Along these lines, titration of
a toluene solution of 2 with THF (0−0.414 M) reveals three

Figure 5. (A) Reversible color change of 2 when dissolved in non-coordinating (pink, e.g., in toluene) and coordinating solvents (green, e.g., in THF).
(B) Titration (with THF) of 2 in toluene. (C) Structural representation of 2-DMAP (thermal ellipsoids at 50% probability). Hydrogens (except B−H)
are omitted for clarity. (D) Reversible coordination between 2 and THF (left) and the formation of 2-DMAP (right).
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clear isosbestic points and an association constant (K) between
2 and THF on the order of 1.2−3.6 M−1 (Figure 5B, cf.
Supporting Information, Section S8.4.1). Thus, in neat THF
(12.3 M), 2 exists mainly as the five-coordinate adduct 2-THF
(94−98%). Notably, 2 displays a lower affinity toward THF than
isostructural [(TptBu,Me)TiCl] (Kass = 5−8 M−1), highlighting
the stronger Lewis acidity of a TiII versus VII ion.29 Similarly,
cyclic voltammetry (CV) data for 2 dissolved in 1,2-
difluorobenzene or THF (cf. Supporting Information, Section
S10.2, Figure S107) show only a slight variation in oxidation and
reduction potentials, possibly due to the reversible formation of
2-THF in the latter case. In the cathodic scans, the reduction
potentials for 2 in THF are anodically shifted by +0.02 V
compared to 2 in 1,2-difluorobenzene, which readily converts to
an equilibrium constant for the association of 2 with THF of 2.2
M−1, in good agreement with UV−vis titrations. Despite
multiple attempts at crystallization, we were unable to isolate
2-THF, presumably due to the low association constant and/or
volatility of the Lewis base. We therefore examined a stronger
Lewis base such as DMAP. Accordingly, treatment of 2 with
DMAP quantitatively produces green crystals of [(TptBu,Me)-
VCl(DMAP)] (2-DMAP; Scheme 1 and Figure 5C). The
solution magnetic moment of adduct 2-DMAP (μeff = 3.67 μB;
Evans’ method, 300 K, C6D6) is consistent with a high-spin d3

system (S = 3/2, g = 1.90). The UV−vis spectra of 2-DMAP and
2-THF are qualitatively similar, whereas both differ markedly
from the UV−vis spectrum of 2 (cf. Supporting Information,
Sections S8.4 and 8.5, Figures S82 and S84). Most notably, the
near-IR absorption band of 2 (924 nm) is absent for 2-DMAP
and 2-THF, while the absorption band at 520 nm in 2 falls at a
higher energy (394 nm) in 2-DMAP.
Given the paramagnetic nature of 2, magnetization studies

were conducted. In solution, the magnetic moment of 2
indicates a mononuclear VII ion with S = 3/2 (μeff = 3.78 μΒ;
Evans’method, 300 K, C6D6). Similarly, SQUID magnetometry
for two independently prepared samples (2−300, 2−150 K
shown in Figure 6A) showed the magnetic moment to be
relatively constant between 10 and 300 K (3.87 and 3.84 μB at
300 K), in accord with solution state data. However, below 10 K

and in an applied field of 1.0 T, the magnetic moment starts
decreasing and reaches μeff = 3.65−3.61 μΒ at 2 K due to zfs (cf.
Supporting Information, Section S7.2, Figures S66 and S67). At
higher fields, the decrease becomes steeper, for example, leading
to a magnetic moment of 2.31 μB at 2 K and 5.0 T (Figure 6A).
Simulation of the magnetization data for 2 with an S = 3/2 spin
Hamiltonian yields D = +0.01 cm−1. Petrov’s 2tBu,tBu complex
has a magnetic moment of 3.78 μB at 300 K and 3.52 μB at 2 K,
thereby displaying essentially the samemagnetic behavior as 2.14

As a spectroscopic complement to the magnetometric data, X-
and Q-band EPR spectral data of 2 in glassy toluene (12 K)
indicate a rhombic S = 3/2 system with gavg = 1.97 (cf.
Supporting Information, Section S5.1, Figure S43). Based on
simulation of the X-band data, D and E are 0.33 and 0.03 cm−1,
respectively. On the other hand, Q-band spectra yield slightly
different D and E (0.28 and 0.075 cm−1, respectively). The
variation between X- and Q-band data reflects the challenging
nature of deconvoluting numerous anisotropic linewidths
simultaneous with features that potentially arise from various
ms transitions. To resolve this ambiguity, we studied a powdered
sample of 2 by HFEPR spectroscopy at 4.5 K, obtaining the
frequency dependence of the resonances (Figure 6B,C; more
details in the Supporting Information, Section S6.2). Here, the
inter-Kramers transitions converge to a small energy of ∼0.56
cm−1, which equals 2D* for S = 3/2 (D* = (D2 + 3E2)1/2). The
complete set of frequency-independent spin Hamiltonian
parameters is D = +0.25(1) cm−1, E = 0.058(5) cm−1, and g =
[2.000(3), 1.96(1), 1.967(5)]. The single-frequency spectra
could be simulated using this set of parameters and prove that
the sign of D is positive, and with the magnitude consistent with
the values from frozen solution X- andQ-band EPR studies. This
zfs is consistent with a simple LFT analysis (cf. Supporting
Information, Section S12.2).
The frontier molecular orbitals of 2 (Figure 7) reveal an

