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ABSTRACT: Organic−inorganic hybrids of halogenoindates(III) are typically represented by one of the zero-dimensional units:
InX4

−, InX5
2−, InX6

3−, or In2X11
5−. Higher dimensional anionic forms, although not forbidden, have remained almost elusive. Here

we report for the first time In3+-based organic−inorganic hybrids, (C4H5N2S)2InCl5 and (C4H5N2S)2InBr5, with 1D anionic chains
of trans-halide-bridged InX6 octahedra whose formation is guided by 2-mercaptopyrimidinium cations (C4H5N2S

+). The chains are
characterized by the significant ease of deformation, which is reflected in the elongation of the bridging bonds or the displacement of
In3+ ions. The materials show a robust band gap predominantly governed by C4H5N2S

+ cations. Dielectric relaxation processes in
(C4H5N2S)2InBr5 arise from the cations’ dynamics and suggest the ability of the brominated system to accommodate even larger
cations. Our work represents a successful attempt to expand the structural diversity of halogenoindates(III) and opens a pathway to
reach multifunctional 1D In3+-based hybrids.

Organic−inorganic hybrids continue to gather significant
attention due to their attractive properties for applications

in photonics, optoelectronics, and energy technologies.1,2

Materials particularly widely explored are organic−inorganic
metal halides of groups 14 (Sn2+ and Pb2+) and 15 (Sb3+ and
Bi3+) characterized by the high tunability of their optical and
electronic properties achieved by either halide substitution or
promotion to analogs with higher dimensional anionic
structures (1D, 2D, or 3D).3 In contrast, metal halides of
group 13 (Ga3+ and In3+) are rarely employed as a base of such
hybrids presumably because of the low variety of anionic forms
they offer; they are commonly encountered as 0D tetrahedral
units, (Ga, In)X4

− (X = Cl−, Br−, I−),4,5 used often only to
balance the charge of large organic systems.6−8 In some cases,
they have been found to contribute to order−disorder structural
phase transitions.9,10 0D units with higher coordination
numbers have been accessed only by In3+ (InX5

2− (X = Cl−,
Br−), InX6

3− (X =Cl−, Br−, I−), and In2X11
5− (X = Br−) (Scheme

1)) and have been found to play a key role in the nonlinear
electrical and nonlinear optical properties of materials.11−13

Whereas the potential to form more complex anionic forms
via the corner-sharing assembly of InX6 octahedra in organic−
inorganic hybrids became apparent with the publication of the
dioctahedral In2Br11

5− unit,14 it was only recently that the first
example of a higher dimensional form was obtained: a 1D chain
of cis-connected octahedra (∠(Xbridging−M−Xbridging) ≈ 90°;
(Scheme 1)).15 The significance of this finding lies in the fact
that, in general, 1D anionic forms determine the properties of
materials more profoundly. For instance, 1D chains’ high
susceptibility for deformation in many cases leads to the
appearance of desirable properties such as piezo- and
ferroelectricity or second-harmonic generation.16−20 An assem-
bly of octahedral units into 1D structures strongly depends,
however, on an organic cation incorporated into the system,
specifically, its size, type (aromatic vs aliphatic), and proton-

donating/accepting abilities defining the intermolecular inter-
actions and hence driving the crystal packing. Whereas there are
no specific rules for choosing a cation to obtain a target anionic
form, some types of cations show a strong propensity to direct
the formation of a particular anionic structure. Pyrimidine
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Scheme 1. Anionic Structures of Halogenoindates(III)
Observed in Organic−Inorganic Hybrids
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derivatives, for instance, used with halogenoantimonates(III)
and halogenobismuthates(III) tend to drive the latter toward
rare 1D chains of trans-connected octahedra [∠(Xbridging−M−
Xbridging) ≈ 180°; M = Bi3+/Sb3+, X = Cl−, Br−].16,21 In the effort
to expand the family of anionic forms of In3+ halides, we decided
to investigate whether a similar structural architecture can be
formed out of halogenoindates(III).
In this work, we report two In3+-based compounds (Figure

1a) with the 2-mercaptopyrimidinium cation, (C4H5N2S)2InCl5

(abbrev. (2Sprm)2InCl5) and (C4H5N2S)2InBr5 (abbrev.
(2Sprm)2InBr5), with robust band gaps of ∼2.58 (direct
nature) or ∼2.47 eV (indirect nature). The compounds are
unique in terms of their anionic structure; it is composed of 1D
chains of trans-halide-sharing octahedra that have not yet been
observed in the organic−inorganic hybrids of halogenoindates-
(III). Because of the axial symmetrical deformation of the
octahedra, the chains remain apolar and drive the centrosym-
metric packing (P21/n space group). The significant ease of
deformation, however, is a promising indication of
halogenoindates(III)’ potential to also produce noncentrosym-
metric structures that could induce nonlinear electrical and
optical properties. To this end, we anticipate that the presented
results will serve as a first step in establishing a pathway to reach
multifunctional 1D organic−inorganic hybrids based on
halogenoindates(III).
Dark yellow crystals of (2Sprm)2InCl5 and (2Sprm)2InBr5

