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a b s t r a c t

In vivo human diffusion MRI is by default performed using single-shot EPI with greater than 50-ms echo
times and associated signal loss from transverse relaxation. The individual benefits of the current trends
of increasing B0 to boost SNR and employing more advanced signal preparation schemes to improve the
specificity for selected microstructural properties eventually may be cancelled by increased relaxation
rates at high B0 and echo times with advanced encoding. Here, initial attempts to translate state-of-
the-art diffusion-relaxation correlation methods from 3 T to 21.1 T are made to identify hurdles that need
to be overcome to fulfill the promises of both high SNR and readily interpretable microstructural
information.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

NMR diffusion-relaxation correlation methods [1–3] combined
with data inversion into nonparametric distributions [4,5] of these
MR properties have been applied successfully in low field studies
of heterogeneity in materials ranging from porous rocks [6] to
dairy products [7] and fruits [8] for decades. The methods more
recently have been combined with MRI [9] and demonstrated to
have great potential for both ex vivo [10–13] and in vivo [14] clin-
ical applications as summarized in several comprehensive reviews
during just the last few years [14–17]. In addition, data challenges
aimed to explore sub-sampling strategies has been performed
aimed to harness the richness of information in multidimensional
data with in feasible clinical scan times [18].

While most previous diffusion-relaxation studies have relied on
the simple Stejskal-Tanner sequence [19] for which the effects of
multiple aspects of molecular motion including bulk diffusivity,
restriction, anisotropy, flow and exchange [20] are merged into
apparent diffusion coefficients (ADCs) [21], a few studies [22–26]
have incorporated more elaborate encoding strategies deriving
from multidimensional solid-state NMR [27] to enable separation
and correlation of parameters specific to the various types of
motion. These multidimensional diffusion encoding methods build
on carefully crafted gradient waveforms to attain selectivity at the
expense of requiring higher gradients amplitudes or—when the
maximum amplitudes are already reached—longer waveform
durations than in conventional diffusion tensor imaging [28,29].
The resulting loss in signal-to-noise ratio (SNR) from transverse
relaxation is in practice often compensated by using larger voxel
sizes but could in principle be mitigated by ultra-high B0 [30],
the general benefits of which has been demonstrated for MRI and
MR spectroscopy (MRS) in several papers [31–39].

So far, in vivo preclinical and human studies employing multidi-
mensional or oscillating gradient diffusion encoding have been
performed at 3 T [22–24,26,40–62], 4.7 T [63–65], 7 T [57,66–
69], 9.4 T [70] and 11.7 T [71–73] while diffusion-relaxation corre-
lation has been limited to 3 T [14,22–24,26]. All of these studies
have relied on echo planar imaging (EPI) signal read-out, which
allows for acquisition of a complete 2D image plane after a single
excitation, but suffers from B0-dependent image distortions due
to susceptibility inhomogeneity [31,74] and low SNR for materials
with high transverse relaxation rate R2. As ultra-high B0 systems
are being developed also for in vivo human studies [30,75,76], we
performed pilot measurements with multidimension diffusion-
relaxation correlation and EPI readout at the highest field available
for in vivo rodent, 21.1 T [77,78] to investigate the feasibility of
translating pulse sequences from moderate to ultra-high B0 and
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identify technical issues that need to be addressed to realize the
full potential of combining diffusion-relaxation correlation, multi-
dimensional diffusion encoding and ultra-high B0. Anticipating that
transverse relaxation will be one of the main obstacles, we per-
formed measurements yielding nonparametric joint distributions
of R2 and diffusion tensors D [22,23].
2. Methods

2.1. MRI equipment

Experiments were performed using the 21.1-T magnet at the
National High Magnetic Field Laboratory (NHMFL) in Tallahassee,
FL [77,78]. The magnet was designed and built at the NHMFL,
and is equipped with a Bruker Avance III console (Bruker-Biospin,
MA, USA) using imaging gradients (Resonance Research Inc., MA,
USA) capable of producing a gradient strength up to 600 mT/m.
An in-house designed and built radio-frequency (RF) coil was used
for all in vitro and in vivo experiments. The RF coil used was a
double-saddle quadrature surface coil tuned to 900 MHz, the reso-
nance frequency of 1H at 21.1 T. The coil was built to accommodate
the head of in vivo rodents weighing up to 350 g [34].
2.2. Phantoms