idealizedC3v symmetric system, where the energetic ordering for
the vanadium 3d orbitals, dx2−y2 ≈ dxy < dz2 < dxz≈ dyz, essentially
can be rationalized as the result of the chloride ligand being a
stronger σ- and π-donor ligand than the weak-field [TptBu,Me]
ligand. This might hint that the [TptBu,Me] ligand is bound

Figure 6. (A) VT-VF SQUID magnetization data of 2 at 5.0, 3.0, 1.0, and 0.1 T; experimental data are shown as squares, circles, triangles, and
diamonds, respectively, and simulations are shown as red, blue, green, and purple traces, respectively. Simulation: S = 1.5, D = 0.01 cm−1, E/D = 0.33,
gavg = 2.00. (B) 2D plot of turning points in the powder spectra of 2 as a function of frequency (energy), marked as squares. The curves were simulated
using spinHamiltonian parameters: S = 3/2, |D| = 0.25(1) cm−1, |E| = 0.058(5) cm−1, and g = [2.000(3), 1.96(1), 1.967(5)]. Red curves: turning points
with the magnetic field parallel to the x-axis of the zfs tensor; blue: B0||y; black: B0||z. The vertical dashed line represents the frequency (149 GHz) at
which the spectrum in (C) was recorded. (C) Main plot: EPR spectrum of 2 at 4.5 K and 149 GHz (black trace). Colored traces are simulations using
spin Hamiltonian parameters, where D is positive (red) or negative (blue): S = 3/2, |D| = 0.24 cm−1, |E| = 0.026 cm−1, g = [1.97, 2.00, 1.97]. The
experimental spectrum is dominated by a high-amplitude signal at g = 1.96 from an S = 1/2 impurity (VIV, not simulated). Inset: the full experimental
spectrum in the same conditions, indicating the absence of any VIII species.
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relatively weakly to the vanadium center, and indeed, the
tendency for the [TptBu,Me] ligand to dissociate has a remarkable
impact on the reactivity of its derivatives (vide inf ra). In the case
of 2-DMAP (cf. Supporting Information, Section S11, Figure
S117), coordination of a Lewis base breaks the threefold
symmetry, and consequently, the degeneracy of the singly-
occupied molecular orbital (SOMO) − 2 and SOMO − 1
orbitals computationally observed in 2 is broken.
High-Valent Vanadium Nitrides and Intermediates

Stemming from Complex 1. At room temperature, complex
1 slowly reacts (overnight) with 2 equiv of NaN3 in THF to
afford the azide-nitride complex [(TptBu,Me)VN(N3)] (3) in
61% yield. After filtration of insoluble sodium salts, the reaction
mixture must then be heated at 50 °C for an additional hour to
ensure full conversion to 3 prior to workup (Scheme 1 and
Figure 8B). Monitoring the reaction mixture by 1H NMR shows
a new paramagnetic species that forms but then decays to 3. We
propose this intermediate to be either the mono-azide complex
[(TptBu,Me)V(Cl) (N3)] (4, vide inf ra) or the bis-azide complex
[(TptBu,Me)V(N3)2] (A). sc-XRD of 3 confirmed the terminal
nature of the nitride moiety (VN7: 1.558(2) Å and 1.565(5)
Å), non-linear coordination of the azide ligand (V−N8−N9:
126.1(1) and 137.5(6)°), and a geometry confined between SP
and TBP (τ5: 0.59 and 0.54) for the two polymorphs (Figure 8A
and Table 1). Preparing the four 15N-enriched isotopomers,
[(TptBu,Me)VN(15NNN)], [(TptBu,Me)VN(N
N15N)], [(TptBu,Me)V15N(15NNN)], and [(TptBu,Me)-
V15N(NN15N)] (collectively denoted as 3-15N) from
complex 1 and Na(15NNN) revealed a characteristic,
highly deshielded 15N NMR nitride resonance at 1035.8 ppm
along with the expected two azide resonances at 212.2 and 243.9
ppm, corresponding to 15N-enriched α- and γ-azide positions. IR
spectral data of 3 (in KBr plates) show the prototypical signature
of the azide group at 2079 and 2063 cm−1 (in-phase/out-of-
phase asymmetric stretching vibrations),30 which red-shift to
2039 and 2054 cm−1 for isotopomer 3-15N, respectively (cf.
Supporting Information, Section S9.6, Figure S99). The 1H-
{11B} NMR spectrum of 3 shows one broad BH resonance at