(Figure 1b) were grown from an aqueous acidic solution (HCl
and HBr, respectively) of stoichiometric amounts of 2-
mercaptopyrimidine and In2O3. The composition of the crystals
was confirmed by elemental analysis and single-crystal X-ray
diffraction studies. X-ray powder diffraction (Figure S4)

confirmed the presence of one phase. The structural stability
of the materials was investigated using differential scanning
calorimetry; no solid-state phase transitions were detected
between 125 K and the melting points of the materials (Figures
S2 and S3).
(2Sprm)2InCl5 and (2Sprm)2InBr5 are isomorphous with

each other and also with the published (2Sprm)2BiCl5,
(2Sprm)2BiBr5, (2Sprm)2SbCl5, and (2Sprm)2SbBr5.

16 Both
compounds crystallize in the centrosymmetric P21/n space
group with two formula units per unit cell and similar cell
dimensions: a = 5.310(2), b = 14.886(3), c = 10.356(3) Å, β =
103.87(3)° for (2Sprm)2InCl5 and a = 5.789(2), b = 15.115(3),
c = 10.342(3) Å, β = 105.83(3)° for (2Sprm)2InBr5 (100 K data
collection; Table S1). In both cases, 2-mercaptopyrimidine
cation (2Sprm)+ adopts its thione tautomeric form (Figure 1c)
and creates a dimer that is typical for pyrimidinium derivatives,16

located around a symmetry center, with another molecule of its
type via N1−H1···S hydrogen bonds (3.2994(14) Å and 160.1°
and 3.286(4) Å and 163.2° for (2Sprm)2InCl5 and
(2Sprm)2InBr5, respectively).
The anionic structures are composed of 1D chains of

octahedral InX6 units (X = Cl or Br; Figure 1d). The units are
connected in trans configuration; X1 ligands located on the
opposite sites of the octahedron are shared between the units,
resulting in the formation of trans-[InX5]∞ chains. Despite the
materials being isomorphous, trans-[InCl5]∞ and trans-[InBr5]∞
chains differ in the octahedral deformation arising from the
corner-sharing assembly. In the case of (2Sprm)2InCl5, the axial
In−Cl1 bond becomes significantly elongated (2.6550(10) Å)
relative to the equatorial In−Cl distances (2.4481(8) to
2.4900(6) Å), a tendency also observed in isolated InCl6

3−

units where the elongation is caused by strong intermolecular
interactions.22 (2Sprm)2InBr5, on the contrary, preserves the
axial In−Br1 distance (2.6256(10) Å) in a similar range as the
equatorial In−Br distances (2.5788(11) to 2.6510(10) Å).
Instead, the deformation is located around the center of the
octahedron, where In3+ is displaced (∼0.270 Å) along the
chain’s direction from the special position, leading to a disorder
of the metal ion between two positions with 0.5 occupancy each
and causing a significant deviation of Br−In−Br angles from the
regular 180 and 90° (Table S2).
The packing of anionic and cationic moieties in the crystals of

(2Sprm)2InCl5 and (2Sprm)2InBr5 resembles a chessboard
arrangement (Figure 2a) when viewed along the inorganic
chains, with the chains separated from each other by the stacks of
2Sprm+ cations. In Figure 2, (2Sprm)2InCl5 is used as a
representative of the two isomorphous compounds. The chain−
chain distance between subsequent anionic units along the b
axis, 14.886 Å for (2Sprm)2InCl5 and 15.115 Å for
(2Sprm)2InBr5, determines the size of the voids occupied by
the organic units and seems to impact the dynamics of these
units when an external ac electric field is applied. (See as
follows.) 2Sprm+ dimers position themselves in the voids at a
∼45° angle relative to the chains’main axis (Figure 2b) and form
hydrogen bonds with the closest trans-[InX5]∞ chains to
stabilize their position: N3−H3···Cl2 of 3.1547(16) Å and
169.7° and N3−H3···Br2 of 3.356(4) Å and 167.4° for
(2Sprm)2InCl5 and (2Sprm)2InBr5, respectively.
Guiding the formation of rare trans-[MX5] chains in the

family of not only halogenoindates(III) but also
halogenoantimonates(III) and halogenobismuthates(III)16

points to the 2Sprm+ cations’ peculiar ability to selectively
promote this specific anionic arrangement. As the extended