To validate the implementation of the multidimensional
sequence on the 21.1-T magnet and for parameter optimization,
a ‘‘Hex” liquid crystal phantom that provided high anisotropy
was created as described by Nilsson et al [79]. In short, the phan-
tom was placed in a 15-mL conical tube consisting of 41.94 wt%
water (Milli-Q quality), 13.94 wt% of the hydrocarbon 2,2,4-
trimethylpentane (Sigma-Aldrich, Sweden), and 44.12 wt% of the
detergent sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfo
nate (trade name AOT from Sigma-Aldrich, Sweden). At room tem-
perature, the liquid crystal is in a reverse 2D hexagonal phase
wherein water diffuses along cylindrical channels with � 5-nm
diameters, which span lengths of hundreds of micrometers and
gives rise to highly anisotropic diffusion. Around the 15-mL ‘‘Hex”
phantom, two NMR tubes with 1-octanol (MilliporeSigma, MA,
USA) and n-dodecane (TCI America, OR, USA) were placed. The
combined tubes were secured and placed in a 50-mL conical tube
filled with water. The phantom was secured into the RF coil and
placed in the magnet.
2.3. Animals

Two Sprague Dawley rats weighing between 200 and 250 g
were used. The animals were housed in cages with a 12-hour
night/12-hour daylight cycle, with water and food available ad libi-
tum. The animals were anesthetized with isoflurane (Baxter, IL,
USA) and placed prone inside the coil with fore teeth placed on a
bite bar. This bite bar also supplied a continuous flow of oxygen
mixed with 1–3% of isoflurane. The concentration of isoflurane
was set to maintain a steady respiration rate of 25–30 breaths
per minute as monitored by a respiratory pillow (SA Instruments
Inc., NY, USA) that was placed in between the rat and probe. Tem-
perature was maintained at 37 �C by means of gradient chiller. The
coil was tuned and matched for each individual rat for optimal per-
formance. The same acquisition parameters used for the phantom
were acquired for animals with the field-of-view (FOV) set to cover
the head of the rat (32 � 11 mm). After confirming accurate place-
ment of the rat, shimming was performed using either Bruker’s
automatic B0 shimming sequence or if needed adjusted by local-
ized voxel placed over the parenchyma. All animal procedures
2

were approved by the Florida State University (FSU) Animal Care
and Use committee (ACUC).

2.4. MRI measurements

A ParaVision 6.0.1 implementation of a multi-slice 2D spin-echo
EPI sequence with pairs of free gradient waveforms bracketing the
180� pulse [80] was kindly provided by Matthew Budde at the
Medical College of Wisconsin (https://osf.io/ngu4a). The diffusion
encoding tensor b is obtained from the effective gradient g(t) via:

q tð Þ ¼ c
Z t

0
g t0ð Þdt0; ð1Þ

and

b ¼
Z
0

sE
q tð Þq tð ÞTdt; ð2Þ

where the integration is performed from the center of the exci-
tation 90� pulse to the echo time sE. The sensitivity of the signal to
anisotropy is controlled by the ‘‘shape” of b, which is conveniently
expressed by the normalized anisotropy bD given by [81]:

bD ¼ 1
b

bZZ � bYY þ bXX

2

� �
; ð3Þ

where b is the trace of b and bXX, bYY, and bZZ are the eigenvalues
ordered according to (bZZ – b/3) > (bXX – b/3) > (bYY – b/3). Four 10-
ms waveforms of the diffusion encoding gradients were used: lin-
ear (bD = 1), planar (bD = –1/2) and spherical (bD = 0) as calculated
in Ref. [82], as well as linear (bD = 1) with a 5-ms half-sine pulse on
each side of the 180� pulse. Gradient orientations (H,U) were
obtained by the electrostatic repulsion scheme [83], and the num-
ber of directions were varied pseudo-randomly between 11 and 15
for the different values of sE within the range from 14.1 to 60 ms
with an approximate logarithmic distribution. A detailed overview
of the acquisition scheme can be found in in Fig. 1. Here gradient
amplitude was varied between 10, 25, 45 and 80% (depending on
diffusion scan) of peak gradient strength (0.6 T/m) The lowest
and highest b-values were chosen to suppress spins undergoing
flow, to achieve some attenuation of water spins with the lowest
diffusivity, and were distributed logarithmically to improve sam-
pling of the exponential signal decay [26,84]. Data was collected
using nine slices of 1-mm thickness and FOV to cover the sample.
Matrix was 140 � 48 (0.2 � 0.2 mm in-plane resolution) with a
bandwidth of 500 kHz, two dummy scans and partial-FT encoding
scheme (1.33 coverage). The repetition time (sR) was set to 5 s
throughout, and the resultant total acquisition time was 120 min.

2.5. Data processing

After image reconstruction in ParaVision, data were exported to
MatLab (R2018b MathWorks Inc, MA, USA) for denoising using
random matrix theory [85]. In-plane motion and eddy correction
with the MatLab routine imregister was used for in-plane affine
registration, and Monte Carlo inversion [86] generated nonpara-
metric 5D D-R2 distributions [22] using the dtr2d method in the
md-dmri Matlab toolbox [87]. With this method, the signal S(b,
sE) acquired as a function of b and sE at constant sR is approxi-
mated as originating from multiple sub-populations i, each being
characterized by their weightwi, diffusion tensor Di, and transverse
relaxation rate R2,i according to:

S b; sEð Þ ¼
X
i

wiexp �sER2;i
� �

exp �b : Dið Þ; ð4Þ

where the sum of wi gives the non-encoded signal S0 through:

https://osf.io/ngu4a


Fig. 1. Acquisition scheme for 5D D-R2 distribution MRI. Images are recorded as a function of the magnitude b, normalized anisotropy bD (defined in Eq. (3)) and orientation
(H,U) of the b-tensor, as well as the echo time sE at constant repetition time sR of 5 s. All panels share the same abscissa, where nacq is the acquisition number sorted in the
order of ascending sE, b, and bD.
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S0 ¼
X
i

wi; ð5Þ

which is nominally proportional to the spin density.
Assuming diffusion with axial symmetry for each sub-

population, the diffusion tensors are parameterized in terms of
the axial and radial eigenvalues, DA,i and DR,i and orientation
(hi,/i). In this work, the Monte Carlo algorithm pseudo-randomly
explores the parameter space within the ranges 5�10–12 m2s�1 <
DA,i, DR,i < 5�10–9 m2s�1 and 1 s�1 < R2,i < 80 s�1 and—independently
for each voxel—yields 100 solutions consistent with the input data.
Each of these solutions comprises up to 20 components i character-
ized by the parameter set [DA,i,DR,i,hi,/i,R2,i] and the corresponding
weights wi. For visualization of the results, the values of DA,i and
DR,i are converted to the isotropic diffusivity Diso,i and squared nor-
malized anisotropy DD,i

2 by [81,88]:

Diso;i ¼ DA;i þ 2DR;i

3
ð6Þ

and

DD;i
2 ¼ DA;i � DR;i

3Diso;i

� �2

; ð7Þ
3

as well as the lab-frame diagonal elements Dxx,i, Dyy,i and Dzz,i

according to standard equations. Single-voxel 5D D-R2 distribu-
tions are visualized by projecting the components onto the 2D
Diso-DD2 , Diso-R2, and DD

2 -R2 planes, and parameter maps are
generated by extracting means E[x], variances V[x], and covari-
ances C[x,y] according to [89]:

E x½ � ¼
P

iwixiP
iwi

; ð8Þ

V x½ � ¼
P

iwi xi � E x½ �ð Þ2P
iwi

; ð9Þ

and

C x; y½ � ¼
P

iwi xi � E x½ �ð Þ yi � E y½ �ð ÞP
iwi

; ð10Þ

where x and y are various combinations of Diso, DD2 , Dxx, Dyy, Dzz

and R2. For comparison with results from conventional diffusion
MRI performed at some finite value of sE, the relaxation factor
can be included in the calculation of, for instance,

