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5 Institut Matériaux Microélectronique et Nanosciences de Provence, CNRS, Aix-Marseille Université, IM2NP (UMR 7334),
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Abstract. Recent electron spin resonance experiments on CaWO4:Gd3+ and other magnetic impurities
have demonstrated that sustained Rabi oscillations can be created by driving a magnetic moment with a
microwave field frequency slightly larger than the Larmor frequency and tuned to the Floquet resonance,
together with another microwave field (image drive) with a frequency smaller than the Larmor frequency.
These observations are confirmed by the new experimental results reported in this paper. We use numerical
and analytical techniques to study the interplay between the microwave drives and three different mecha-
nisms of relaxation. The first model describes a magnetic moment subject to microwave fields, interacting
with a bath of two-level systems which acts as a source of decoherence and dissipation. The second model
describes identical, interacting magnetic moments, subject to the same microwave fields. The decay of
the Rabi oscillations is now due to the interactions. Third, we study Rabi oscillation decay due to the
inhomogeneity of the microwave radiation. We show that under appropriate conditions, and in particular
at the Floquet resonance, the magnetization exhibits sustained Rabi oscillations, in some cases with addi-
tional beatings. Although these two microscopic models separately describe the experimental data well,
a simulation study that simultaneously accounts for both types of interactions is currently prohibitively
costly. To gain further insight into the microscopic dynamics of these two different models, we study the
time dependence of the bath and system energy and of the correlations of the spins, data that are not
readily accessible experimentally.

1 Introduction

The implementation of quantum processors requires
precise control of quantum states exhibiting long deco-
herence times T2 in order to perform quantum algo-
rithms or construct quantum memories. However, inter-
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actions with environmental degrees of freedom limit
the coherence time and the qubit operability. In the
case of spin qubits in solid state materials, exam-
ples of decoherence sources are spin–spin interactions,
spin diffusion, fluctuations in the magnetic field or
charge/electric noise [1,2]. These interactions lead to
a pure dephasing time Tφ of the qubit much shorter
than its energy relaxation time T1.

A number of techniques have been developed recently
aiming to replace the pure dephasing with an actively
controlled decoherence time by means of Electron Spin
Resonance (ESR) pulses such as Dynamical Decoupling
(DD) [3–7] and Concatenated Dynamical Decoupling
(CDD) [8,9]. The former uses a sequence of spin flips
to improve spin coherence via a spin-echo technique,
while the latter is using additional layer(s) of DD to
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solve for the imperfections and fluctuations of the first
layer. The methods make use of strong π-pulses which
complicates the operations due to gate imperfections;
similar issues are noted in the case of a proposal using
strong continuous waves [10,11]. In general, DD tech-
niques applied to electronic spin qubits have been used
on nitrogen vacancy (NV) centers and with relative suc-
cess [8,12–14].

However, other spin qubit implementations with dif-
ferent anisotropic/isotropic properties [15–17], spin lev-
els [18], electro-nuclear configurations [19], and host
materials need to be studied for their potential use
in quantum computing and quantum memories. Rare
earth ions such as CaWO4:Er3+ [20], Y2SiO5:Er3+
[21] and Y2SiO5:Yb3+ [22] or 28Si:Bi [23] show long
relaxation times as well as significant coherence times.
Therefore, a universal method is needed, applicable to
any type of qubit (spin or superconducting qubit for
instance), using weak pulses which do not alter a quan-
tum algorithm.

Generally speaking, a Rabi nutation opens up a gap
in the spectrum of quasi-energies (Hamiltonian in the
rotating frame) creating a or the ? so-called sweet spot
where the Rabi rotation is insensitive to fluctuations of
the static field detuning. In other words, the Rabi rota-
tion protects itself, given that the operation is done
with no detuning with one [24] or more photons [25]. In
Ref. [26] we demonstrated a protocol based on Floquet
resonances [27] where such a dynamical sweet spot is
created for any detuning of the qubit away from reso-
nance (see also a related approach implemented on NV
centers [28,29]). The method uses two microwave drives
acting in parallel on the quantum state of a qubit and
able to increase the coherence time under drive up to
the relaxation time within the experimental conditions
of Ref. [26]. The main drive induces imperfect Rabi
oscillations while a circularly polarized second drive, of
about two orders of magnitude smaller in amplitude,
serves to sustain the oscillations. Rather than decou-
pling the qubit from the bath using a strong excitation,
we use very weak pulses and alter the dynamics of the
entire system. In practice, the time interval between two
regular pulsed gates could contain an integer number
of Rabi periods protected by our protocol and there-
fore the quantum information would be preserved from
one gate to the next. This method was demonstrated in
Ref. [26] on any initial state of spin systems with dif-
ferent anisotropies, spin sizes and spin-orbit couplings.
The protocol is universal and it should be applicable to
other qubit implementations such as nuclear spins or
superconducting qubits.

