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Abstract: In this paper we critically discuss several examples of two-dimensional electronic systems
displaying interaction-driven metal-insulator transitions of the Mott (or Wigner–Mott) type, including
dilute two-dimension electron gases (2DEG) in semiconductors, Mott organic materials, as well as
the recently discovered transition-metal dichalcogenide (TMD) moiré bilayers. Remarkably similar
behavior is found in all these systems, which is starting to paint a robust picture of Mott criticality.
Most notable, on the metallic side a resistivity maximum is observed whose temperature scale
vanishes at the transition. We compare the available experimental data on these systems to three
existing theoretical scenarios: spinon theory, Dynamical Mean Field Theory (DMFT) and percolation
theory. We show that the DMFT and percolation pictures for Mott criticality can be distinguished by
studying the origins of the resistivity maxima using an analysis of the dielectric response.

Keywords: Mott transition; quantum criticality; resistivity maxima; dielectric response; dilute
2DEGs; Mott organics; twisted transition-metal dichalcogenide bilayers; dynamical mean field
theory; percolation theory; spinon theory

1. Introduction

The physics of strongly correlated matter has many faces. Still, for a majority of
systems the underlying theme is the role of “Mottness” [1]. It is clear that if one aspect of
strong correlations should be understood first, it should be the fundamental nature of the
Mott metal-insulator transition [2]. Its simplest reincarnation is the transition induced by
tuning the bandwidth at half-filling, a setup that produced rather spectacular advances in
recent years. Several systems were identified as nearly-ideal realizations of this paradigm,
allowing systematic study using a wide arsenal of experimental probes.

In this article we present an overview of three classes of two-dimensional experimental
systems that exhibit bandwidth-controlled Mott criticality: dilute two-dimensional electron
gases in semiconductors, “Mott-organic” compounds, and transition-metal dichalcogenide
moiré systems. Thereby we aim to present the experimental facts as “bland” as possible, in
Section 3, without favoring one or the other theoretical explanation. The remarkable simi-
larities between these model systems suggests a robust universality, including characteristic
behavior such as the appearance of resistivity maxima.

Possible explanations of two-dimensional Mott criticality follow in the section there-
after (Section 4), where the experimental distinguishable features of each theory takes the
forefront. This is followed by a separate discussion of the largely-overlooked utility of
dielectric spectroscopy in Section 5, in not only identifying phase segregation and spatial
inhomogeneity, but also in revealing the thermal destruction of coherent quasiparticles
associated with Landau’s Fermi liquid theory.

However, first we need to address the demarcation of our topic. What makes the
metal-to-insulator transition in these systems stand out from ‘traditional’ metal-to-insulator
transitions [3,4]?
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2. In Search of Mott Criticality

Condensed matter physics, or recently for sales purposes re-branded as “quantum
matter physics”, is the study of electric and magnetic properties of materials that surround
us. The grand question that trumps all others is: how to understand which materials
conduct electricity and which are insulating? Traditionally, a conducting material is called
a metal—not to be confused with the chemical, metallurgical or astronomical meaning of
that word. Our main question (metal or insulator?) has not only tremendous technological
applications (in fact, all modern electronic technology depends on our ability to rapidly
switch materials between metallic and insulating behavior), but also requires a thorough un-
derstanding of the problem of emergent behavior of many interacting quantum-mechanical
electrons and ions.

Only at zero temperature does there exist a sharp difference between insulators and
metals [4]. There are three distinct possibilities: zero conductivity σ(T = 0) = 0 means
insulating; zero resistivity ρ(T = 0) = 0 means a superconductor; and anything in between
is a metal σ(T = 0) = 1/ρ(T = 0) 6= 0. At any nonzero temperature, an insulator
typically has activated behavior ρ(T) ∼ e∆/T whereas the standard Fermi liquid theory of
a metal predicts a temperature-squared increase of the resistivity ρ(T) = ρ0 + AT2. It has
therefore become common-place to use the derivative of the resistivity dρ/dT as a measure of
whether something is conducting (dρ/dT > 0) or insulating (dρ/dT < 0)—but this is highly
misleading! As we will show later in Section 3, close to a Mott metal-insulator transition we
often find non-monotonic behavior of the resistivity as a function of temperature, making
the ‘derivative’ criterion useless. Even worse, there exist cases where the resistivity has
dρ/dT < 0 but at zero temperature it does not diverge, signalling that this is not a true
insulator (see e.g., [5,6]). Another example is the case of Mooij correlations [7,8], where the
temperature-derivative of the resistivity in a metal can become negative. Consequently,
since only at zero temperature the insulator/metal distinction is well-defined, we must
stick with that definition. Regardless of the slope, a material is a metal if its resistivity does
not diverge as T → 0.

Many materials can be understood within the framework of band theory and its ex-
tensions such as Fermi liquid, Boltzmann transport, and density functional theory. This
framework provides a very simple answer to the metal-or-insulator question: if the Fermi
level lies in the middle of a band gap, the system is insulating; otherwise, the system be-
haves as a metal. This concept has the important consequence that for a crystalline material
with (up to some weak disorder) well-defined unit cells, insulators can only appear when
there is an even number of electrons per unit cell. Consequently, within the band theory
picture, there exist only three possible routes to induce a metal-to-insulator transition: by
changing the electronic density; via spontaneous symmetry breaking; or via band overlap
when the filling is even. An example of the first is doping a semiconductor, which is the
metal-insulator transition we induce on a daily basis inside transistors. An example of the
second is the transition into antiferromagnetic ordering: when the system is at half-filling
of a band (meaning one electron per unit cell), after antiferromagnetic unit cell doubling
there are two electrons per unit cell, and the system can become a band insulator. The third
case can be realized by for example straining a system such that the band gap changes from
positive to negative.

There are, however, two main exceptions to the paradigm of band theory. On the one
hand, disorder can become so large as to prevent the motion of the charge carriers—this
is known as Anderson localization [9]. On the other hand, the presence of very strong
electron-electron interactions can force the electrons to become “stuck” like in a traffic
jam—this is known as Mott insulation [2]. The standard model of Mott insulation is the
Hubbard model with a tight-binding Hamiltonian:

H = −t ∑
〈ij〉σ

c†
iσcjσ + U ∑

i
ni↑nj↓, (1)
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where t is the nearest-neighbor hopping on some lattice and U is the onsite repulsion.
When U = 0, the system is a metal when half-filled. When U � t, it becomes energetically
favorable to occupy each site with exactly one electron rather than to fill bands up to the
Fermi level. The resulting Mott state can therefore not be described by band theory!

Mott insulators have been observed in a wide variety of materials, most famously
transition-metal oxides, including high Tc superconducting cup rates [3]. Observing a clear
transition from a standard Fermi liquid metal to a Mott insulator, however, is quite elusive.
This transition can be induced either by changing the electronic density (“filling-controlled”)
or by changing the ratio U/t (“bandwidth-controlled”). The filling-controlled Mott transi-
tion [10] notoriously leads to a whole zoo of different instabilities, pseudogaps, and strange
metal behavior, and is typically masked at low temperatures by superconductivity. The
bandwidth-controlled Mott transition is, in contrast, often masked by (antiferromagnetic)
spin order that hides any Mottness behind the veil of unit cell doubling.

This might, at first, suggest that Mott criticality is something unattainable. By “crit-
icality” we mean that approaching the Mott transition we find vanishing energy scales,
and that the resistivity curves display scaling behavior. There are, however, two clever
tricks to realize Mott criticality. The first trick is dimensionality: a transition that is strongly
first-order in d = 3 dimensions often becomes continuous or weakly first-order in d = 2
dimensions. The most striking example of this is, of course, the solidification of 3He. The
second, and perhaps even more important trick is frustration: if the lattice structure is highly
frustrated (with competing magnetic interactions) one can avoid [11] antiferromagnetic
ordering altogether—revealing the true Mott transition.