E sEð Þ Diso½ � ¼
P

iwiexp �sER2;i
� �

Diso;iP
iwiexp �sER2;i

� � ; ð11Þ
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which is closely related to the conventional a ADC [21] and
mean diffusivity (MD) [28], and where ‘‘sE” serves as a reminder
that the mean value includes weighting by R2 relaxation during
sE. An even more direct comparison with conventional ADC mea-
sured with a single b-value is obtained by:
ADCðb; sEÞ ¼ ln S b; sEð Þ � ln S 0; sEð Þ
b

; ð12Þ

where S(b,sE) is given by Eq. (4).
The extraction of quantitative metrics according to Eqs. (8–10)

are performed for each of the 100 individual solutions per voxel,
Fig. 2. Experimental results for representative WM (red), GM (green) and CSF (blue) v
acquisition number nacq according to the scheme in Fig. 1 (color-coded circles: experime
data inversion of Eq. (4) are visualized as projections onto the 2D Diso-DD2 , Diso-R2, and
anisotropy defined in Eqs. (6)-(7), and R2 is the transverse relaxation rate.

4

and the values finally displayed in parameter maps are obtained
by taking the medians of the results for the individual solutions.
3. Results

Fig. 2 shows signals and corresponding 5D D-R2 distributions
for individual white matter (WM), gray matter (GM) and cerebral
spinal fluid (CSF) voxels for a single representative rat brain. The
S0 maps are calculated according to Eq. (5), hence corresponding
to signal at TE = 0 and b = 0. Consistent with previous in vivomouse
[90], in vivo human [22–24,26] and ex vivo rat results [25], the
oxels of an in vivo rat brain at 21.1 T. The signal S is shown as a function of the
ntal, black dots: fit). Nonparametric 5D D-R2 distributions obtained by Monte Carlo
DD
2 -R2 planes, where Diso is the isotropic diffusivity, DD2 the squared normalized
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main distribution components of WM, GM and CSF are located in
distinct corners of the 2D Diso-DD2 projection (WM: low Diso and
high DD

2 , GM: low Diso and low DD
2 , CSF: high Diso and low DD

2 ),
thereby enabling ‘‘binning” for calculation of signal fractions fbin1,
fbin2 and fbin3 and associated diffusion-relaxation metrics nominally
specific for WM, GM and CSF [22] ss seen in Fig. 3a The challenges
of EPI readout at 21.1 T are readily apparent as distortions of the S0
image stemming from susceptibility artifacts and Nyquist ghosting
in the phase encoding direction [31,35]. Nevertheless, the bin-
resolved fractions map captures the known spatial distributions
of WM, GM and CSF. In addition to the binning, Fig. 3 also displays
quantitative parameter maps obtained by extracting means E[x],
variances V[x], and covariances C[x,y] by applying Eqs. (8)-(10)
over selected dimensions and sub-divisions of the per-voxel 5D
D-R2 distributions [22–26,61,89,91]. The bin-resolved maps in
Fig. 3b reveal E[R2]-values of 70 and 60 s�1 for WM and GM,
respectively, which can be contrasted with the values 20 and
15 s�1 observed for in vivo human at 3 T [22]. The per-voxel E[Diso],
E[DD2 ] and E[R2] metrics in Fig. 3c are closely related to the more
traditional parameters ADC [21] and MD [28], microscopic frac-
tional anisotropy (lFA) [80,91], and quantitative T2 = 1/R2. Similar
to lFA, the E[DD2 ] metric provides information on diffusion aniso-
tropy independently from the underlying degree of orientational
order, which is in contrast to the traditional FA [80,91]. Intra-
voxel heterogeneity are described with the variance and covari-
ance measures V[x] and C[x,y] for which x and y imply various
combinations of Diso, DD2 and R2. Out of all these measures, V[Diso]
is most familiar from the literature under the names and symbols
isotropic 2nd moment l2

iso [80], size variance VMD [47] and isotro-
pic mean kurtosis MKI [46], and has been shown to be related to
intra-voxel variance of cell density in brain tumors [46]. A more
detailed discussion about the biological meanings of the remaining
heterogeneity metrics can be found in [25,26]. Low GW/WM con-
trast can be seen in certain structures, in particular the corpus cal-
losum (cc), cerebellum and edges of white matter areas. This
decrease is due to partial volume effects from the relatively large
slice thickness but also from the chosen human brain-based
boundary values for the various bins [90].

