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Bardeen-Schrieffer-Cooper (BCS) and Bose-Einstein condensation (BEC) occur at opposite limits of a
continuum of pairing interaction strength between fermions. A crossover between these limits is readily
observed in a cold atomic Fermi gas. Whether it occurs in other systems such as the high temperature
superconducting cuprates has remained an open question. We uncover here unambiguous evidence for a
BCS-BEC crossover in the cuprates by identifying a universal magic gap ratio 2Δ=kBTc ≈ 6.5 (where Δ is
the pairing gap and Tc is the transition temperature) at which paired fermion condensates become optimally
robust. At this gap ratio, corresponding to the unitary point in a cold atomic Fermi gas, the measured
condensate fraction N0 and the height of the jump δγðTcÞ in the coefficient γ of the fermionic specific heat
at Tc are strongly peaked. In the cuprates, δγðTcÞ is peaked at this gap ratio when Δ corresponds to the
antinodal spectroscopic gap, thus reinforcing its interpretation as the pairing gap. We find the peak in
δγðTcÞ also to coincide with a normal state maximum in γ, which is indicative of a pairing fluctuation
pseudogap above Tc.
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A crossover in the pairing interactions between the weak
coupling Bardeen-Schrieffer-Cooper (BCS) [1] and the
strong coupling Bose-Einstein condensation (BEC) [2,3]
limits was proposed in the high transition temperature Tc
superconducting cuprates soon after their discovery [4–8].
On the BCS side, pairing takes place at the Fermi surface
below Tc as in a conventional superconductor, whereas on
the BEC side, fermions pair up to produce bosons whose
subsequent condensation at Tc is determined by the phase
stiffness of the superfluid. Whereas the cuprates provided
the motivation for much of the early theoretical work on the
BCS-BEC crossover, today it is in a cold atomic Fermi gas
[9,10] where this phenomenon is well established. The
relative simplicity of a cold atomic Fermi gas, consisting of
pairing interactions tuned via a Feshbach resonance in an
otherwise weakly interacting Fermi gas, has made it the
ideal paradigm for cementing [11–13] our theoretical
understanding of condensation in the crossover region
[8,14]. Yet the question of whether such a crossover occurs
in other paired fermion systems such as the cuprates has
remained. The other proposed BCS-BEC crossover candi-
dates include nuclear matter, quark-gluon plasmas, iron-
based superconductors, and twisted graphene [15–21].
While various experiments are suggestive of a non-BCS

pairing scenario in the cuprates [22–28], uncertainty has
surrounded the question of whether Tc is a sufficiently
large fraction of the Fermi temperature TF for a BCS-BEC
crossover to be viable [18]. For example, electronic band
theory predicts a ratio Tc=TF ∼ 10−2 that is clearly too
small for a BCS-BEC crossover to occur [10]. However,

thermodynamic measurements, including magnetic quan-
tum oscillations, have revealed strongly renormalized
quasiparticle effective masses [29]. It can be argued on
the basis of such measurements that the ratio is close to that
Tc=TF ¼ 1=8 required to be in the BCS-BEC crossover
regime of a two-dimensional superconductor [18,29]. Yet,
given the increased effective mass renormalizations at low
temperatures [57,58] and various poorly understood phe-
nomena such as the Fermi surface reconstruction [59,60]
and “Fermi arcs” [29,61], it is unclear whether the parabolic
band approximation upon which TF estimates are based
[18] is valid in the cuprates.
Studies aiming to address the question of whether a