In this review we, therefore, focus on three classes of systems that are indeed (quasi)
two-dimensional as well as frustrated: Wigner crystals in extremely dilute two-dimensional
electron gases; layered Mott organic compounds; and the more recent addition of transition-
metal dichalcogenide (TMD) moiré bilayers. Indeed, as we will show in Section 3, these
systems all seem to exhibit remarkably similar distinct features, including clear signatures
of critical resistivity scaling. Because these systems all have a fixed electron density per
unit cell of n = 1 (at least in the insulating limit), the observed transitions are plausibly
within the universality class of bandwidth-tuned Mott transitions.

A brief side-note is in order: we briefly mentioned superconductivity and disorder-
induced insulators. These phases can also have a continuous transition between them, the
so-called superconductor-to-insulator transition [12,13]. This, however, is an interesting
topic that falls outside the scope of this review. Similarly, we also will not consider disorder-
driven metal-insulator transitions [14,15], since this regime typically does not include any
Mottness. More general but also somewhat older reviews of metal-insulator criticality can
be found in Refs. [3,4,16–18].

3. Experiments

Given that experimental results should always be leading, the aim of this section is to
introduce three material systems that are likely exhibiting a bandwidth-tuned Mott metal-
insulator transition: dilute 2DEGs, organics, and moiré systems. To support the clarity of
interpretation, we will stress experimental similarities between these systems without much
room for theoretical guesswork—that is the next section’s realm.

While each system has a different tuning parameter (density, pressure, or field), the elec-
trical resistivity through the transition is the key observable, see Figure 1. Its behavior reveals
how the transport gap ∆ decreases when we approach the transition from the insulating
side; as well as how the resistivity behaves on the metallic side, where Fermi liquid behavior
ρ(T) = ρ0 + AT2 is typically seen at T < TFL with an enhanced effective mass m∗. Remark-
ably, in all systems one also observes distinct resistivity maxima at T ∼ Tmax > TFL, signalling
the breakdown of coherent transport. Crossover to the quantum critical regime is described
by an additional temperature scale To, which is extracted from the scaling collapse of the
resistivity curves as shown in Figure 2.
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Figure 1. The key observable revealing a metal-insulator transition is the resistivity. Here we show ρ

vs. T resistivity curves as a function the tuning parameter, for representative examples of the three
material systems considered: (a) 2DEG in Si-MOSFET tuned by electronic density (reprinted with
permission from Ref. [19] Copyright 2019 American Physical Society), (b) Mott organic material
κ-(BEDT-TTF)2Cu2(CN)3 tuned by pressure [20], and (c) TMD moiré bilayer MoTe2/WSe2 tuned by
displacement field (Data imported from [21]). In all cases, one observes distinct resistivity maxima on
the metallic side, at a temperature Tmax that decreases towards the transition.

(a) (b) (c)Dilute 2DEG Organic TMD Moiré

Figure 2. Critical scaling has been observed in all three experimental systems, when the resistivity is
plotted versus T/To where To is the characteristic crossover (quantum critical) energy scale. Note that
in all cases a strong “mirror” symmetry [22,23] exists between the insulating (upper) and metallic
(lower) scaling branch. (a) In a dilute 2DEG, scaling of the bare resistivity ρ(T) was achieved by
simply rescaling T with To ∼ |δ|1.6 (Adapted with permission from Ref. [24] Copyright 1995 American
Physical Society); (b) In organic compounds, the normalized resistivity ρ̃ is obtained by normalizing
the resistivity by the critical resistivity along the Widom line. This leads to excellent scaling collapse
with To ∼ |δ|0.60±0.01 (Adapted with permission from Ref. [25] Copyright 2015 Springer Nature); (c) A
similar approach was followed in TMD moiré bilayer MoTe2/WSe2, with similar To ∼ |δ|0.70±0.05

(Data imported from [21]).

A practical summary of the experimental results is presented in Table 1.
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Table 1. A summary of available experimental results for the three classes of systems considered.
The sources (references) are given in the text below. Question-marks indicate the lack of reliable data.
Fermi liquid (T2) transport behavior has not been documented in 2DEG systems, in contrast to strong
evidence for it in Mott organics and TMD moiré bilayers. Note that the characteristic energy scales
∆, (m∗)−1, TFL, Tmax, as well as To display similar continuous decrease towards the transition in all
three systems, consistent with general expectations for quantum criticality. One should keep in mind
that the error bars on the estimated exponent could be substantial, since the results typically depend
strongly on the utilized fitting range.

System Dilute 2DEG Mott Organics TMD Moiré Bilayers

Transition Type continuous? weakly first order
(at T < Tc ∼ 0.01TF) continuous?

∆ |n− nc|
|P− Pc|νz,

νz ≈ 0.7− 1
|E− Ec|νz,
νz ≈ 0.6

1
m∗

|n− nc| ? ?

To
|n− nc|νz,
νz ≈ 1.6

|P− Pc(T)|νz,
νz ≈ 0.5− 0.7

|E− Ec|νz,
νz ≈ 0.7

TFL ? |P− Pc|
|E− Ec|νz,
νz ≈ 0.7

Tmax |n− nc| |P− Pc|
|E− Ec|νz,
νz ≈ 0.7

3.1. Dilute 2DEG in Semiconductors

In dilute two-dimensional electron gases (2DEG) [26], the electron density can be
quantified by the dimensionless parameter rs = 1/

√
πnaB where n is the electron density

and aB the Bohr radius. The ratio of interaction energy versus kinetic energy scales as rs,
and therefore at large enough rs (of the order rs ∼ 40 in 2D) the electrons will spontaneously
crystallize into a Wigner solid. In a two-dimensional Wigner crystal, the electrons form a
triangular lattice with exactly one electron per unit cell—essentially forming a frustrated
Mott insulator. When the electron density n is varied, the size of the unit cell changes
accordingly so that the Wigner crystal always remains fixed at one electron per unit cell.
The transition from an insulating Wigner crystal to a metal can therefore be plausibly
viewed as a bandwidth-tuned Mott transition. Note that this is counter-intuitive: after
all, one tunes the electron density! However, what matters is the electron density counted
per unit cell and that remains constant. This idea suggests [27–29] that the melting of a
Wigner solid by increasing density should be viewed as a Wigner–Mott transition, possibly
bearing many similarities to Mott transitions in narrow-band crystalline solids such as Mott
organics or transition-metal oxides. If this viewpoint is correct, then the resulting metal
above the transition should display resemble other strongly correlated Fermi liquids, a
notion that is starting to gain acceptance on the base of recent experiments [30–32].

Experimentally, high-quality 2DEGs can be realized in metal-oxide-semiconductor field-
effect devices (MOSFETs) in various semiconductors [24,30,32,33]. Through electrostatic gating
the electronic density can be elegantly tuned, typically in the range of n ∼ 1010–1012 cm−2.
The peak electron mobility in ultra-clean samples can be as high as 104 cm2/V s [19], which
implies that down to very low temperatures the transport properties are dominated by
electron-electron interactions (like Wigner crystallization) rather than extrinsic disorder effects.
Lower-mobility devices have also been extensively studied (for a review see Chapter 5 of
Ref. [18]), displaying different types of metal-insulator transitions displaying electron glass
dynamics [34], which we will not discuss here.