4.16 ppm along with three resonances from the CH3, CH, and
tBu groups. This indicates the equivalence of the three pyrazolyl
arms, consistent with rapid fluctuation of the molecule in
solution at room temperature. As expected for a VV complex, the
UV−vis spectrum of 3 in pentane reveals no d−d transitions but
only charge-transfer/ligand-centered bands at 388 (infl.), 310
(infl.), and 236 nm (max.) (ε = 1660, 3060, and 4940M−1 cm−1,
respectively).
As mentioned previously, thermolysis is necessary to fully

convert 1 and NaN3 into 3. To our surprise, treatment of 1 with
1.05 equiv Me3SiN3 produces the mono-azide complex
[(TptBu,Me)V(N3)Cl] (4) in 67% yield (Scheme 1 and Figure
9B), which was confirmed by a combination of structural
(Figure 9A), spectroscopic (νN3

= 1991 and 2074 cm−1, cf.
Supporting Information, Section S9.7, Figure S100), and

Figure 7. Calculated MO diagram for 2. Orbital energies are in eV
(B3LYP/TZVP).

Figure 8. (A) Structural representation of nitride-azide complex 3 with
thermal ellipsoids at 50% probability level. Hydrogen atoms (except the
B−H) are omitted for clarity. (B) Synthesis of 3.

Table 1. Salient Metric Parameters, NMR, and IR
Spectroscopic Features of Vanadium Nitrides 3, 5, B-THF,
and B-OPPh3

Complex 3 5 B-THF B-OPPh3

VNnitride (Å) 1.558(2) 1.676(2)a 1.578(2) 1.587 (2)
1.825(2)
1.872(2)
1.786(3)

τ5 0.59 0.76b 0.52 0.48
15N NMR (δ) 1035.8 n/a n/a n/a
51V NMR (δ) −246.3 n/a n/a n/a
11B NMR (δ) −35.9 −8.9 −19.3 −22.7
νBH (cm−1) 2555 2550 2546 2558

aOnly one half of the molecule is included for VNnitride distances; cf.
Figure 10B. bτ4 for the central VN4 fragment is measured as 0.79.
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magnetic studies (μeff = 2.68 μB; Evans’ method, 300 K, C6D6;
μeff = 2.77 μB; SQUID, 300 K; corresponding to the spin-only
moment for S = 1 with g = 1.93(3)). In terms of metrics, the V−
Cl (2.327(9) Å) and V1−N7 (1.896(3) Å) bonds in 4 are
essentially orthogonal (Cl1−V1−N7 = 94.0(4)°), and the τ5
value of 0.69 suggests a geometry midway between SP and TBP.
Although complex 4 shows all the features of a high-spin d2 ion,
it is surprisingly stable to thermolysis (decomposition above 50
°C, cf. Supporting Information, Section S8.7, Figure S87) as well
as photolysis. However, treatment of 1 with excess Me3SiN3 (or
treatment of 4 with NaN3), followed by heating to 45 °C
overnight, leads to nitride-azide complex 3. This points to A
being a common intermediate in the conversion of 1 and 4 to
nitride complex 3 (Scheme 1). It further suggests that the
reaction of 1 with NaN3 traverses two transmetallation steps
before N2 extrusion ensues. We have no definitive reason why
complex 4, as opposed to A, would be reluctant to undergo N2
elimination, but based on previous studies, we speculate that an
azide ligand bridging across two V centers might play a critical
role.8k,31

VanadiumIV Nitrides from VV and VII Precursors. As
opposed to the ubiquitous vanadyl ion ([VO]2+), terminal VIV

nitrides are exceedingly rare with the only crystallographically
characterized example being dinuclear [Na]2[(nacnac)(ArO)-
VN]2 (nacnac