In this paper, the experimental protocol described
in Ref. [26] is studied analytically and by computer
simulation. The aim of this paper is to scrutinize the
microscopic physical mechanisms that may cause the
sustained, long-time Rabi oscillations to appear and to
give a consistent microscopic description of the experi-
mental data displayed in Fig. 1.

We consider three different models for the source of
decoherence. The first model describes a spin qubit,
that is a magnetic moment, subject to external mag-
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Fig. 1 Experimental data of the Rabi oscillations in
CaWO4:Gd3+ at T = 40K for different values of the detun-
ing Δ, phase differences φ = 0 and φ = 45◦, and fixed ampli-
tudes hd = 15 MHz and hi = 0.12hd = 1.8 MHz, respec-
tively

netic fields and interacting with a bath of two-level sys-
tems. These two-level systems are not directly affected
by the external magnetic fields. This kind of bath,
which we refer to as bath-I, mimics an environment
consisting of two-level systems representing e.g., nuclear
spins, electronic spins of different species, defects, etc.,

The second model describes an ensemble of identical
magnetic moments, all driven by the same microwave
fields and interacting with each other via all-to-all,
dipolar-like weak couplings. The effect of these cou-
plings on any of the magnetic moments is to cause
decoherence. Thus, from the viewpoint of an arbitrarily
chosen magnetic moment, all others may be regarded
as representing a kind of “bath”, which we refer to as
bath-II. The third model extends the second one by
taking the inhomogeneity of the microwave fields into
account.

The paper is organized as follows. In Sect. 2, we
present and discuss new electron spin resonance results
for CaWO4:Gd3+. Sect. 3 gives an overview of the three
different models that are at the basis of our simulation
work. In Sect. 4, we specify the bath-I model in detail
and present the simulation results. Section 5 introduces
the Hamiltonian of the bath-II model and discusses
the simulation results for the case without and with
the inhomogeneity of the microwave fields. In Sect. 7,
we present our conclusions. Technical details and addi-
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tional results can be found in the Supplemental Mate-
rial [30].

2 Electron spin resonance experiments

Experiments probing the magnetization dynamics under
external driving fields such as the ones performed in
Ref. [26], pose interesting theoretical problems. In these
electron spin resonance (ESR) experiments, one mea-
sures a signal that is proportional to the expectation
value of the z-component of the magnetization where
the z direction is defined by the direction of the static
magnetic field B0. In symbols:

Signal ∝
N∑

n=1

〈Sz
n(t)〉, (1)

where N is the number of magnetic moments in
the sample. The presence of a high frequency resonant
microwave field perpendicular to the static field induces
Rabi oscillations. A characteristic feature of Rabi oscil-
lations is that their frequency changes linearly with the
applied microwave power. These oscillations decay due
to various dissipation effects.

In the ESR experiments under scrutiny, Rabi oscilla-
tions are induced by applying an electromagnetic drive
pulse of strength hd and frequency f = f0+Δ where f0
is the Larmor frequency and Δ is a (small) detuning.
Simultaneously with the drive pulse, an image pulse
of strength hi and of frequency f = f0 − Δ, coher-
ent with the drive pulse, is applied. The power of the
image drive is much less than that of the drive pulse
itself, i.e. hi � hd. The phase difference φ between
the drive and image pulse can be used to manipulate
the Rabi oscillations. Under optimal image drive condi-
tions, experiments show sustained Rabi oscillations up
to the maximum amplifier gate length of 15μs [26].

Beside data previously reported in Ref. [26], we
present results of new experiments in Fig. 1, performed
under the same conditions as for the experiments ear-
lier. These data have been obtained for Gd3+ moments
in a CaWO4 host lattice. Although these moments have
spin S = 7/2, the orientation of the static magnetic field
and the frequency and power of the microwave pulses
are chosen to select transitions between one pair of Zee-
man levels only [26]. Therefore, the spin system may be
viewed as an effective two-level system performing Rabi
oscillations. In this paper, we take the CaWO4:Gd3+

system for our case study and use the results presented
in Fig. 1 as reference for comparison with the model
calculations. In this paper, we use Fig. 1 as a reference
for comparing with our simulation results for the three
different models.