Figure 1. (a) Structural formula of (2Sprm)2InX5 (X = Cl−, Br−)
compounds. (b) Photographs of the crystals. (c) Dimers of 2Sprm+

cations with atom numbering scheme and geometrical parameters of
hydrogen bonds. Left: (2Sprm)2InCl5; Right: (2Sprm)2InBr5. (d)
trans-[InX5]∞ anionic chains with atom numbering scheme and In−X
distances. Symmetry codes: (i) x − 1, y, z; (ii) −x, −y + 1, −z + 1.
Thermal ellipsoids of non-hydrogen atoms in panels c and d are shown
at the 50% probability level.
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analysis of Sb3+/Bi3+ structures concluded, this ability is
attributed to the void-matching size of 2Sprm+ dimers (4.4 Å
× 10.6 Å) and the advantageous position of the proton-donating
groups that can easily form highly directional (∼170°) contacts
with the chains. In terms of designing new In3+-based hybrids,
these geometrical parameters might serve as a gateway to
expanding the family of 1D halogenoindates(III).
By using dielectric spectroscopy, we probed dynamics of

molecules in the systems. Only in the case of (2Sprm)2InBr5
(larger chain−chain distance) were relaxation processes
observed: a weak one between 70 and 140 K and a stronger
one below 70 K (Figure 3). Although the involvement of anionic
chains in the processes cannot be fully excluded,17,23,24 such low-
frequency dynamics is characteristic of librational motions of
larger moieties.25,26 It is suspected then that the processes arise
from a field-induced deformation of the nonpolar organic dimer
causing the appearance of a nonzero electric dipole. From the
peaks of the dielectric losses, the macroscopic relaxation time
was estimated to be in the range of 1.37 × 10−7 to 4.43 × 10−6 s.
The activation energy values, calculated from the Arrhenius

relation ( )C exp E
kT

aτ = (Figure S6), were determined to be 3

(T < 70 K) and 13 kJ/mol (70 < T < 140 K), which are
significantly lower than 33 and 58 kJ/mol of the published
isomorphous (2Sprm)2BiCl5.

16 Whereas both systems are
characterized by similar chain−chain distances (15.108(3) vs
15.082(5) Å) and N−H···S contacts forming the 2Sprm+ dimer
(3.283(3) Å and 163.2° vs 3.2852(17) Å and 164°), the
difference in Ea presumably stems from the different strengths of
hydrogen bonds stabilizing the organic dimers between the
inorganic chains (N−H···Br 3.356(4) Å and 167.4° in
(2Sprm)2InBr5 vs N−H···Cl 3.203(2) Å and 168° in
(2Sprm)2BiCl5).

16 This implies the different characters and
anisotropies of the dipole−dipole interactions that impact the
dielectric response of the two compounds. A similar distribution
of Ea values has been observed in other structurally isomorphous
organic−inorganic hybrids.27,28
The optical properties of the crystals were investigated by

using UV−vis absorbance spectroscopy. Suggested already by
the color of the crystals (Figure 1b), (2Sprm)2InCl5 and
(2Sprm)2InBr5 absorb light of a similar wavelength from the
visible region. A steep absorption edge is observed at ∼490 nm
for both compounds (Figure 4), and thus the band gaps
determined from the Tauc plot are almost identical: 2.58 vs 2.57
eV for a direct-nature gap and 2.47 vs 2.46 eV for an indirect-
nature gap (insets in Figure 4). In comparison with other
organic−inorganic hybrids where the tunability of optical
properties is achieved by, for instance, halide doping, the
unchanged position of the absorption band upon halide
substitution in (2Sprm)2InCl5 and (2Sprm)2InBr5 materials
strongly suggests that the halides might not dominate the band
edge states, leaving the organic component of the compounds,
2Sprm+ cations, as the main contributors. Although the fact that
2Sprm itself, the starting material, is also a bright yellow solid
(Figure S1) with a ∼2.68 eV band gap (direct-nature; 2.56 eV
indirect; Figure S5) might confirm this possibility, rigorous
density functional theory (DFT) calculations are needed to
obtain more details of the band gap and to unequivocally
determine its nature.
In summary, we report the synthesis and structural character-

ization of the first In3+-based organic−inorganic hybrids,
(2Sprm)2InCl5 and (2Sprm)2InBr5, with unprecedented 1D
chains of trans-connected InX6 octahedra. The formation of the
chains is supported by 2Sprm+ cations specifically selected on
the basis of their strong tendency to form dimers whose size and

Figure 2. (a) Unit-cell packing of (2Sprm)2InCl5 along the a axis. (b)
Position of 2Sprm+ dimers relative to the anionic chains.

Figure 3. Temperature dependence of real (ε′) and imaginary (ε′′) parts of the complex electric permittivity of (2Sprm)2InBr5 collected on cooling
along the b axis.
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proton-donating abilities are accommodated particularly well in
the trans-[MX5] chains setting. This indicates that 1D forms of
halogenoindates(III) are accessible when specific geometrical
requirements are met by organic cations, although some
flexibility in cations’ size can be assumed based on the observed
dielectric relaxation processes in (2Sprm)2InBr5. We also note
that the 2Sprm+ cation is suspected to govern the band gaps of
the materials. Whereas the compounds are isomorphous, we
found fundamental differences in the chains’ adjustment to
deformation caused by trans-halide sharing: In (2Sprm)2InCl5,
the elongation of the bridging bonds is preferred over the
dislocation of In3+ from the octahedron center observed in
(2Sprm)2InBr5. In any case, such susceptibility for deformation
is a promising feature in many contexts, for example, piezo- and
ferroelectricity or the second-harmonic generation of light, and
can provide an appealing basis for the further development of 1D
halogenoindates(III) showing a range of interesting nonlinear
optical and electrical properties.
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