− = [ArNC(CH3)]2CH
−, Ar = 2,6-iPr2C6H3),

in which the vanadium centers are bridged by alkoxide andNa+−
arene interactions.8m In the above VIV example, other ligands
than nitride are bridging, but there is however a tendency for
nitride ligands themselves to bridge and form [LM(μ2-N)2ML]
core structures, where M is a high-valent metal. Representative
d-block examples involve V, Nb, Ta, Cr, and W.1l,9b,32 We
therefore inquired if compound 3 could be reduced by one
electron to yield a putative four-coordinate, neutral VIV nitride,
[(TptBu,Me)VN] (B). In our case, treatment of 3 with KC8

furnishes an unprecedented trinuclear complex with four
bridging nitride ligands, [{(TptBu,Me)V}2(μ4-VN4)] (5) in 54%
isolated yield, where the central [VN4]

8− unit could be
considered analogous to the ubiquitous vanadate ion, [VO4]

3−

(Scheme 1 and Figure 10D, route 1). The connectivity of 5 was
established by sc-XRD studies (Figure 10A,B), which reveal
three vanadium centers arranged in a linear, double-diamond
core fashion (V1−V3−V2 = 177.45(3)°). The central vanadium
(V3) is supported by only bridging nitride ligands, resulting in
an approximately tetrahedral geometry, which is elongated along
the V−V−V vector (τ4 = τ4′ = 0.79, Table 1). This unique
complex with a V3N4 core (two diamond cores oriented
orthogonally) has a similar tetrahedral geometry around the
central vanadium, which has previously been computationally
predicted for the metastable VIV nitride.33 Within each {V(μ-
N)2V} fragment of 5, the V−N bond distances are alternatingly
short (1.676(3)−1.786(3) Å) and long (1.825(2)−1.884(3) Å,
Figure 10B), which parallels Cloke’s dinuclear [{N(N″)V}2(μ-
N)2] complex9b ((N(N″)2)2−: [(Me3Si)N(CH2CH2N-
(SiMe3))2]

2−), where the average V−N and VN bond
distances are 1.87 and 1.74 Å, respectively. The Vdistal−Vcentral
distances in 5 are 2.605(1) and 2.594(1) Å, which results in a
separation of the two Vdistal of 5.198(1) Å. Notably, and given its
composition, the formation of 5 requires expulsion of a TptBu,Me

ligand. When preparing 5 from 3 and KC8, a lustrous black solid
appears (graphite); we also observe KN3 (by IR spectroscopy)
as well as [KTptBu,Me] (by 1HNMR spectroscopy). Mass balance
therefore suggests 2/3 KN3 and 1/3 [KTptBu,Me] (and 1/3 N2)
to form for each 1/3 equiv of 5. From this complex reaction
mixture, [KTptBu,Me] could be removed via fractional crystal-
lization. Alternatively, addition of 1/3 equiv of [VCl3(THF)3]
generates 1, and this could be readily separated from 5 due to the
low solubility of 1 in alkanes (41% yield with respect to
[KTptBu,Me], Scheme 3). In a third approach, [KTptBu,Me] can be
removed by extracting 5 into cold hexamethyldisiloxane and
filtering the solution through Celite. This allows [KTptBu,Me] to
be recovered, while isolating 5 in ∼51% yield. Complex 5 can
tantalizingly be thought of as an antiferromagnetically coupled
adduct of an electron-deficient nitridyl “VN2” fragment and two
units of putative B, overall leading to a doublet spin state.
Therefore, 5 should be paramagnetic, and we indeed show how
this species represents a trinuclear system with a mixed-valent
{VV(μ4-V

IVN4)V
V} core. Solution magnetic measurements (μeff

= 1.89 μB; Evans’ method, 300 K, C6D6) corroborate this
formulation, while X-band EPR (Figure 10C) shows the
characteristic features of an S = 1/2 species with hyperfine
coupling to a single 51V center (A = 91.4 × 10−4 cm−1, I = 7/2,
99.75%). Overall, the confinement of the unpaired electron to a
single vanadium center is in line with a Robin−Day class I
system.34

The calculated MO diagram of 5 suggests contribution of
dx2−y2 orbitals on all three V centers in SOMO, but the unpaired
electron is largely localized around the central VIV ion given that
the SOMO is composed of orthogonal vanadium dx2−y2 orbitals
which lack any constructive interactions (Figure 11). Notably,
the SOMO is approximately 1.2 eV higher in energy than the
other occupied orbitals as shown by restricted open (RO)
B3LYP calculations, and the natural bond orbital analysis
indicates that approximately 78% of the electron density in the
SOMO is localized on the central vanadium atom, in accord with
5 having an eight-line EPR spectrum.
In pursuing the putative VIV nitride intermediate B, we turned

to 2 and treated it with NaN3 in THF (in the dark) to form the

Figure 9. (A) Structural representation of complex 4 (thermal
ellipsoids at 50% probability). Hydrogen atoms (except B−H) are
omitted for clarity. (B) Synthesis of 4.
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azide-bridged dimer [{(TptBu,Me)V}2(1,3-μ2-N3)2] (6) in 95%
isolated yield (Scheme 1 and Figure 12D). The dimeric nature of