The main conclusion drawn on the basis of the exper-
imental data [26] and new experimental data presented
in Fig. 1 may be summarized as follows:

1. Regarding the effect of the image pulse on the decay
of the Rabi oscillations, the experimental findings

are generic, meaning that the main features do
not significantly depend on the kind of impurity
that consitutes the qubit, the presence or absence
of nuclear spins, etc. See Ref. [26] for more details.

2. In the absence of the image pulse, the amplitudes of
the Rabi oscillations vanish rapidly, on a time scale
of 1µs [26].

3. For a detuning Δ = 5MHz, the Rabi oscillations
decay rapidly, on a time scale of 1µs see Figs. 1a, f.

4. For a detuning Δ = 7MHz, we observe either Rabi
oscillations that decay rapidly, on a time scale of 1μs
if φ = 0 (see Fig. 1b) or sustained Rabi oscillations
if φ = 45◦ (see Fig. 1g).

5. For a detuning equal of Δ = 8.66MHz corre-
sponding to the first Floquet resonance frequency
(see below), we observe sustained Rabi oscillations
with some signatures of beating, Fig. 1c, h, depend-
ing on the value of the phase φ between the drive
and image pulse, in qualitative agreement with ear-
lier experiments on MnO:Mn2+ [26].

6. Increasing the detuning further to Δ = 10, 12MHz,
see Fig. 1d, e, i, j, we observe sustained Rabi oscil-
lations with small amplitudes.

7. Figure 1c, d, g show that the appearance of sustained
Rabi oscillations depends on both Δ and φ. There-
fore this appearance cannot be solely attributed to
the existence of a Floquet resonance, the frequency
of which depends on Δ and hd and is independent
of φ (see below).

In summary, from the experimental results shown in
Fig. 1, we conclude that there are two distinct fea-
tures. Depending on the value of the detuning further
to Δ (for constant drive and image drive amplitudes hd

and hi, respectively), sustained long-time Rabi oscil-
lations appear. This is the main feature. In contrast
to the usual decaying Rabi oscillations observed in the
absence of the detuning (Δ = 0), in some situations
the Rabi oscillations may persist for a long time. The
second main feature is the additional structure of these
sustained oscillations which depends on the detuning Δ
and the phase shift φ.

3 Overview of the microscopic models

The magnetic moments being probed in the ESR exper-
iments are distributed in the host lattice in a highly
diluted manner [26]. Thus, the most basic model is that
of non-interacting spins subject to a time-dependent
magnetic field, see Sect. 4. In this paper, we study
a model in which the contributions to the magnetic
field are (1) a strong static magnetic field, (2) a
microwavedrive field and (3) the novel aspect, the
microwave image field [26]. The pure quantum dynam-
ics of this model is straightforwardly studied by solv-
ing the time-dependent Schrödinger equation for a sin-
gle spin, see Sect. 4. To account for the explicit time-
dependence of the system + bath Hamiltonian, we use a
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second-order decomposition formula for ordered matrix
exponentials [31,32] to solve the TDSE.

Obviously, there is no decoherence or dissipation in
this most basic model. In the presence of the image
drive, the magnetization dynamics exhibits modulated
Rabi oscillations. The amplitude of the modulation
depends on the detuning Δ and the phase shift φ.

In the present paper, we study the decay of the Rabi
oscillations by solving for the pure quantum dynam-
ics of models with many spins in which decoherence
and dissipation appear automatically. Decoherence and
dissipation effects may also be studied through quan-
tum master equations [33]. This approach makes several
implicit assumptions and often involves many parame-
ters [33]. We found it difficult to find a set of param-
eters which reproduce, even qualitatively, the depen-
dence on the detuning Δ and the phase shift φ observed
in experiments. In section IV of the Supplemental Mate-
rial [30], it is shown that, even when the inhomogeneity
of the microwave field is included, this method does not
describe all the qualitative features of the experimen-
tal data shown in Fig. 1. Therefore, in this paper we
focus on microscopic many-body models and explore
the conditions under which these models reproduce the
systematic trends of the features observed experimen-
tally.