Indeed, tuning the electronic density leads to insulating transport below a critical
density, typically around nc ∼ 1011 cm−2 [24,33], see Figure 1a. Activated behavior is often
observed close to the transition [34,35], with the activation energy ∆ ∼ |n− nc|. Further on
the insulating side disorder effects may become important, where Efros-Shklovskii hopping
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(and other effects of disorder) is also observed [24], but only at the lowest temperatures.
On the metallic side, a pronounced resistivity drop (often by a factor of 10 or more) is
observed [24,30] below the temperature Tmax ∼ |n− nc| which decreases as the transition
is approached. Characteristic scaling of the resistivity maxima has been reported in several
systems [30–32], see Figure 3, which has been interpreted as evidence for strong correlation
effects. However, the expected T2 dependence of the resistivity has not been observed,
despite the reported effective mass enhancement (m∗)−1 ∼ |n − nc| [36], characteristic
of correlated Fermi liquids. Quantum critical scaling collapse of the resistivity curves
has also been demonstrated [24] around the critical density, albeit excluding the lowest
temperatures data, as shown in Figure 2a. This is achieved by rescaling T by a crossover
scale To ∼ |n − nc|νz, with νz ≈ 1.6. The resulting scaling function reveals surprising
“mirror symmetry” [22], which was phenomenological interpreted [23] as evidence “strong-
coupling quantum criticality”. Similar systems to these 2DEGs include the observation
of a Wigner crystal in low-density doped monolayer WSe2 [37], where more detailed
experiments still need to be performed.

(a) (b)

(c)

(d)

Figure 3. Characteristic scaling of the resistivity maxima has been reported in several 2DEG electron
systems in semiconductors: (a) Si-MOSFETs (adapted with permission from Ref. [29] Copyright 2012
American Physical Society); (b) p-GaAs/AlGaAs quantum wells (adapted with permission from Ref. [29]
Copyright 2012 American Physical Society); (c) SiGe/Si/SiGe quantum wells (adapted with permisssion
from Ref. [30] Copyright 2020 American Physical Society); (d) few layered-MoS2 (Adapted with permission
from Ref. [32] Copyright 2020 American Physical Society). All data collapse to the same (theoretical)
scaling function [29] obtained from the Hubbard model at half-filling, in the vicinity of the Mott point.

3.2. Organic Compounds

An organic compound [38] refers to a crystalline system where each unit cell contains
an entire molecule, rather than just loosely bound ions. A particularly interesting class of
organic compounds is based on the molecule bis-(ethylendithio)-tetrathiafulvalen (BEDT-
TTF or ET), which can be fabricated with other ions into quasi-two-dimensional layered
systems. Compounds based on BEDT-TTF exhibit a spectrum of interesting quantum
matter phenomena, ranging from superconductivity [39] to electron glass behavior [40].

Our interest goes out especially to κ-(ET)2Cu[N(CN)2]Cl and κ-(ET)2Cu2(CN)3, where
the molecules are organized in triangular lattice layers [38]. These materials are strongly
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correlated, and indeed, despite being half-filled they are insulating at ambient pressures.
Due to the geometric frustration of the triangular lattice [11], no magnetic order has been
observed in κ-Cu2(CN)3 and antiferromagnetic order only at relatively low temperatures
(T < TN ≈ 20K) in κ-Cl. The absence of magnetic order is the strongest indication that
κ-Cu2(CN)3 might realize a spin liquid ground state [41,42].

Upon applying pressure, a zero-temperature first-order phase transition brings the
system into a paramagnetic metallic phase at pc = 122 MPa (κ-Cu2(CN)3) or pc = 24.8 MPa
(κ-Cl), see Figure 1a [20,25]. The first order phase boundary ends in a critical point at
Tc = 20 K or Tc = 38 K, respectively. It is important to emphasize that these temperatures
are very small compared to the electronic energy scales. The Hubbard repulsion U and
bandwidth W are both on the order of a fraction of eV [42], which implies Tc � U, W. As
such, even though the observed Mott criticality appears at nonzero temperatures, much of
the observed phenomena above Tc can be described as if the system resides in the vicinity
of a quantum critical point [25].

Above Tc, a crossover pressure Pc(T) can traced [25] where the measured resistivity exhibits
an inflection point, see Figure 4. This defines the “quantum Widom line” (QWL) [43] by analogy
to the standard liquid-gas crossover. Defining the critical resistivity ρc(T) to be the resistivity
along the QWL, all resistivity curves collapse onto each other when plotted as ρ(P, T)/ρc(T)
vs. T/T0(P), as shown in Figure 2b. Here the scale To(P) reflects a critical energy scale that
vanishes at the critical pressure, To ∼ |P− Pc|0.6 for Cu and To ∼ |p− pc|0.5 for κ-Cl [25]. On
the insulating side of the transition, the resistivity is approximately activated ρ ∼ exp(∆/T) [42].
On the metallic side, it follows [44] the standard Fermi liquid behavior at low temperatures
ρ(T) = ρ0 + AT2, up to a temperature scale TFL, see Figure 5a. This destruction of the Fermi
liquid seems to correspond to the appearance of a maximum in the resistivity [20].

(a) (c)(b)

Figure 4. Finite temperature phase diagram of the Mott organic materials. (a) first-order phase transition
line, as observed in κ-Cu2(CN)3 (adapted with permission from Ref. [25] Copyright 2015 Springer
Nature) at T < Tc ∼ 20K, displaying “Pomeranchuk” behavior [45], by “sloping” towards the metallic
phase. The corresponding “Quantum Widom Line” [43] arises at T > Tc, which is identified as the center
of the quantum critical region [46] with resistivity scaling [25]. (b) Phase diagram [44] for κ-Cu2(CN)3

over a broader T-range, displaying the convergence of the quantum Widom line (QWL) on the insulating
side, and the “Brinkman-Rice” line (TBR = Tmax, which intersect at the critical end-point T = Tc. The
Fermi-Liquid line TFL < TBR is also shown. (c) The universal phase diagram for a series of spin-liquid
Mott organics compounds was established [42] by rescaling the temperature T and the interaction
strength U by the respective electronic bandwidth W. The parameters W and U were independently
measured [42] for each material using optical conductivity.

In addition to transport measurements, and in contrast to other systems we consider, Mott
organics have also been carefully investigated using optical probes. This allowed to directly
identify [42] the quantum Widom line, which is back-bending towards the insulating side at
higher temperatures following the closing of the Mott gap. In addition, the “Brinkman–Rice”
line traced by Tmax was identified as marking the thermal destruction of Landau quasiparticles,
as seen by the vanishing of the Drude peak in the optical conductivity [44], see Figure 6.
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Finally, the controversy about the presence or absence of the low-T phase coexistence
region has been resolved in Mott organics, by using dielectric spectroscopy [20]. Its precise
location on the phase diagram has been identified by the observation [20] of colossal
dielectric response, as a smoking gun for percolative phase coexistence. In addition, the
same technique was able to demonstrate the coincidence of the resistivity maxima in the
(uniform) metallic phase, with the thermal destruction of Landau quasiparticles. This is seen
as a dramatic drop and a change [20] of sign of the dielectric function at T < TBR = Tmax.
These experimental results are shown in Figure 6, and discussed in more detail in Section 5.

(a) (b)

Figure 5. Fermi liquid behaviour at low temperatures, for (a) Mott organic material κ −
[(BEDT-TTF)1−x(BEDT-STF)x]2Cu2(CN)3 [44] and (b) MoTe2/WSe2 moiré bilayers (Data imported
from [21]). Clear ρ = ρ0 + AT2 behavior is observed in both cases, up to a temperature scale TFL

that seems to decrease linearly towards the metal-insulator transition. The resistivity curves can be
collapsed by plotting ρ(E, T)/ρc(T) vs. T/T0 where T0 ∼ |E− Ec|0.70±0.05, see Figure 2c. Note that
this crossover scale seems to follow both the gap size on the insulator, as well as the destruction of
the Fermi liquid on the metallic side.