6 was confirmed by sc-XRD (Figure 12A). As opposed to most
mononuclear five-coordinate species presented above, complex

Figure 10. (A) Structural representation of complex 5 (thermal ellipsoids at 50% probability). Hydrogen atoms (except B−H’s) and the co-crystallized
solvent are omitted for clarity. (B) {VV(μ4-V

IVN4)V
V} core of 5 viewed from the side and along the V3 axis. (C) CW X-band EPR spectrum of 5 in

toluene at 293 K. Experiment (black trace). Simulation (red trace): giso = 1.98,WFWHM,iso = 2.03 × 10−4 cm−1/GHz, aiso = 91.4 × 10−4 cm−1 (I = 7/2
(51V), 99.75% nat. abundance). (D) Two independent syntheses of 5.

Scheme 3. Synthesis of Complex 5 from the Reduction of 3, Followed by Treatment with [VCl3(THF)3] to Form 1,Which Can Be
Separated More Conveniently but Also Recycled
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6 has a τ5 value of 0.09, indicative of a nearly ideal SP geometry
in which one of the pyrazolyl arms occupies the apical position.
Notably, a similar SP geometry (τ5 = 0.06) is observed in the bis-
azide ate complex, [Na(15-C-5)][(TptBu,tBu)V(N3)2] (X

tBu,tBu).
Solid-state SQUID magnetization measurements (2−300 K)

are consistent with a d3-d3 dimeric species with moderate
antiferromagnetic coupling between the VII centers (Figure
12B). μeff of the dimeric species is 4.42 μB at 300 K, which
corresponds to 3.12 μB per one V ion. At lower temperatures, the
effective magnetic moment decreases steadily to reach 0.45 μB at
2 K. The effective magnetic moment determined by SQUID

magnetometry at 300 K is consistent with the value extracted by
Evans’ method (μeff = 4.48 μB per dimer or 3.16 per V, 300 K,
C6D6) at the same temperature. Both values are lower than
expected for an uncoupled spin-only (d3)2 system (μeff = 3.87 μB
per one V), and notably, the consistency of the magnetic
moments suggests 6 to remain dimeric in solution.
Antiferromagnetic exchange coupling of the form H =

−2JS1S2 in this system results in a diamagnetic ground state
with a total spin of S = 0. States with S = 0, 1, 2, and 3 have
energies of 0,−2J,−6J, and−12J, respectively. All paramagnetic
states are EPR-active, but only the S = 2 state is observed in X-

Figure 11. Calculated MO diagram of 5. Orbital energies in eV (RO-B3LYP/TZVP).

Figure 12. (A) Thermal ellipsoid plot of complex 6 (50% probability). Hydrogen atoms (except B−H) and co-crystallized toluene are omitted for
clarity. (B)Magnetic susceptibility plot for a powder sample of 6 (at 1 T, black squares). Simulation (red trace): gave = 1.932, J =−29.8 cm−1, j =−1.80
cm−1, TIP = 360 × 10−6 cgs emu (for each V), and paramagnetic impurity (i.e., monomeric VII) = 0.72%. (C) Black: HFEPR spectra of 6 recorded at
conditions indicated. Red: simulations of the (total spin) S = 1 state spectra using gx = 1.954, gy = 1.957, gz = 1.976, DS=1 = −1.293 cm−1, and ES=1 =
−0.145 cm−1. A strong central transition is cut off in the 386 GHz spectrum and in the magnified 256 and 368 GHz spectra. The “forbidden”ΔmS = 2
transition is labeled. Labels x, y, and z indicate the molecular orientations at which the respective transitions occur. (D) Synthesis of 6.
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band EPR as states S = 1 and S = 3 exhibit large zfs requiring
higher field/frequencies. HFEPR spectra of 6 were recorded at
120−386 GHz. Spectral quality (Figure 12C) was sufficient to
determine the spin Hamiltonian parameters of the S = 1 state.
The zfs parameters for S = 1 of the dimer imply the zfs
parameters of each VII ion as DV = +0.54 cm−1 and EV = +0.06
cm−1. Themagnetic susceptibility data were then fitted using the
“microscopic” spin Hamiltonian with DV and EV fixed as found
from EPR (cf. Supporting Information, Section S6.3). It was
found that the biquadratic exchange term, j(S1S2)

2,35 must be
included to simulate the experimental magnetic data. This term
appears very often in CrIII dimers with the same d3−d3
configuration as our VII dimer.36