As alluded to earlier, in real samples, the microscopic
mechanisms accounted for separately in the present
paper are most likely simultaneously active. Solving the
time-dependent Schrödinger equation for 28 mutually
interacting spins, the largest systems we have studied
systematically, already requires substantianal computa-
tional resources. Adding another 28 two-level systems
to represent a bath requires computational resources
which, at present, are prohibitive. Performing such sim-
ulations may be a challenging project for the future.

In the next three sections, we scrutinize theoretical
models by visually comparing the outcomes of numeri-
cal simulations with the experimental results shown in
Fig. 1.

4 Single-spin system

This section introduces the model for the magnetic
moment of a single Gd3+ ion subject to external mag-
netic fields. To good approximation (for our purposes),
this model describes a two-level system driven by a
periodic field. Although too simple to serve as a model
for the system studied experimentally, its dynamics is
already complicated. For instance, because of the pres-
ence of a driving fields hd and hi, the model can exhibit
resonances and beating oscillations. For pedagogical
purposes, this section presents a few results of the
dynamics of the single-spin model in time-dependent
magnetic fields.

The system (S), contains one magnetic moment in an
external time-dependent magnetic field and is defined

by the Hamiltonian

HS = −ω0S
z − 2ωdS

x sin[2π(f0 + Δ)t + φ]
−2ωiS

x sin[2π(f0 − Δ)t − φ], (2)

where S = (Sx, Sy, Sz) denotes the three components
of magnetic moment. We use units such that � = 1. To
facilitate the comparison with experimental data, we
express frequences such as f0 = ω0/2π, Δ, hd = ωd/2π,
and hi = ωi/2π in MHz. The first term in Eq. (2)
describes the Larmor rotation (frequency f0) of the
spin due the static magnetic field B0. The second and
third term in Eq. (2) are called the microwave drive and
image field, respectively.

In ESR experiments, ω0 typically is several orders
of magnitude larger than ωd and ωi. Instead of adopt-
ing the standard resonance condition, we choose ω =
ω0 + 2πΔ = 2π(f0 + Δ), see Ref. [26], and use U =
exp (iωtSz) to find (for details on the calculation, see
section I of the Supplemental Material [30])

HS,RF(t) ≡ −iU† ∂

∂t
U + U†HSU

= 2π
{
ΔSz − hd (Sx sin φ + Sy cos φ)

+hi [Sx sin(4πtΔ + φ)
−Sy cos(4πtΔ + φ)]

}

= −B(t) · S , (3)

where we have omitted terms that oscillate with the
(very large) frequency 2f0 and introduced the time-
dependent magnetic field

B(t) = 2π

(
hd sin φ − hi sin(4πtΔ + φ)
hd cos φ + hi cos(4πtΔ + φ)

Δ

)
. (4)

If hi = 0, B(t) is constant in time and it follows
immediately that the spin S will perform oscillations
with the Rabi frequency FR = (Δ2 + h2

d)
1/2. Further-

more, if Δ = 0, the magnetization 〈Sz(t)〉 displays the
usual Rabi oscillations, that is the spin performs rota-
tions about the vector (hd sin φ, hd cos φ, 0)T.

In sect. 1 of the Supplemental Material [30], we show
that if 2Δ = FR (or equivalently Δ = hd/

√
3) and

hi �= 0, the spin performs a second rotation with a
frequency F

(2)
R = 3hi/4. In other words, the condition

2Δ = FR defines a special point in the parameter space
of the model defined by Eq. (3).

As B(t) = B(t + 1/2Δ), the Hamiltonian Eq. (3)
is a periodic function of time. Some insight into the
dynamics of the periodically driven system described
by Eq. (3) can be obtained by resorting to Floquet the-
ory [34,35]. It is easy to show (for details see section III
of the Supplemental Material [30]) that in the pertur-
bation regime |hi| � hd, Floquet theory predicts the
existence of resonances if the parameters Δ and hd sat-
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Fig. 2 Simulation results obtained by solving the TDSE
for the Hamiltonian Eq. (3), describing a single spin subject
to the time-dependent magnetic field B(t) = 2π(hd sin φ −
hi sin(4πtΔ + φ), hd cos φ + hi cos(4πtΔ + φ), Δ)T, with the
amplitudes hd = 15 MHz and hi = 0.12hd = 1.8 MHz. For
additional information, see sections I–II of the Supplemental
Material [30]

isfy the condition

Δ =
hd√

4n2 − 1
, n = 1, 2, . . . . (5)

For n = 1, Eq. (5) yields Δ = hd/
√

3 and therefore we
refer to 2Δ = FR as the condition for the first Floquet
resonance. It is essential to note that the Floquet reso-
nance opens up a gap or level repulsion for the quasi-
energies in resonance which can be seen as a dynamical
sweet spot: the levels are flat and thus insensitive to
noise in hd or Δ. Our numerical simulations uncover

the microscopic, physical mechanisms developing inside
the bath (resonant or non-resonant to the drive).