Figure 6. Transport behavior vs. dielectric response across the phase diagram of κ-Cu2(CN)3 [20].
(a) DC transport shows only very gradual change across the BR line (resistivity maxima), and cannot
one see any clear indication of the phase coexistence region. (b) In dramatic contrast, the low-
frequency dielectric function ε1 assumes small positive values in the Mott insulator (pale pink), and
large negative values in the quasiparticle regime (deep blue); we clearly see the boundaries of these
regimes tracing the QWL and the BR line (following Tmax), as observed in transport. Remarkably,
“resilient” quasiparticles [47] persist past the Fermi Liquid line, at TFL < T < TBR = Tmax, where
bad metal behavior [48] (metallic transport above the Mott-Ioffe-Regel [49] limit is observed). At low
temperature, the Mott point is buried below the phase coexistence dome, which is vividly visualized
through colossal dielectric response (ε1 ∼ 103–104).



Crystals 2022, 12, 932 9 of 24

3.3. Moiré Materials

The most recent addition to the field of strongly correlated systems are moiré materials.
These are bilayer structures made of Van der Waals materials such as graphene and transition-
metal dichalcogenides (TMDs). A lattice mismatch or relative twist angle between the layers
causes a large-scale geometric “moiré” pattern. This larger unit cell (typically in the range of
5–10 nm) drastically reduces the effective electron kinetic energy such that the bandwidth is on
the order of W ∼ 10 meV. As a result, the systems become strongly correlated, with U/W ∼ 10
or larger. Using electrostatic gating one can tune the electronic density, typically in the range of
a few electrons or hole per moiré unit cell (corresponding to n ∼ 1012 cm−2).

While the most famous of correlated moiré materials is without a doubt twisted bilayer
graphene, more convincing evidence for Mott correlations has so far only been observed in
TMD bilayers. Here, we focus on one particular system: the heterobilayer MoTe2/WSe2 [21].
The lattice mismatch between MoTe2 and WSe2 gives rise to a moiré period of aM ∼ 5 nm.
At half-filling of the first valence band, an insulating phase appears which can be tuned into
a metal by applying a vertical displacement field E. This flat valence band can be described
by a spin-orbit coupled triangular lattice Hubbard model, where the displacement field E
tunes the bandwidth [50].

The temperature-dependent resistivity across the transition is shown in Figure 1c.
On the insulating side, the system has well-defined activated behavior of the resistivity
with a gap ∆ continuously vanishes as the critical displacement-field value is approached,
∆ ∼ |E− Ec|0.60±0.05. At the critical point, the resistivity is claimed to follow a powerlaw,
ρc ∼ T−1.2, although the reliability of the low-T data may be questionable. On the metal-
lic side, the low-T resistivity follows the Fermi liquid law ρ(T) = ρ0 + AT2 where the
quadratic prefactor diverges A ∼ |E− Ec|−2.8±0.2. This clear Fermi liquid does not persist
up to all temperatures, instead, a resistivity maximum appears at Tmax ∼ |E− Ec|0.70±0.05,
see Figure 5b. No magnetic order has been observed, which might be due to the geometric
frustration of the triangular moiré lattice structure. Remarkably, this experiments uses the
recently-developed excitonic sensor [21], which allows the measurements of the spin sus-
ceptibility across the transition. This reveals Curie-law behavior over a broad temperature
range, thus demonstrating the presence of localized magnetic moments, as expected for a
Mott system.

Finally, among other moiré systems it is worth mentioning the twisted hetero-bilayer
WSe2 [51]. Though it was claimed to exhibit some sort of Mott-related criticality, it is
not certain whether a true insulating phase has indeed been observed given that the
activated transport does not continue down to the lowest measured temperatures. In
addition, insulating behavior seems to disappear above a relatively low of the order of
T∗ ∼ 5–10 K, which is similar to twisted bilayer graphene, but much smaller than the
estimated bandwidth of the order of W ∼ 100–200 K. Furthermore, no clear resistivity
maxima on the metallic side have been observed. Whether or not tbWSe2 can be classified
as a true Mott insulator is therefore quite controversial. Alternatively, the observed behavior
could be a result of some sort of magnetic order, which may arise close to half filling even
in weakly-coupled systems.

3.4. Universal Criticality

The resistivity curves of the three systems, as shown Figures 1 and 2, show remarkable
universality, reflected in the fact that all curves can be collapsed by scaling with T0 ∼ |δ|zν

where δ is the tuning parameter and zν the critical exponent. It is important to realize,
however, that the precise scaling procedure applied was not identical in the three cases,
and the resulting critical exponent also somewhat depend on the system.

So what is different between these systems? Let us first focus on the energy scale.
The typical bandwidth W ranges from ∼100 s meV in Mott organics, to ∼10 s meV in the
moiré systems, to 0.1–1 meV in the dilute 2DEGs. A finite temperature critical point is only
observed in the organics, though at about Tc ∼ 1%W—which leaves open the possibility
that a finite T critical endpoint exists in the other two systems. Indeed, most experiments
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are performed (so far) above the Kelvin range in moiré materials, and above 100 mK in
2DEG, which makes it hardly possible to reliably explore the T-range below few percent of
the bandwidth.

Secondly, in order to achieve quantum critical scaling in Mott organics, one needs
to first identify a Widom line as a demarcation of the finite-temperature crossover from
insulator to metal. A similar analysis was carried out for moiré materials, although the
obtained Widom line displayed no apparent “curving” as a function of temperature. This is
manifestly not performed in the dilute 2DEGs. It might be interesting to see whether better
collapse can be achieved through such a method.

Thirdly, with a bit of good-will, the critical exponents in organics and Moiré systems
are in the same ballpark; whereas the critical exponent in the dilute 2DEGs with zν = 1.60
is significantly larger. It is also important to realize that in 2DEGs there has not been a
clear observation of a Fermi liquid regime—unlike in organics and Moiré systems, see
Figure 5. These ways in which 2DEGs stand out might be related to the fact that there is no
underlying (Wigner) lattice on the metallic side, which could point to a perhaps nontrivial
role of significant charge density fluctuations on the metallic side, an effect not present in
lattice Mott systems.

4. Competing Theoretical Pictures

As we mentioned in Section 2, the observation of Mott criticality and scaling opens
big questions on the theoretical front. Currently, there exist three main different physical
pictures to address these issues.

A true Mott transition should not be hidden by some period doubling symmetry
breaking. The Lieb-Schultz-Mattis theorem states that in absence of spin order, the ground
state of Mott insulator must be a spin liquid [52]. This leads directly to the first theoretical
picture: Mott criticality can only occur if the Mott phase is a spin liquid, where inter-site
spin correlations play an important role. The theory of Senthil [53] chooses this path, by
introducing an explicit spinon theory of the Mott spin liquid.

Alternatively, one focuses on local electronic processes only, ignoring inter-site spin
correlations. Then the Mott transition at low temperature becomes first-order; however, it is
only weakly first order. A first order transition line always ends at a critical point Tc, and as
long as Tc is sufficiently low compared to any experimental scale, one still finds criticality
and scaling. This is the picture emerging from Dynamical Mean Field Theory (DMFT) [54],
a strong-coupling self-consistent approach to calculate the local electronic self-energy.

The third picture again accepts the first-order nature of a Mott transition, but this
time embraces it. A first-order transition is always accompanied by a region where both
phases coexist. Minor disorder or self-generated pattern formation [55,56] can smear this
phase coexistence region into a continuous-looking transition exhibiting nontrivial electron
dynamics. This is the ‘percolation theory’ picture of Mott criticality.