We propose complex 6 to extrudeN2 both thermolytically and
photolytically, with photolysis giving the cleanest conversion.
Accordingly, irradiation of 6 in toluene with a Xe or a 390 nm
LED lamp over 2 h generated the trinuclear species 5. The
requisite release of TptBu,Me was traced to a new paramagnetic
species, [V(κ2-TptBu,Me)2], identified on the basis of an sc-XRD
study. Due to the similar solubilities of 5 and the divalent VII

complex, spectroscopically pure [V(κ2-TptBu,Me)2] could not be
isolated (Scheme 1 and Figure 13). The TptBu,Me ligands in

[V(κ2-TptBu,Me)2] seemingly bind in a bidentate fashion, which
defines a square planar motif around vanadium (N−V−N =
85.5(7) and 85.6(5)°, τ4 = 0.04). However, [V(κ2-TptBu,Me)2] is
more appropriately seen as an octahedral complex containing
transoid BH donor groups (V−H = 1.984(1) and 1.967(1) Å).
Returning to the formation of 5 from 6, a VII ion sequesters the
excess equivalent of TptBu,Me, which stands apart from the
reduction of compound 3 to generate 5 and [KTptBu,Me]. We
propose 6 to photolytically extrude N2 by forming B, which then
undergoes a series of ligand-exchange reactions with three more
equivalents of B. The Lewis acidity of B and the ability of the
nitride and pyrazolyl groups to bridge between vanadium
centers are most likely reasons why a unique complex such as 5
forms. Attempts at preparing [V(κ2-TptBu,Me)2] independently
from 2 and 1 equiv [TlTptBu,Me] or from [VCl2(tmeda)2] and 2
equiv [TlTptBu,Me] were unsuccessful (cf. Supporting Informa-
tion, Section S3.13), which lends support for a mechanism in
which several units ofB aggregate prior to releasing 5 and [V(κ2-
TptBu,Me)2].
Trapping of the Mononuclear VIV Nitride B. Given the

photochemical formation of 5 upon photolysis of 6 in toluene,
we conducted the same experiment in a coordinating solvent.
Irradiation of 6 in THF at 293 K over 30 min to several hours
(Figure 14D) resulted in gradual decay of the X-band EPR

signals from the precursor concurrent with growth of a new
signal consistent with a new radical distinct from 5 (Figure 14A).
Gratifyingly, photolysis of 6 on a preparative scale quantitatively
afforded the new paramagnetic species, which was identified as
the Lewis base adduct of the elusive terminal VIV nitride B,
namely, [(TptBu,Me)VN(THF)] (B-THF), on the basis of an
sc-XRD study (Scheme 1 and Figure 14B). The solid-state
structure ofB-THF exhibits some disorder of the tBu groups and
THF ligands. As expected, based on the larger ionic radius of VIV

compared to VV, the VN bond in B-THF (1.580(2) Å) is
slightly longer than in 3 (1.561(5) Å). On the other hand, the
VN bond distance is somewhat shorter in B-THF than in the
only other reported VIV nitride complex, namely, dinuclear
[Na]2[(nacnac)(ArO)VN]2 (VN: 1.624(2) and 1.614(3)
Å). Like most other five-coordinate species in this work, B-THF
falls midway between the limiting TBP and SP geometries (τ5 =
0.52, Table 1). Despite being stable for days at −35 °C in THF,
the complex B-THF slowly decomposes at room temperature in
the solid state (vide inf ra). The X-band EPR spectrum ofB-THF
(Figure 14C) shows the signature eight-line pattern from
hyperfine coupling of the unpaired electron to the 51V center
(aiso = 123× 10−4 cm−1, 369MHz). This 51V isotropic hyperfine
coupling is ∼15% greater than that observed for vanadyl with
five exclusively O-donor ancillary ligands (318−328 MHz)37

and is much larger than in vanadyl porphyrins (263 MHz).38

Clearly, B-THF is a vanadium-centered paramagnet. This
character of complex B-THF was also established by solution
magnetometry (μeff = 1.95 μB; Evans’ method, 300 K, THF-d8),
corresponding to S = 1/2. Last, preparing the 50% 15N enriched
isotopomer [(TptBu,Me)V15N(THF)] (B-THF−15N), via
photolysis of 6-15N, did not alter the X-band EPR spectral
features, further indicating the nitride group to have minimal
nitridyl character. This is likely the result of the unpaired
electron residing in a d-orbital with delta symmetry with respect
to the V−Nnitride axis.