BCS-BEC crossover occurs in the cuprates [15,16,64] have
instead focused on the pseudogap [65], which is a partial
gap in the fermionic density of states above Tc. In a cold
atomic Fermi gas, a pseudogap is reported to develop in
the BEC-BCS crossover region [66–69], and is unambig-
uously the result of normal state pairing correlations
[15,16,64,69–72]. In the cuprates, the pseudogap is maxi-
mal in the antinodal region of momentum-space where the
d-wave pairing gap is maximal [65]. But while pairing has
been proposed as the origin of the pseudogap in the
cuprates [15,64,65,73], antiferromagnetic correlations
and unconventional broken symmetry phases have also
been proposed to produce a pseudogap [74–79].
In this Letter, we show that the key to establishing a

universal thermodynamic signature of the BCS-BEC cross-
over, is the identification of a magic gap ratio [80,81]
2Δ=kBTc ≈ 6.5 at which paired fermion condensates
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become optimally robust [16]; throughout, we use Δ to
refer to the magnitude of the pairing gap at low T
[14,68,82]. At this gap ratio, corresponding to the unitary
point in a cold atomic Fermi gas, experimental indicators of
a robust condensate exhibit a sharp peak. These include the
condensate fractionN0 and the height of the jump δγðTcÞ in
the fermionic (or electronic) contribution C ¼ γT to the
specific heat at Tc [see schematic in Fig. 1(a)]. In the
cuprates, we find δγðTcÞ to be peaked at the magic gap ratio
when Δ corresponds to the antinodal gap [83]. Reinforcing
its interpretation as the pairing gap [15,64,65,73], we find
(i) nearly identical asymmetric line shapes of δγðTcÞ versus
2Δ=kBTc in the cuprates as for the unitary regime of a

Fermi gas and (ii) coincidence of the peak in δγðTcÞ with a
normal state maximum in γ. The latter, along with an
accompanying maximum in the spin susceptibility χ, can be
understood as a signature of normal state pair amplitude
fluctuations.
In the unitary regime of a Fermi gas, corresponding to

1≳ 1=kFa≳ −1 in Figs. 1(a) and 1(b), continuous tuning
of the pairing interactions through the crossover occurs by
way of the dimensionless parameter 1=kFa [95], where a is
the pair scattering length and kF is the Fermi radius. The
BCS side [1] corresponds to kFa < 0, while the BEC side
corresponds to kFa > 0. The divergence in the elastic
scattering cross section at 1=kFa ¼ 0, which defines the
location of the unitary point, causes the condensate to
become optimally robust. This leads to peaks in δγðTcÞ and
in the entropy change δS accompanying condensation at Tc
[14,29] [see Fig. 1(b)]. An optimally robust condensate is
confirmed experimentally by the observation of a peak in
N0 as a function of 1=kFa [see Fig. 1(b)] [12,13,29] and a
maximally large δγðTcÞ [11,96], which also occurs at the
value of Tc predicted by theory [14].
Turning to the cuprates in Fig. 1, the measured

δγðTcÞ changes by as much as a factor of ∼30 in YBCO
[58,84–90]. This change is far larger than the variations in
δγðTcÞ that are ordinarily explained by Eliashberg theory in
regular BCS systems [29,80,81], or have been predicted in
various strongly coupled pairing models of the cuprates
[97–99]. The δγðTcÞ curves do, however, exhibit maxima
as a function of p resembling the behavior as a function of
1=kFa in the unitary regime of a Fermi gas in Fig. 1(b).
The similar behavior of the cuprates to the unitary regime

of a Fermi gas becomes clear once the data from Figs. 1(b)
and 1(c) are replotted on the same 2Δ=kBTc axis in
Fig. 2(a). While 2Δ=kBTc is not a tuning parameter, it
has the advantage in that it can be determined in both
systems. In a cold atomic Fermi gas, there exists a direct
correspondence between 1=kFa and 2Δ=kBTc [14,100]
[see Fig. 2(b)]. Studies of the unitary regime differ on the
precise values of Δ and Tc at the unitary point [4,7–
10,15,16,64,101]. However, they are found to be consistent
with respect to the ratio 2Δ=kBTc ¼ 6.5� 0.2 [29] (see for
example Fig. 9 of Ref. [100] and Table 1 of Ref. [16]),
indicating this magic gap ratio to be a robust property of
such a point.
Various noncuprate superconductors, including classic