The goal of this review paper is to put the main theoretical predictions next to the
experimental findings. As such, we will not dive into the pros and cons of each theoretical
picture. A summary of the main theoretical predictions is provided in Table 2.
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Table 2. A summary of predictions from competing theoretical pictures. The expected transition
type differs between the three pictures, with observable differences in the behavior of the mass
enhancement m∗, the Kadowaki–Woods ratio A/(m∗)2, the destruction of the Fermi liquid at TFL,
and the appearance of a resistivity maxima at Tmax. Details are provided in the text below.

Theory Predictions 2D Spinon Theory DMFT Percolation Theory

Transition Type continuous weakly first order
(at T < Tc ∼ 0.01TF) first order

∆ |g− gc|Sνz,
νz = 0.67

|U −Uc1|νz,
νz ≈ 0.8 remains finite

m∗ weak: ln 1
|g−gc | strong: |U −Uc2|−1 no divergence

A/(m∗)2 ? constant
(KW law obeyed)

diverges: (xo − xc)−t;
t = s/m

TFL |g− gc|2ν |U −Uc2| T∗ ∼ |xo − xc|

Tmax Tmax = ∞ |U −Uc2| T∗ ∼ |xo − xc|

4.1. Spin Liquid Picture of the Mott Point

A popular approach to describe a spin liquid state is through spin-charge separation. In
Ref. [53], the electron is split into a charge-0 spin-1/2 fermionic spinon f and a charge-e
spin-0 bosonic chargon b. The Mott transition, in this picture, amounts to the condensation
of the chargon field, whose critical behavior falls within the 3D XY universality class.
The Fermi liquid corresponds to the condensed phase of the chargon, whereas the Mott
insulator corresponds to a gapped phase of the charged boson. The splitting of the electron
leads to redundant degrees of freedom described by an emergent gauge field. Fluctuations
of this gauge field lead to a logarithmic enhancement of the quasiparticle effective mass,

m∗ ∼ ln
1

|g− gc|
, (2)

where g is the tuning parameter and gc is the critical value. However, as in any theory with
a non-local electronic self-energy, the quasiparticle residue Z is not simply proportional to
the inverse effective mass; instead Z ∼ |g− gc|β/ ln 1

|g−gc | . Furthermore, approaching the
Mott transition from the metallic side the spin susceptibility χ remains constant whereas
the compressibility κ vanishes. Physically, these effects result from important inter-site spin
correlations, where a gapless spin liquid can be viewed as a certain superposition of spin
singlets formed by pairs of spins in the Mott insulating state. As a result, there emerges a
finite gap δ to charge excitations, while the rearrangement of singlets leads to characteristic
gapless spin excitations with fermionic quasiparticles. This picture is a specific realization
of the famous RVB picture of Baskaran and Anderson [57], first proposed in the context of
high-Tc superconductors.

Another significant consequence of describing the Mott transition as chargon conden-
sation, is that the T = 0 conductivity is not continuous. The electron resistivity will display
a universal jump from a (disorder)-dependent constant value ρ = ρ0 in the Fermi liquid; to
ρ = ρ0 +

Rh
e2 (with R of order one) at the critical point; to ρ = ∞ in the Mott insulator. On

the metallic side, the Fermi liquid is predicted to break down above TFL ∼ |g− gc|2ν and
give rise to a marginal Fermi liquid state, which in turn survives up to TMFL ∼ |g− gc|ν.
In both cases, ν = 0.67 is the 3D XY correlation length exponent. On the insulating side,
the boson condensation picture implies that the charge gap vanishes as ∆ ∼ |g− gc|ν. The
spinons, however, remain gapless and form a spinon Fermi surface, with low-temperature
specific heat scaling as C ∼ T2/3.

Note that the original work in Ref. [53] does not directly provide a detailed description
for finite temperature dependence of the resistivity, and thus no explicit prediction for a
possible deviation from the Kadowaki-Woods (KW) law (A/(m∗)2 ≈ constant) [58]. On
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the other hand, Ref. [58] presents arguments that the physical requirement for the validity
of the KW law is the locality of the electronic self-energy (as in DMFT theory) [54], a
condition which is not obeyed by the RVB-type spin-liquid theories such as the Senthil’s
spinon picture.

It should be stressed that the spinon theory makes one sharp prediction about fi-
nite temperature transport in the critical regime. Namely, the critical resistivity curve is
predicted to assume a universal power-law form ρc(T) ∼ 1/T in d = 3 [59], but remain
T-independent in d = 2, see Figure 7. This therefore leads to distinct resistivity maxima in
3D, but not in 2D [53], where monotonic T-dependence should be found on both sides of
the transition, albeit with opposite slope. Physically, this difference reflects the proposed
importance of “infrared” (IR, long distance) effects due to gauge fields, which should have
strong (spatial) dimensionality dependence. Concerning quantum critical scaling, it is
interesting that this theory proposes the emergence of two crossover temperature scales,
both of which vanish at the transition.

Figure 7. Predictions of the spinon theory (reprinted with permission from Ref. [59] Copyright 2009
American Physical Society). (a) The phase diagram features a quantum critical point at T = 0, and
two distinct finite-T crossover scales T∗ (above which the system is quantum critical) and T∗∗ (below
which the system is either a metal or a gapless spin liquid). (b) and (c) Resistivity and conductivity
along the lines A, B and C in the phase diagram in (a). Critical resistivity is predicted to diverge as
ρc(T) ∼ 1/t in d = 3, leading to resistivity maxima on the metallic side (coductivity minima). In
contrast, the same theory predicts finite critical resistivity ρc(T) ∼ ρ∗ in d = 2 [53], hence monotonic
behavior on both sides of the transition and no resistivity maxima.

We finally mention that a similar spin-charge separation theory has been very recently
proposed to also describe the Wigner–Mott transition in TMD bilayers, where a possible
role of charge fluctuations has also been discussed for the metallic side [60,61].
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4.2. Dynamical Mean Field Theory Picture of the Mott Point

Our second theory of interest is Dynamical Mean Field Theory (DMFT), which ex-
plicitly ignores all nonlocal (spin or charge) spatial correlations, and therefore aims to
self-consistently calculate the local electronic self-energy Σ(ω) [54]. Physically, its real part
describes the modifications of the electronic spectra, while its imaginary part encodes the
frequency and temperature dependence of the electron-electron scattering rate. In this way,
this theory is not limited to low-temperature excitations only, but is able to capture strong
inelastic scattering at high temperatures, and therefore describe both the (coherent) Fermi
liquid regime, and also the incoherent high-temperature transport, for example the famed
bad metal behavior [48,62] above the MIR limit [49].

While there exist some limiting cases where an analytic solution is possible, it is mainly
a numerical approach at finite temperature. DMFT is exact in the limit of large coordination,
which physically corresponds to maximal magnetic frustration. Therefore, in the simplest
implementation, DMFT describes Mott physics in absence of any magnetic order, nor does
it include any (inter-site) spin liquid correlations. We should mention that extensions of
DMFT have recently been proposed [63] that include spinon effects, based on an alternative
(matrix M, N) rotor representation. This theory, which includes some dynamical effects
even at the saddle-point level, suggest that coherent spinon excitations are very fragile to
charge fluctuations emerging upon the closing of the Mott gap, suppressing the spin liquid
correlations not only on the metallic side, but also within the critical region. We will not
further discuss these most sophisticated approaches here, but will limit our attention to the
predictions of the simplest single-site DMFT theory.