39 This result is consistent with Bendix’
studies of isoelectronic CrV terminal nitride complexes with an
SP or octahedral geometry; here, hyperfine coupling to the axial
nitride 14N is obscured by unresolved coupling to equatorial
ligands such as 35,37Cl (I = 3/2, 100%), whereas coupling to the
nitride is resolved when the equatorial ligands are 16O (from the
dibenzoylmethane ligand, dbm; modeled as acac for calcu-
lations).40 In B-THF−15N, unresolved hyperfine coupling to
pyrazolyl 14N (three coordinated, three not) prevents resolution
of the small coupling to nitride 14,15N.41

When dissolving the complex B-THF in C6D6 for NMR
spectroscopic characterization, the VIV nitride rapidly trans-
forms to 5 and [V(κ2-TptBu,Me)2] (Scheme 1, and Figure 10D).
In general, B-THF is quite unstable in weakly coordinating
solvents. Presumably, the lack of a Lewis base allows the
unsaturated VIV center in B to oligomerize via bridging nitride
and/or pyrazolyl moieties. As a result, we propose that
dissolution of B-THF in hydrocarbon solvents results in
dissociation of THF that is accompanied with bimolecular
reactions, eventually disproportionating to 5 and [V(κ2-
TptBu,Me)2]. Surprisingly, there is no structurally characterized
example of a neutral [V(Tp)2] despite many reports on
analogous [M(Tp)2]

0 complexes that exist in the literature.42

Based on the above studies, it is clear that B is highly reactive,
probably because it has a d-electron count of only 13 valence
electrons. Due to the instability of B-THF, we turned to a
stronger Lewis base that could trap Bwithout compromising the
nitride ligand, namely, OPPh3. Photolysis of 6 in THF in the
presence of 2 equiv of OPPh3 generated the B-OPPh3 adduct in

Figure 13. Structural representation of the complex [(κ2-TptBu,Me)2V]
(thermal ellipsoids at 50% probability). Hydrogen atoms (except B−H)
and co-crystallized toluene and pentane are omitted for clarity.
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near-quantitative yield (94%, Scheme 1 and Figure 16B). The

complex B-OPPh3 resembles B-THF structurally with a τ5 value

of 0.48 (Table 1). The VN bond distance in B-OPPh3
(1.587(2) Å) is slightly longer than that in B-THF (Figure
16A, Table 1), most likely the result of OPPh3 being a stronger
σ-donor ligand than THF. The cyclic voltammograms ofB-THF
and B-OPPh3 reveal a reversible one-electron anodic event for

Figure 14. (A) CW X-band EPR spectra of pristine 6-14N in THF at 293 K (black trace) and after irradiation. (B) Structural representation of the
complex B-THF (thermal ellipsoids at 35% probability). Hydrogen atoms (except B−H), the co-crystallized solvent, and disorder on THF and tBu
groups are omitted for clarity. (C) CWX-band EPR spectrum ofB-THF in THF at 293 K (black trace). Simulation (red trace): S = 1/2, giso = 1.99, and
WFWHM,iso = 2.00 × 10−4 cm−1/GHz. Hyperfine coupling to one 51V (I = 7/2, 99.75%) aiso = 123 × 10−4 cm−1. (D) Photolysis of 6 leading to B-THF.

Figure 15.MOdiagrams ofB. Orbital energies reported in eV (B3LYP/
TZVP).

Figure 16. (A) Structural representation of the complex B-OPPh3
(thermal ellipsoids at 50% probability). Hydrogen atoms (except B−H)
are omitted for clarity. (B) Reaction between B-THF and OPPh3 to
furnish B-OPPh3.
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each complex. The reduction potentials are +0.38 and +0.08 eV
for B-THF and B-OPPh3, respectively, suggesting oxidation of
these species to a terminal VV nitride to be reversible as well as
highly tunable through the choice of a Lewis base (cf. Supporting
Information, Sections S10.4 and S10.5, Figures S110 and S113).
The voltammogram of B-OPPh3 further reveals a multi-electron
cathodic process at a negative potential (−1.53 eV, Figure
S112).
Figure 15 shows the calculated MO diagram of B (geometry

optimized after removing L from the sc-XRD structure of B−L);
MO diagrams of the adducts B-OPPh3 and B-THF are
presented in Figures S122 and S123, respectively. The most
salient bonding features forB are a VN triple bond, composed
of the SOMO − 3 (σ-symmetric combination of V 3dz2/N 2pz
atomic orbitals), SOMO − 2, and SOMO − 1 (orthogonal, π-
symmetric combinations of V 3dyz/N 2py and the V 3dxz/N 2px
atomic orbitals). The SOMO essentially consists of a V 3dxy
orbital, which is δ-symmetric along the VN direction (z-axis)
and, therefore, interacts insignificantly with 2s and 2p orbitals of
the nitride ligand. This is in accordance with the minimal 14,15N
hyperfine coupling observed by EPR (vide supra, Figure 14C
and Supporting Information, Section S5.4). In analogy to B, the
adducts, B-THF and B-OPPh3, each displays a VN triple
bond and has an unpaired electron in a dxy orbital. However,
while the lowest unoccupied molecular orbital (LUMO) of B is
largely confined to the metal center, the LUMOs of B-OPPh3
and B-THF are instead ligand-based (cf. Supporting Informa-
tion, Section S11, Figures S122 and S123).