BCS [80] and iron-based systems [81], while spanning
comparatively limited ranges in 2Δ=kBTc, are found to
exhibit trends in δγðTcÞ=γ̄ versus 2Δ=kBTc consistent with
Fig. 2(a) [29]. In these systems, dividing by an assumed
constant Sommerfeld coefficient γ̄ enables universal trends
in δγðTcÞ to be established [29] for materials with different
electronic structures. The iron-based superconductors with
the highest δγðTcÞ=γ̄ values are found to have gap ratios
consistent with the magic value. Of these, iron selenide
has also recently been reported to exhibit a BCS-BEC

(a)

(b) (c)

FIG. 1. (a) Schematic γðTÞ with (solid lines) and without
(dotted lines) a phase transition. Because of the transition, the
normal state maximum is visible only when Tγ > Tc (or 1=kFa >
0 or p < p�). Also shown is a schematic of resonant pairing,
occurring when the bound state energy coincides with the Fermi
level [29], producing a sharp peak in δγðTcÞ. (b) Unitary regime
of a Fermi gas [8,14]. Upper panel: Tc from Ref. [14] and Tγ ¼
2Δ=6.5kB and Tχ ¼ 2Δ=3kB (using Δ at the lowest T from
Ref. [14]). Lower panel: δγðTcÞ (lower and upper bound
estimates extracted [29] from SðTÞ in Fig. 5 of Ref. [14]), δS
[from Fig. 6 of Ref. [14]; this closely follows δγðTcÞ, providing a
guide to the eye], and N0 (brown [13] and yellow [12] circles).
(c) Cuprates. Upper panel: TcðpÞ [58,84–90,94] and Tγ and Tχ

from Fig. 2(d). Lower panel: δγðTcÞ; spline fits connect points. In
(b) and (c), dotted lines indicate p ¼ p� (for each cuprate family
[90]) and 1=kFa ¼ 0, at which Tγ ¼ Tc, coinciding approx-
imately with peaks in δγðTcÞ.
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crossover [20,21]—albeit without accompanying measure-
ments of δγðTcÞ. A similar gap ratio at unitarity is further
reported in gated layered superconductors [105].
The asymmetric line shape in Fig. 2(a) can be understood

to result from the fact that the gap ratio has a hard cutoff on
the left-hand side at a value similar to that ≈3.5 of an ideal
BCS superconductor [1], while there is no cutoff on the
BEC side [4,7–10,15,16,64]. On the BCS side, δγðTcÞ
increases with 2Δ=kBTc similarly to that in Eliashberg
theory [29,80], while on the BEC side, Tc and consequently
δγðTcÞ are limited by the phase stiffness of the condensate
[23]. We find precisely this line shape in the cuprates
when Δ [purple line in Fig. 2(c)] [29,104] corresponds
to the antinodal gap dominating spectroscopic and
thermodynamic measurements [symbols in Fig. 2(c)]
[73,102,103]. The same asymmetric behavior is displayed
for multiple cuprate families [58,84–89]. On averaging the
values of 2Δ=kBTc in Fig. 2(a) at which δγðTcÞ is peaked
[near p ≈ 0.2 in Fig. 1(c)] for the higher Tc cuprates
(YBCO, Ca-YBCO, BSCCO, and TBCO [90]), we obtain
2Δ=kBTc ¼ 6.4� 0.3, which is the same within experi-
mental uncertainty as for a unitary Fermi gas. Validity of
the universal magic gap ratio is therefore strongly sug-
gested in the cuprates.

The association of Δ with the antinodal gap in the
cuprates is reinforced by thermodynamic evidence for
pairing correlations in the normal state. In the cuprates,
normal state pair amplitude fluctuations associated with the
pseudogap have been proposed to account for maxima in γ
and χ as a function of T [97–99,106]. Pair amplitude
fluctuations in the unitary and BEC regimes of a Fermi gas
also produce normal state maxima in γ (or C ¼ γT)
[29,107] and χ [71,72,108,109]. Figure 3 shows that on
plotting γ [87,110] and χ [87,91,92,111–116] versus
2Δ=kBT, maxima in γ and χ emerge as ubiquitous proper-
ties of the normal state (in the cuprates, the shape of χ
versus T is provided by magnetic susceptibility χm and
nuclear magnetic resonance Knight shift K measurements
[117]). The model γ and χ curves (black and grey in Fig. 3)
produced by an excitation gap of width Δ [29,83] exhibit
maxima at Tγ ≈ 2Δ=6.5kB and Tχ ≈ 2Δ=3kB. A pairing
pseudogap [118] is strongly suggested in the cuprates by
the consistency of the observed maxima in Fig. 3 with Tγ