When applied to the single-band Hubbard model on a frustrated lattice (such as
the triangular lattice), DMFT predicts that on the metallic side the quasiparticle mass
diverges linearly m∗ ∼ |U − Uc2|−1 at a critical value Uc2 (similar to the prediction of
the Brinkman–Rice (BR) theory of the Mott transition [64]). The quasiparticle weight Z
is inversely proportional to (m∗). Similarly, other features of the Fermi liquid such as
the Kadowaki-Woods law A ∼ (m∗)2 are upheld. This Fermi liquid behavior persists
up to a temperature TFL that vanishes linearly when approaching Uc2. Interesting, at
Tmax ∼ TFL the resistivity exhibits a maximum [29]. On the insulating side, there exist
no well-defined quasiparticles as the self-energy diverges, Σ(ω) ∼ 1/ω. The electronic
spectrum is split into an upper and lower Hubbard band, separated by a gap that remains
nonzero at Uc2. The insulating state becomes unstable at a lower value of the interaction
Uc1 < Uc2, where the gap closes δ ∼ |U −Uc1|, νz, νz ≈ 0.8 [65]. As a result, there emerges
a low-T first-order metal-insulator transition, and an associated phase coexistence region at
Uc1 < U < Uc2 [54]. These main predictions are summarized in Figure 8.

At nonzero temperature, the first-order transition line ends at a critical point at a tem-
perature Tc ≈ 0.015W, significantly smaller than the bare bandwidth W. At temperatures
T � Tc the results can be viewed as effectively quantum critical [46,65]. This quantum
critical regime is centered around the so-called quantum Widom line (QWL) [43], which
physically represents a finite-temperature instability trajectory of the insulating phase, as
shown in Figure 8a. It extends the first-order line past T = Tc, and can experimentally be
detected from an inflection point analysis [25] of the resistivity curves. In this regime, the
resistivity satisfies the scaling law ρ(T, δU) = ρc(T) f (T/T0(δU)) with a crossover temper-
ature scale To ∼ |δU|νz where νz ≈ 0.6, see Figure 8c. The crossover scale To is a property of
the quantum critical regime and should not be confused with the low-temperature scaling
of the Fermi liquid temperature TFL. DMFT therefore predicts two different regimes of
scaling: the quantum critical regime at T � Tc, and the metal regime dominated by scaling
in TFL.
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(a)

(b) (c)

Figure 8. Predictions of DMFT theory. (a) Phase diagram featuring a phase coexistence region
at T < Tc, and a Quantum Critical region centered around the Quantum Widom Line (QWL)
(adapted with permission from Ref. [46] Copyright 2011 American Physical Society). (b) Resistivity
(normalized by the Mott-Ioffe-Regel (MIR) limit) as a function of temperature T across the transition.
Note the pronounced resistivity maxima on the metallic side (adapted with permission from Ref. [66]
Copyright 2010 American Physical Society. (c) scaling collapse of the resistivity curves, displaying
pronounced “mirror symmetry” of the two branches (adapted with permission from Ref. [46]
Copyright 2011 American Physical Society).

4.3. Percolative Phase Coexistence Picture

In the early theories of both Mott insulators [2] and Wigner crystals, the transition from
insulator to metal was often assumed to be robustly first order, at least at sufficiently low
temperature. However, even the presence of weak disorder or medium-ranged interactions
will create an “emulsion” (microscopic phase coexistence) with Mott/Wigner insulating
“islands” in between metallic “rivers” as proposed by Spivak and Kivelson in the context of
2DEG systems in semiconductors [55,67]. If so, then tuning bandwidth and/or temperature
should produce a continuous variation of the metallic fraction x. As long as it exceeds the
percolation threshold (x > xc), the system is conducting. At x < xc the metallic domains no
longer connect across the system, and conduction stops, at least at T = 0. Critical behavior
now arises because we dealing with a classical percolation transition.

In this picture, the T = 0 metal-insulator transition may occur without actually closing
the insulating gap ∆. Similarly, at the percolation threshold x = xc the metallic Fermi
liquid at low T is still stable, and consequently there is no strict divergence of the effective
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mass m∗, nor the vanishing of TFL at the percolation threshold. We note, however, that
such a (classical) percolation picture should apply only if the characteristic domain size
is sufficiently larger than the characteristic correlation (or dephasing) length, therefore
strictly speaking not at the lowest temperatures. However, finite-temperature variation of
the transport properties should be adequately captured, as abundantly documented [68] in
other systems featuring microscopic phase separation, such as Colossal Magneto-Resistance
(CMR) manganites, for example.

There is, however, an interesting and nontrivial feature of the percolation picture
pertaining to finite temperatures. Because of its localized spins, the entropy of the Mott
or Wigner–Mott insulating phase should be higher than that of the of the metal (Fermi
liquid). As a result, when raising the temperature in the metallic regime, the insulating
volume fraction will increase: a manifestation of the Pomeranchuk effect [45]. As a result,
the resistivity should increase up to some T = Tmax, above which the metallic domains no
longer connect, and resistivity will decrease again [56], leading to resistivity maxima. This
qualitative picture has been advocated in the work of Spivak and Kivelson, but no concrete
prediction of the precise temperature dependence of the resistivity has been made, nor how
the corresponding family of curves should scale as the transition is approached.

Interestingly, the same physical picture should in fact apply not only to Wigner–Mott
transitions in semiconductors, but also the to conventional Mott transition, provided that
there exists a well-defined metal-insulator phase coexistence region around the Mott point.
Indeed, recent work on Mott organics [20] revealed precisely such a phase coexistence
region, albeit only at very low temperatures of the order of at most few percent of the
(bare) Fermi energy. Here, careful theoretical modeling [20] firmly established the validity
of the percolation picture, but only within a well-defined phase coexistence region. In
contrast, in all the systems studied (2DEG, Mott organics, moiré), the pronounced resis-
tivity maxima persist even much further onto the metallic side, where Tmax can reach a
substantial fraction of TF, where phase coexistence is very unlikely. Furthermore, recent
experimental work on Mott organics by Kanoda and collaborators demonstrated [69,70] the
extreme fragility of such a phase coexistence region to disorder, as generally expected in
2D systems [71]. Nevertheless, it is extremely useful to have an independent experimental
method to distinguish the phase coexistence region (where percolative effects are likely)
from the regimes where a more uniform electron fluid/solid resides. The possibility to do
so was spectacularly demonstrated in the context of Mott organics. In the next section we
discuss how the dielectric response can tell which mechanism (quasiparticle destruction or
percolation) is at play in a given regime.

We briefly mention that percolation effects have been also discussed in the context of
spinon theory in a recent paper [72], which does require however significant disorder. On
the other hand, the Spivak-Kivelson theory does not require disorder as the micro-emulsion
of insulators and metals can be self-generated. This seems to be more in line with the
experiments of Section 3: at least the 2DEGs [19] and the Mott organics [38] are displaying
Mott criticality in the cleanest samples possible. It is therefore very plausible that most
universal features observed in all critical Mott systems are not the result of disorder, but
are instead the inherent manifestations of strong correlation physics.

5. Interpreting Resistivity Maxima

As we have seen from our brief theory overview above, several scenarios were pro-
posed, with sometimes similar predictions for characteristic features seen in experiments.
A notable example is the clear emergence of the resistivity maxima on the metallic side, at a
temperature T = Tmax & TFL, which is seen to decrease towards the transition. What is its
physical content? The three theoretical pictures propose very different physical perspectives
on what goes on here.

As we mentioned in Section 4.1, spinon theory [53] predicts the presence of resistivity
maxima only in d = 3, but not in d = 2. However, robust resistivity maxima are clearly
seen all the material systems of Section 3. An understanding of the resistivity maxima must
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therefore come from either the DMFT perspective on Mott physics, or from the percolative
scenario. Both mechanisms provide reasonable albeit very different routes to explain
the resistivity maxima. How should one distinguish them and thus identify the precise
mechanism at play in a given system? Luckily, important clues were provided by recent
experiments on Mott organics [20]. Here one finds two distinct regimes, both featuring
similar resistivity maxima, but with very different dielectric response. One such regime is
corresponds to the (spatially inhomogeneous) metal-insulator phase coexistence region,
where colossal enhancement of dielectric response has been found. The other regime
was found further on the metallic side, where a dramatic drop and a change of sign the
dielectric constant signaled thermal destruction of coherent quasiparticles due to strong
correlation effects.