In Fig. 4, data from the phantom are presented. Here, the liquid
crystal (red tube in Fig. 4a phantom cartoon), hydrocarbons
Fig. 3. Quantitative parameter maps derived from the per-voxel 5D D-R2 distributions. (a
Diso-DD2 plane into three ‘‘bins” and calculating signal fractions [fbin1,fbin2,fbin3] mainly repo
WM and green to GM. (b) Bin-resolved signal fractions and means E[x] over the Diso, DD2 ,
brightness intensity, and the properties of interest are represented by the color scales, w
colors derive from the lab-frame diagonal values [Dxx,Dyy,Dzz] and maximum eigenvalu
combinations of Diso, DD2 , and R2 are as defined in Eqs. (8–10).
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(yellow and green tubes in Fig. 4a phantom cartoon) and water
are used to emulate the diffusion properties of WM, GM and CSF,
respectively [79]. Even though the images are heavily distorted
from chemical shift artifacts of the hydrocarbons and ghosting in
the phase direction, the 21.1-T implementation of the 5D D-R2

method yield parameter maps consistent with the known diffusion
and relaxation properties of the constituents of the phantom. Nota-
bly, the binning in the Diso-DD2 plane designed for the calculation of
tissue-specific signal fractions in the in vivo data also separates the
liquid crystal, hydrocarbons and water fractions in the phantom
data cleanly. For the liquid crystal, the directionally color-coded
map E[Dxx,Dyy,Dzz] clearly shows the structure of the anisotropic
domains [82]. The magnetic susceptibility anisotropy results in
an orientational dependence on T2 and T2* as shown in Fig. 4c.
These magnetic field dependent distortions are amplified at ultra-
high fields as described by DB = vmB0, where DB is the field
imposed by the tissue/material interface and perturbing B0 by
the magnetic susceptibility, vm, of the material [92]. Susceptibility
differences in the phantom consequently exacerbate the warping
artifact of the phantom that is not seen in vivo. Likewise, the low
bandwidth in the phase encoding dimension together with the res-
onance frequency difference between the water and hydrocarbons
leads to pronounced chemical shift displacements of the latter
from the top to the lower part of the image.

4. Discussion

Reassuringly, the straightforward 21.1-T implementation of a
standard EPI sequence broadly reproduces previous results from
3 T [22], however with noticeably lower signal on account of the
nearly four-fold increase in R2 and field gradients induced by dif-
ferences in magnetic susceptibility.

The trend towards higher fields is expanding with 7 T becoming
more applicable in the clinic [93–95] and now with extension to
11 T for animals as well as humans [30]. Discussions and a feasibil-
ity study for a 20-T human magnet further predicts future high
field trends [75], showing the importance of translating these
sequences to higher fields and identifying needs for improvements
to overcome challenges introduced at these field strengths.
Increased B0 has many benefits such as SNR, spectral dispersion
) S0 image obtained by Eq. (5). Image segmentation is performed by dividing the 2D
rting on the spatial distributions of WM, GM and CSF. Here, blue refers to CSF, red to
and R2 dimensions according to Eq. (8). The bin fractions and means are coded into
hich are each combined by two orthogonal scales in the image. Direction-encoded
e D33. (c) Per-voxel means E[x], variances V[x] and covariances C[x,y] of various