■ CONCLUSIONS
We have used a sterically demanding hydro-tris(pyrazolyl)-
borate ligand, [TptBu,Me]−, to synthesize the spin triplet VIII

complex [(TptBu,Me)VCl2] (1). Replacement of the pyrazoles’
5-tBu groups with less bulky Me substituents resolved the
propensity for the previously reported [(TptBu,tBu)VCl2] to
undergo ligand degradation, while preserving a sterically
encumbering environment. Reduction of 1 affords a high-spin
(S = 3/2) and mononuclear VII complex, [(TptBu,Me)VCl] (2)
with a 4A2 electronic ground-state, established by solution- and
solid-state magnetometry as well as EPR and HFEPR spectros-
copy. The affinity of 2 toward THF and 4-dimethylaminopyr-
idine (DMAP) reveals its Lewis acidity and proclivity to attain
five-coordination. Two-step transmetallation of 1 with NaN3,
followed by N2 extrusion, affords a diamagnetic VV nitride, 3.
UsingMe3SiN3 as an azide source, we isolated and characterized
an unexpected intermediate, the VIII azide-chloride complex, 4,
which converts to 3 upon exposure to additional azide. Attempts
at reducing 3 to a VIV nitride affords the unprecedented
trinuclear tetra-nitride 5. Solution magnetometry and EPR
studies of complex 5 reveal one unpaired electron confined to a
single vanadium center, in accord with a Robin−Day class I
system. In an alternative approach, we explored photolysis of the
dinuclear VII azide 6. In toluene, this affords 5 and [V(κ2-
TptBu,Me)2], while in THF, this furnishes a neutral, mononuclear
VIV nitride, B-THF, where B is the still elusive four-coordinate
[(TptBu,Me)V(N)]. Use of a stronger Lewis base, such as
OPPh3, led to the kinetically stable VIV nitride, B-OPPh3.
Notably, the unpaired electron in the VIV nitride species is metal-
centered as seen from the vanishing hyperfine coupling to the
nitride ligand and the typical 51V coupling. We thus report the
first example (as B−L, B = (TptBu,Me)V(N), L = THF, or
OPPh3) of a neutral mononuclear [VN]+ (azavanadyl)
analogue to the many such [VO]2+ (vanadyl) species.

Overall, we have demonstrated how the [TptBu,Me]− ligand can
accommodate low-valent vanadium centers but also support
high-valent VV and VIV nitrides in mononuclear or trinuclear
forms. The latter, compound 5, forms upon loss of the
[TptBu,Me]− ligand, which has allowed us to study, for the first
time, a well-defined tri-vanadium tetra-nitride motif, where the
central V center is supported only by bridging nitride ligands,
[{(TptBu,Me)V}2(μ4-VN4)], thus exhibiting a double-diamond
core. This is the first example of a [VN4]

8− analogue of the
ubiquitous vanadate ion, [VO4]

3−. We are currently exploring
the reactivity of complex 5 since its central V ion could act as a
molecular mimic of vanadium nitride surfaces. We are also
investigating the reactivity of the terminal VIV nitrides B and B−
L.
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■ ABBREVIATIONS
TptBu,Me hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate
TptBu,tBu hydro-tris(3,5-di-tert-butylpyrazol-1-yl)borate
CV cyclic voltammetry
Td tetrahedral
SP square planar (four-coordinate)
TBP trigonal bipyramidal
SP square pyramidal (five-coordinate)
DMAP 4-dimethylaminopyridine
sc-XRD single-crystal X-ray diffraction
ENDOR electron nuclear double resonance
HFEPR high-frequency and -field electron paramagnetic

resonance

■ ADDITIONAL NOTE
aA homo l e p t i c fi v e - c o o r d i n a t e V I I I c omp l e x ,
[NBu4]2[V

III(C6F5)5], has been reported, which has a slightly
distorted TBP geometry.26b The complex is EPR-silent at X- and
Q-bands (in contrast to nearly tetrahedral VIII in [Li(thf)4][V-
(C6Cl5)4], which has |D| = 0.513 cm

−1), so it is likely that its zfs is
on the order of several cm−1.
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