In the following we show how general scaling arguments can be used within each of
the two proposed scenarios, to demonstrate the general robustness of these trends, thus
providing a new window of what precisely goes on near the Mott point.

5.1. Resistivity Maxima from Thermally Destroying Coherent Quasiparticles

Both experiments and theory provide evidence that a strongly correlated Fermi liquid
forms on the metallic side of the Mott point, with a characteristic “Brinkman–Rice” (BR)
energy scale TBR ∼ 1/m∗, which decreases towards the transition, thus characterizing
the heavy quasiparticles. Inelastic electron-electron scattering increases with temperature,
eventually leading to the thermal destruction of the quasiparticles around T ∼ TBR, and
the associated modification of both the single particle (ARPES) spectra and the optical
conductivity. At higher temperatures, transport assumes incoherent character, which can
no longer be understood in terms of the quasiparticle picture or Fermi Liquid ideas alone.
Its precise form generally depends on band filling and the correlation strength, but more
precise predictions require a specific microscopic model and a theoretical picture.

Concrete and quantitative results, in this regime, were given by DMFT theory, which
provided first insight into the origin of the resistivity maxima in certain Mott organic
materials at half-filling, as well as in certain oxides. Subsequent DMFT studies stressed that
the characteristic temperature scale for the resistivity maxima indeed tracks the BR scale
of the quasiparticles (Tmax = TBR), while preserving the functional form of the resistivity
curves across this coherence-incoherence crossover. This revealed the scaling behavior of
the resistivity curves in the correlated metallic regime, with a universal scaling function of
T/Tmax. The predicted scaling behavior has been confirmed by a number of experiments
on various systems [29,30,32], displaying even quantitative agreement with the theoretical
scaling function, with no adjustable parameters.

Further optical and dielectric studies [20] in Mott organics also confirmed the predicted
destruction of the Drude peak around TBR, again signaling the thermal destruction of
quasiparticles. They established that it dramatically affects not only DC transport, but
also the dielectric response, which in this metallic regime is seen to display a dramatic
drop from moderate positive values at T > Tdrop ∼ Tmax to very large but negative values
at T < Tdrop ∼ Tmax. These studies, combining experiments and DMFT theory, have
firmly established that the dielectric response can be used to directly reveal the thermal
destruction of quasiparticles around the BR temperature.

In the following, we extend the systematic studies of Ref. [29], to stress that within
DMFT both DC transport and the dielectric response display the characteristic crossover
behavior across TBR, and the associated scaling behavior upon approaching the Mott
point. To do this we calculate the dielectric function ε1 as a function of temperature and
interaction U, using the same setup as in our recent work [20]. For simplicity, we focus on a
simple semi-circular band model at half filling, and carry out DMFT calculations using the
standard CTQMC impurity solver with the the Maximum Entropy method for analytical
continuation to the real axis. Just as in Ref. [29], once we get the single particle self energy
from our DMFT equations, we calculate the real part of optical conductivity σ1(ω) from the
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standard Kubo formula, and the imaginary part of optical conductivity σ2(ω) using the
Kramers-Kroning tranform; the (complex) dielectric function is then obtained via [73]

ε(ω) = 1 + 4πi
σ(ω)

ω
. (3)

The results for the single-particle density of states and the optical conductivity are
shown in Figure 9, and results for the DC transport and the low-frequency dielectric
response are displayed in Figure 10, for the parameter range corresponding to the correlated
metallic phase (U . Uc1). Here panels (a) and (b) reproduce the results of Ref. [29], showing
the characteristic scaling behavior of the resistivity maxima near the Mott point. The
analogous behavior for the dielectric function ε1 is shown in panels (c) and (d), firmly
establishing that the observed crossover behavior assumes a universal scaling form in the
correlated metallic regime. The notion that the thermal destruction of quasiparticles lies
behind both phenomena is seen even more clearly in Figure 11, where we show how the
scale Tmax for the resistivity maxima, and the scale Tdrop of the dielectric response, both
scale with the quasiparticles weight Z = m/m∗, as the transition is approached.

These results establish a way to experimentally recognize the thermal destruction of
quasiparticles as a dominant mechanism behind the resistivity maxima within a correlated
but uniform metallic phase. Since the correlation processes captured by DMFT are essen-
tially local (i.e. “ultraviolet, UV”), these effects should not display significant dependency
on spatial dimensional. Indeed, experiments have shown that similar resistivity maxima
are seen within correlated metallic phases both in 2D and in 3D systems.

Figure 9. (a) DMFT results for the evolution of the single-particle Density of States (DOS) for several
values of the temperature (reprinted with permission from Ref. [66] Copyright 2010 American
Physical Society), as well as (b) that of the optical conductivity, in the strongly correlated metallic
regime. Different colors correspond to the four distinctive transport regimes (inset in (b)). DOS fea-
tures a distinct quasiparticle peak at low temperatures, which is thermally destroyed at temperature
Tmax = TBR ∼ (m∗)−1, where the resistivity (inset of right panel) reaches a maximum. The optical
conductivity displays the corresponding suppression of the low-frequency Drude peak around the
same temperature.
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Figure 10. (a) DC resistivity as a function of temperature for several interaction strengths. (b) Scaled
resistivity curves. (c) Real part of dielectric function ε1 at ω/D = 0.01, as a function of temperature
for several interaction strengths. (d) Scaled dielectric function curves. Results are obtained for a
half-filled Hubbard model solved within DMFT.
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Figure 11. (a) Tdrop as a function of Tmax. (b) Tmax as a function of Z. (c) Tdrop as a function of Z.

Note, however, that DMFT predicts very different behavior closer to the Mott point,
specifically within the phase coexistence region at T < Tc and Uc1 < U < Uc2. Here,
just as around any first-order phase transition line, we expect hysteresis phenomena and
inhomogeneous phase separation, where metallic and insulating domains coexist on a
nano-scale. As stressed in the seminal work by Spivak and Kivelson [55], thermal effects
can modify the relative volume fraction of the two coexisting phases, producing under
appropriate conditions the characteristic resistivity maxima. In recent work motivated by
experiments, a microscopic “hybrid-DMFT” approach was developed [20] to quantitatively
describe this regime in the context of Mott organics, resulting in spectacular agreement
with experiments. In the following section, however, we wish to stress that the qualitative
aspects of this regime display a number of universal scaling features, which can be precisely
understood from the perspective of percolation theory.

5.2. Percolation Scenario Due to Phase Coexistence

To focus on the universal scaling aspects of percolative processes within the metal-
insulator phase coexistence region, we follow the seminal ideas of Efros and Shklovskii [74],
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and set up a two-component random resistor network model, with characteristic low-
frequency form for the (complex) conductivity for each component:

σI = σo
I exp(−∆/T)− iCω,

σM =
σo

M
1− iωτ

.
(4)

Here we assumed activated DC transport for the insulating component, with ca-
pacitance C and a standard Drude form for the conducting component, with finite DC
conductivity σo

M. To leading order near the percolation point, we ignore the T-dependence
of σo

M, σ0
I , and C, since the dominant effects come from the variation of the respective

volume fractions, and the activated form of insulating transport. The temperature is ex-
pressed in the units of the activation energy ∆, which is also taken to be a constant. The
corresponding expressions for the (complex) dielectric functions of the two components
are given by:

εI = 1 + 4πC +
4πi
ω

σo
I exp(−∆/T),

εM = 1− 4πτσo
M +

4πi
ω

σo
M.