and Tχ . In fact, we find overall consistency between each of
the ΔðpÞ, TγðpÞ, and TχðpÞ curves and the experimental
data points for the antinodal gap and maxima in γ and χ
[29] in Figs. 2(c) and 2(d). Thermodynamic and spectro-
scopic measurements can therefore both be understood in
terms of a ΔðpÞ that is approximately the same for all
cuprate families, regardless of their optimal Tc.
A direct association of the normal state maxima with

pairing amplitude fluctuations is strongly suggested by the
alignment of the maxima in γ with the peaks in δγðTcÞ
when γ and δγðTcÞ are, respectively, plotted versus 2Δ=kBT
and 2Δ=kBTc in Fig. 3(a). Since 2Δ=kBT and 2Δ=kBTc are
both scaled by Δ, the alignments of γ and δγðTcÞ are
independent of any experimental uncertainties in the func-
tional form of ΔðpÞ [104]. We find the alignments to
originate from δγðTcÞ being peaked close to the points of
intersection of Tc with Tγ [see Figs. 1(b) and 1(c)],
corresponding to 1=kFa ¼ 0 (i.e., the unitary point) in a
unitary Fermi gas and a characteristic doping p ¼ p� in the
cuprates.
In the unitary regime of a Fermi gas, δγðTcÞ exhibiting a

strong peak at Tc ¼ Tγ can be understood as a consequence
of the heavily broadened pseudogap transitioning into a
regular pairing gap [118] as long range phase coherence is
established below Tc [119,120]. The entropy change
contributing to δγðTcÞ is naturally largest when Tc coin-
cides with the maximum in γ resulting from excitations
across Δ. This is therefore suggested also to occur in the
cuprates at Tc ¼ Tγ [29]. δγðTcÞ exhibiting a strong peak at
Tc ¼ Tγ can also be understood as a consequence of the
normal state entropy Sn at Tc (in addition to δS) exhibiting
a maximum (as a function of 1=kFa) close to this point,
owing to this region of the normal state consisting of a
maximally disordered mixture of a bosonic and fermionic
degrees of freedom [14,107]. At T > Tc, a peak in
Snð1=kFaÞ is also seen to extend vertically in T at the

(a)

(b) (c) (d)

FIG. 2. (a) δγðTcÞ, N0, and δS [rescaled to unity from Figs. 1(b)
and 1(c)] versus 2Δ=kBTc. (b) 1=kFa versus 2Δ=kBTc [14].
(c) Spectroscopic and thermal antinodal gap measurements
[73,102,103]. (d) Maxima in γ (grey symbols) and χ (white
symbols) from the raw data [29]. Tγ (green line) is a polynomial
fit to the grey symbols [104], from which we obtain Δ ¼
6.5kBTγ=2 [i.e., the purple line in (d)] and Tχ ¼ 2Δ=3kB (red
line). Symbol shapes identify the cuprate family in (a), (c), and
(d). The down triangle in (c) refers to HBCO [90].
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unitary point [9,14], with the loss of fermion degrees of
freedom at 1=kFa > 0 leading to a sharp drop Sn on the
BEC side of the phase diagram. An examination of Sn in
several cuprates [121] reveals that this too exhibits a sharp
peak that extends vertically in T near p�, accompanied by a
drop in Sn at p < p�.
One consequence of δγðTcÞ being peaked close to the