Experimentally reasonable values for the CaWO4:
Gd+3 system are hd = 15MHz and hi = 0.12hd =
1.8MHz [26] and the condition for the first Floquet res-
onance reads Δ = hd/

√
3 = 8.66MHz with FR = 2Δ =

17.33MHz [26].
The dynamics of the single-spin system Eq. (3) is

studied by solving the TDSE with Hamiltonian Eq. (3)
numerically. In Fig. 2, we present simulation results for
the Rabi oscillations for different values of the detuning
Δ and two values of the phase shift φ (see section II of
the Supplemental Material [30] for the corresponding
pictures in the frequency domain).

As expected, the effect of the image drive is most
pronounced if the parameters match the condition for
the first Floquet resonance. Then, the magnetization
exhibits considerable beating, a manifestation of the
presence of the second Rabi frequency F

(2)
R = 3hi/4 =

1.35MHz.
The Fourier transform of the data depicted in Fig. 2c

(see Fig. S1(c) of the Supplemental Material [30]) shows
a peak at the Rabi frequency FR = 17.33MHz and a
lower/upper sideband at FR ∓ δf with δf = 1.34MHz.
The spectral weight of these sidebands is about 8%
of the main signal. In addition, there is a weak signal
(spectral weight ≈ 0.8%) at zero frequency with side
bands (spectral weight ≈ 1%) at δf = 1.34MHz ≈
F

(2)
R = 1.35MHz.
From Table 1, third row, if follows that FR = κ2 +

κ1 = 17.32MHz and δf ≈ κ2 − κ1 = 1.34MHz. The
frequency of the modulation in the time dependent sig-
nal Fig. 2c is approximately 1.34MHz, the same as to
the difference between the Rabi frequency and the fre-
quency the sidebands. Thus, we can relate the Rabi
frequency and the sideband frequencies to the quasi-
energies obtained from Floquet theory and the modu-
lation of the time dependent signal. Moreover, the side-
band frequencies are, to a very good approximation,
given by F

(2)
R = 1.35MHz.

From Fig. 2 and the pictures of the motion of the
magnetization on the Bloch sphere shown in Figs. 3
and 4, it is clear that the presence of an image drive can
affect the Rabi oscillations in a nontrivial manner. The
salient features of the magnetization dynamics, that is
the Rabi oscillations and the frequency of the ampli-
tude modulation (if present) of these oscillations caused

Table 1 The Rabi frequency and the six smallest (in absolute value) quasi-energies obtained by solving the Floquet problem
Eq. (S18) for the subspace spanned by {ψ−100, . . . , ψ−1, ψ0, ψ1, . . . , ψ100} for different values of the offset Δ, hd = 15MHz
and hi = 1.8 MHz

Δ FR κ±1 κ±2 κ±3

5.00 15.8114 ±2.0324 ±7.9676 ±12.0324
7.00 16.5529 ±5.5712 ±8.4289 ±19.5711
8.66 17.3204 ±7.9866 ±9.3334 ±25.3066
10.0 18.0278 ±8.7925 ±11.2075 ±28.7925
12.0 19.2094 ±9.4965 ±14.5036 ±33.4964
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Fig. 3 Bloch sphere representation of the spin motion for the cases shown in Fig. 2a–e. The brightness of the trajectory
changes from dark to light as time proceeds

Fig. 4 Same as Fig. 3 except that the pictures corresponds to the cases shown in Fig. 2h–j

by the image drive can be related to quasi-energies
obtained from Floquet theory, see section II of the Sup-
plemental Material [30]). The key point, advanced in
Ref. [26] and illustrated by Fig. 1, is that the image
drive can be used to significantly reduce the decay time
of the Rabi oscillations.

A simple, phenomenological approach to include
effects of dissipation and decoherence is to resort to a
description in terms of the Markovian quantum master
equation. Section IV of the Supplemental Material [30],
shows that also this approach, even when the inho-
mogeneity of the microwave field is included, does not
describe all the qualitative features of the experimental
data shown in Fig. 1.