(5)

Here we ignored the capacitance of the metallic domains, which can be neglected if
τσ0

M/C � 1.
Such a random resistor network model is appropriate for any percolating two compo-

nent metal-insulator system. To describe formation of the resistivity maxima, an additional
physical condition has to be met, as emphasized by Spivak and Kivelson in the context
of Wigner–Mott transitions, but which is in fact valid for any Mott-like system in gen-
eral. As we mentioned before, this “Pomeranchuk effect” [45] requires that the first-order
line (and the entire phase coexistence region) be “tilted” towards the metal, so that the
higher-entropy phase emerges at higher temperatures. To schematically represent such a
situation we assume that, within the phase coexistence region, the volume fraction x of the
metallic component decreases with temperature. As an illustration, we take the following
simple model:

x(xo, T) = xc +
1
2

tanh[
xo − x∗(T)

w(T)
], (6)

where xc represents the percolation threshold, w(T) = a(Tc − T)/Tc defines the width
of the coexistence region, and x∗(T) = xc + b(T/Tc), as illustrated in Figure 12a, for
a = 0.4 and b = 1. In this model, the parameter xo controls the metallic volume fraction
at T = 0, which decreases at T > 0, and reaches the percolation threshold x = xc at
T = T∗(xo) = Tc(xo − xc)/b. Physically, the the DC resistivity will first increase with T as
the metallic volume fraction decreases. Past percolation threshold, however, the metallic
domains no longer connect. Transport then assumes insulating (activated) form, resulting
in subsequent resistivity decrease at T > T∗, and the emergence of resistivity maxima
around T ∼ T∗. Similarly, the dielectric constant ε1 grows (diverges) as the percolation
threshold is approached from the insulating side, due to the formation of large metallic
clusters with increased polarizability. On the metallic side, however, it displays a rapid
decrease, dropping to large negative values within the metallic phase. As a result, dielectric
response displays colossal enhancement around the percolation threshold, a phenomenon
that can be viewed as a smoking gun for percolative charge dynamics.
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(a) (b) (c)

Figure 12. (a) The red line is x = x(T∗). For T larger than the blue dashed line, x = 0. We calculate
the percolation results along the grey dashed lines. (b) R/Ro

M as a function of T for different T∗.
(c) Scaled resistivity curves.

To illustrate these ideas, we use the Effective Medium Approximation (EMA) for percola-
tion, which solves the following nonlinear equations for the complex dielectric function:

x(
εM − ε

εM + (z/2− 1)ε
) + (1− x)(

εI − ε

εI + (z/2− 1)ε
) = 0, (7)

and for illustration selected σo
M/σo

I = 100, τσo
M = 1000, C = 1, Tc/∆ = 0.4, and z = 4

corresponding to 2D transport (xc = 0.5). Precisely the anticipated behavior is observed
from numerically solving the EMA equation for the corresponding DC resistivity R = σ−1,
as shown in Figure 12b. Here, we select several values of xo, corresponding to x > xc
(low temperature metallic regime), and plot the resistivity as a function of temperature
(following dashed lines in Figure 12a. We observe distinct resistivity maxima around the
temperature T∗(xo) corresponding to the percolation threshold. Note how the maxima
become sharper and sharper as T∗ is reduced, corresponding to the exponential (activated)
decrease of the “field” h ∼ exp{−∆/T∗}. The expected behavior is also seen in dielectric
response, as shown in Figure 13a, where we observe sharp maxima at T ∼ T∗. Here again
we see the increased “rounding” of these maxima at higher T∗, corresponding to larger
h(T∗). This behavior can be seen even more clearly in Figure 13b, where ε1 is plotted as a
function of the reduced concentration τ = (x(T)− xc)/xc, which vanishes at T = T∗.

(a) (b) (c)

Figure 13. (a) The dielectric constant ε1 as a function of T for different T∗. (b) ε1 as a function of τ for
different T∗. (c) Scaled dielectric function curves.

These qualitative trend can be even more rigorously described within the scaling
theory for percolation, where the DC conductivity as well as the ω = 0 dielectric constant
are known to satisfy the following scaling relations:

σ1(τ, h) = σo
MhsFσ(τ/hm); ε1(τ, h) = hs−1Fε(τ/hm), (8)

where τ = (x(T) − xc)/xc measures the distance to the percolation threshold, and
h = σI/σM plays a role of the “symmetry breaking field”, which leads to the round-
ing of the transition. The critical exponents s and m, as well as the crossover scaling
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functions Fσ and Fε are universal quantities within percolation theory. To illustrate this
scaling behavior within EMA, we collapse the family of resistivity curves by plotting Rhs as
a function of τ/hm, as shown in Figure 12c, and ε1h1−s as a function of s a function of τ/hm,
as shown in Figure 13c. Note how a perfect scaling collapse is observed here, but only
around the peak of the dielectric response, i.e. only close to the percolation threshold. Such
behavior is, in fact, not surprising, since we expect scaling phenomena to arise only within
a given critical region, and not further away from the critical point.

We should stress again that all our qualitative results are rigorously valid within
general percolation theory for our two-component phase coexistence model, and EMA
was simply used as an illustration. EMA correctly captures the general crossover phenom-
ena associated with percolation, but only introduces approximate values for the critical
exponents sEMA = 0.5 and mEMA = 0.5, which are otherwise know even more accurately
from numerical simulations. These details, however, are not of direct relevance for our
purposes. What is important is the result that, within our “Pomeranchuk” model for phase
coexistence, the percolation scenario predicts distinct resistivity maxima but also striking
colossal dielectric anomalies, at the same temperature scale of T = T∗ which decreases
towards the MIT. This behavior is in distinct contrast to the behavior we found from the
DMFT picture of a correlated but uniform metallic phase, which also leads to resistivity
maxima, but very different behavior of the dielectric response. This observation, which
was quantitatively validated in recent experiments on Mott organics [20], thus reveals a
distinct criterion to settle the long-lasting controversies between the origin of the resistivity
maxima in different systems.

6. Conclusions

In this paper we discussed three different classes of physical systems which all display
very similar phenomenology expected for Mott-like metal-insulator transitions. We stressed
that most qualitative features are clearly seen in all these examples, including the continuous
decrease of the characteristic energy scales TFL, TBR = Tmax, To, ∆ towards the transition,
the phenomenon of quantum critical scaling seen in transport, as well as the emergence
of distinct resistivity maxima on the metallic side. These observations, which are starting
to portray a robust and consistent phenomenology of Mott criticality, is putting serious
constraints on theory. We discussed which of these features seem compatible with various
proposed theoretical pictures of the Mott point, and which ones do not.

In the final section of this paper we also presented new theoretical results, which open
the possibility to precisely determine, from experiments, which mechanism dominates in
which regime. We argue that the dielectric response offers unique insights, which so far have
not been appreciated enough, as a powerful tool to distinguish between different phase
coexistence and the thermal destruction of quasiparticles.

A class of issues we did not discuss in any detail in this paper is the (explicit) role
of disorder around the Mott point. Given the fact that new classes of ultra-clean material
are starting to emerge, with even more pronounced salient features of Mott criticality, it
is becoming possible to plausibly minimize the role of disorder on experimental grounds.
On the other hand, new experimental efforts are starting [69,70] to emerge in the opposite
direction: to systematically add and to control the level of disorder, for example by high-
energy X-ray irradiation. These fascinating research directions are guaranteed to open
entirely new chapters in the study of metal-insulator quantum criticality. This will require
theorists to rekindle the efforts to understand the interplay of strong correlation with
disorder [75], and perhaps to develop new ideas in the process.
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Spin effect on the low-temperature resistivity maximum in a strongly interacting 2D electron system. Sci. Rep. 2022, 12, 5080.
[CrossRef]
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