point of intersection of Tγ and Tc is that p� is distinct from
the hole doping p ≈ 0.16 at which Tc is optimal. In fact, p�
moves towards the upper end of the superconducting dome
as the optimal Tc is reduced, and appears to be accom-
panied by a strong suppression of the overall peak height of
δγðTcÞ. In LSCO, for example, an extrapolation of Tγ in
Fig. 1(c) suggests that p� ≈ 0.26� 0.03, which is consis-
tent with the higher value of p ¼ 0.23� 0.1 (compared,
e.g., to YBCO) at which δγðTcÞ is peaked [29] and the
higher value of p ¼ 0.24� 0.01 (compared to Ca-YBCO)

at which Sn is peaked [121]. In LSCO films, by contrast, Tc
lies significantly below Tγ in Fig. 1(c), suggesting that they
do not exhibit a crossover into the BCS regime, as has also
been suggested on the basis of the superfluid density
measurements [29,94]. The tiny p-dependent δγðTcÞ in
Nd-LSCO, meanwhile, suggests that its peak value occurs
at higher dopings than have been accessed experimen-
tally [58,122].
Given the prior reports of quantum criticality in the

cuprates at similar hole dopings to p� [123–125], one
intriguing possibility is that the BCS-BEC crossover and
quantum criticality share a common origin. Indeed, some of
the reported phenomenology of quantum criticality in the
cuprates bears similarities to that of the unitary regime of a
Fermi gas [126]. This includes Plankian dissipation and
scale invariance [123–128], and a minimum in the pair
coherence length [17,129,130] inferred from the maximum
in the superconducting upper critical magnetic field
[29,57,93,131]. It should be noted, however, that thermo-
dynamic evidence for quantum criticality in the form of a
sharply increasing γ or an upturn in the effective mass, has
thus far only been reported at low temperatures (T ≪ 10 K)
[57,58], and has yet to be accompanied by evidence for a
divergence in the correlation length of a broken symmetry
phase [29].
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M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Z. Li, P.
Auban-Senzier, N. Doiron-Leyraud, P. Fournier, D. Colso,
L. Taillefer, and C. Proust, Universal T-linear resistivity
and Planckian dissipation in overdoped cuprates, Nat.
Phys. 15, 142 (2019).

[126] J. Zaanen, Planckian dissipation, minimal viscosity and the
transport in cuprate strange metals, SciPost Phys. 6, 061
(2019).

[127] C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka, T. Schafer,
and J. E. Thomas, Universal quantum viscosity in a unitary
Fermi gas, Science 331, 58 (2011).

[128] T. Enss, Quantum critical transport in the unitary Fermi
gas, Phys. Rev. A 86, 013616 (2012).

[129] F. Pistolesi and G. C. Strinati, Evolution from BCS super-
conductivity to Bose condensation: Calculation of the
zero-temperature phase coherence length, Phys. Rev. B
53, 15168 (1996).

[130] J. R. Engelbrecht, M. Randeria, and C. A. R. Sá de Melo,
BCS to Bose crossover: Broken-symmetry state, Phys.
Rev. B 55, 15153 (1997).

[131] G. Grissonnanche et al., Direct measurement of the upper
critical field in cuprate superconductors, Nat. Commun. 5,
3280 (2014).

PHYSICAL REVIEW LETTERS 129, 017001 (2022)

017001-9

https://doi.org/10.1103/PhysRevResearch.3.023151
https://doi.org/10.1103/PhysRevResearch.3.023151
https://doi.org/10.1126/science.1165015
https://doi.org/10.1126/science.aan3178
https://doi.org/10.1038/s41567-018-0334-2
https://doi.org/10.1038/s41567-018-0334-2
https://doi.org/10.21468/SciPostPhys.6.5.061
https://doi.org/10.21468/SciPostPhys.6.5.061
https://doi.org/10.1126/science.1195219
https://doi.org/10.1103/PhysRevA.86.013616
https://doi.org/10.1103/PhysRevB.53.15168
https://doi.org/10.1103/PhysRevB.53.15168
https://doi.org/10.1103/PhysRevB.55.15153
https://doi.org/10.1103/PhysRevB.55.15153
https://doi.org/10.1038/ncomms4280
https://doi.org/10.1038/ncomms4280