Fig. 4. Parameter maps for the composite phantom comprising an assembly of tubes with liquid crystal (red tube in 4a phantom cartoon), hydrocarbons (1-octanol and n-
dodecane, shown as yellow and green tubes respectively in 4a phantom cartoon) and water having diffusion properties similar WM, GM and CSF, respectively. See caption of
Fig. 3 for detailed explanation of the panels and legends. Image distortions are exacerbated by susceptibility artifacts and chemical shift displacement of the two
hydrocarbons not seen in vivo.
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and higher spatial resolution, but also some impairments such as
susceptibility and warping artifacts in EPI-based encoding due to
susceptibility gradients and other artifacts that are amplified by
low bandwidths [74]. Depending on the application, relaxation
can benefit image contrast but also complicate quantitative assess-
ment. Spin-lattice relaxation of tissues is generally increased with
some convergence in values for different tissues, leading to a
decreased contrast for T1-weighted scans. On the other hand, tissue
signals are more readily saturated, benefiting contrast agent and
time-of-flight applications. Transverse relaxation (T2) times are
generally shortened at increased field strength leading to improved
blood oxygen saturation (BOLD) scans and susceptibility imaging,
while also increasing the need for short TE scans to compensate
for the decreased signal from shortened T2.

Published values of the ADC for the striatum of in vivo rat at
21.1 T cover the range from 0.7 to 0.8�10–9 m2s�1 for image read-
out using simple spin echo, EPI, and spatio-temporal encoding
(SPEN) at b-values up to 1�109 sm�2 and values of sE in the range
from 25 to 40 ms [31]. For comparison with literature data, ADC
values were calculated from S(b,sE) images synthesized from the
5D D-R2 distributions according to Eq. (12), yielding ADC = (0.78 ±
0.04)�10–9 m2s�1 (mean ± standard deviation) at b = 1�109 sm�2 and
sE = 30 ms, which can be contrasted with E[Diso] = (0.99 ± 0.09)�
10–9 m2s�1 corresponding to ADC in the limit b = 0 and sE = 0.

To capitalize on the potential SNR gains by ultra-high field,
advanced diffusion sequences may require correspondingly ultra-
strong gradients [38,39,60,96–98] to minimize the duration of typ-
ically lengthy gradient waveforms and, image read-out
approaches. SPEN [31,35,90,99] or gradient and spin echo (GRASE)
[100] are examples of such approaches that are less susceptible to
B0 inhomogeneity and relaxation than single-shot EPI. SPEN has
been used at 21.1-T and has shown that B0 artifacts can be over-
come despite the minimum sE being longer than that of traditional
spin-echo EPI [31,35]. With SPEN, sE increases linearly with the
spatial coordinate in the low-bandwidth dimension, producing a
gradient in T2-weighting that potentially can produce a bias in dif-
fusion metrics. Yon et al. has expanded on SPEN readout and incor-
porated the multidimensional diffusion approach at 15.2 T (79, 90).
In doing so, Yon et al. employed SPEN in its fully refocusing mode
and increased bandwidth to reduce B0 inhomogeneity artifacts
without compromising diffusion tensor distribution metrics from
6

the incorporated multidimensional diffusion acquisition scheme
[90]. In addition, Yon et al [101] showed that the SPEN technique
alleviated artifacts in distortion prone regions of mouse brains
for diffusion tensor imaging (DTI). Interleaved multi-segmented
EPI acquisitions at 21.1 T also have been shown to reduce echo
times and alleviate geometric distortions; however, this approach
did not provide reliable ADC values, potentially due to motion or
sampling impacts on signal [31]. Notably, the current study, as
with other single-shot EPI readouts acquisitions [31,35], did pro-
vide expected and reliable diffusion measures. Persistent geomet-
ric distortions and artifacts are particularly prevalent in the
composite phantom for which susceptibility mismatches together
with chemical shift significantly reduce image quality. Neverthe-
less, as shown not only in this report but also others, in vivo and
phantom diffusion data are accurate quantitively [31,35,79]. There
are other strategies that can be implemented for future work that
are commonly used in clinical settings to correct for EPI or field
inhomogeneities, such as acquiring B0 maps or inverted EPI blips.
Other corrections such as brain/skull extraction, signal drift correc-
tion, denoising, etc [102] to improve data visualization should be
considered for future work but may not be relevant in a preclinical
setting.
5. Conclusion

In this study, it has been shown that an advanced diffusion
scheme such as the multidimensional diffusion can be imple-
mented at 21.1 T to provide results consistent with previous lower
field studies. To realize the full potential of ultra-high field, efforts
need to be directed to both sequence design and gradient hardware
improvements to minimize warping artifacts and reach even
shorter values of sE.
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