5 Single-spin system interacting with a
bath of two-level systems

In this section, we study a microscopic model in which
the spin qubit, the magnetic moment of the Gd+3 ion
referred to as system (S), interacts with a bath (B) of
pseudo-spins. In this section, the spins other than that
of the Gd+3 ion are the bath spins. We analyze the
spin dynamics of this many-body S = 1/2 system by
solving the TDSE numerically. Here, S = σ/2 where
σ = (σx, σy, σz) = (σ1, σ2, σ3) are the Pauli matrices.

The Hamiltonian of the system (S) + bath (B) takes
the generic form

H(t) = HS(t) + HB + λHSB, (6)

where HB and HSB are the bath and system-bath
Hamiltonians, respectively. The overall strength of the
system + bath-I interaction is controlled by the param-
eter λ. The Hamiltonian for the system-bath interaction

is chosen to be

HSB = −
NB∑

n=1

∑

α=x,y,z

Jα
n Iα

n Sα, (7)

where NB is the number of spins in the bath, the Jα
n

are uniform random frequencies in the range [−J,+J ]
and In,k is the k-th component if the bath spin In. As
the system-bath interaction strength is controlled by λ,
we may set J = 1MHz. As the bath-I Hamiltonian, we
take

HB = −
NB∑

n=1

∑

α=x,y,z

Kα
n Iα

n Iα
n+1, (8)

where the Kn,k’s are uniform random frequencies in
the range [−K,K]. In our simulation work, we use peri-
odic boundary conditions Iα

n = Iα
n+N . The Hamiltonian

Eq. (8) describes a collection of magnetic moments,
located on a ring of lattice sites, and interacting with
their nearest neighbors. Because of the random cou-
plings, it is unlikely that Eq. (8) is integrable (in the
Bethe-ansatz sense) or has any other special features
such as a conserved magnetization etc.

Expressing the motion of the spin qubit in the rotat-
ing frame has no effect on the bath Hamiltonian Eq. (8)
because the transformation to the rotating frame only
affects the spin S, not the operators describing bath-
I. However, expressing the motion of the spin qubit in
the rotating frame changes the system-bath Hamilto-
nian Eq. (7) to

HSB = −
NB∑

n=1

Jz
nIz

nSz −
NB∑

n=1

Jx
nIx

n (Sx cos ω0t

+Sy sin ω0t)
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−
NB∑

n=1

Jy
nIy

n (Sy cos ω0t − Sx sin ω0t) . (9)

Discarding the terms that oscillate with the high angu-
lar frequency ω0, only the coupling between the z-
component of the system and bath spins survives, yield-
ing

HSB,RF = −
NB∑

n=1

Jz
nIz

nSz. (10)

Therefore, within this approximation, the Hamiltonian
of the system (S) + bath (B) in the rotating frame reads

H(t) = HS,RF(t) + HB + λHSB,RF. (11)

As HS,RF(t) and HSB,RF do not commute, the system
and bath-I can exchange energy if λ �= 0.

As Jα
n is chosen uniformly random in the inter-

val [−1MHz,+1MHz], the average of strength of the
system-bath interaction is λ〈|Jα

n |〉 = λ/2MHz. On the
other hand, the characteristic energy scale of the spin
qubit is 2πhd ≈ 94MHz. Therefore, for λ < 10, this
strength is at least an order of magnitude smaller than
the characteristic energy scale of the spin qubit. Sim-
ilarly, for K = 10MHz and λ = 6 (see Fig. 5)),
〈|Kα

n |〉 = 5MHz, of the same order of magnitude as
λ〈|Jα

n |〉 = 3MHz. In the absence of the image drive, the
characteristic decay time of the Rabi oscillations is 1µs
or less [26]. Performing a simulation with hi = 0 and
Δ = 8.66MHz (data not shown) we find that the decay
time of the Rabi oscillations is about 0.3µs. Thus, our
choice for the model parameters yields a decay time of
the Rabi oscillations which, in the absence of the image
drive, is short as observed experimentally for very
different samples [26].

As explained in more detail in section V of the Sup-
plemental Material [30], to study the Rabi oscillations,
the initial state of the whole is taken to be

|Ψ(t = 0)〉 = | ↑〉 ⊗ |Φ〉 , (12)

where Φ is a random vector in the NB-dimensional
Hilbert space.

Evidently, the energy of the whole system, which is
closed, is a conserved quantity. However, the system S
and the bath B are in contact with each other and can
exchange energy. Thus, the system S can show decoher-
ence and relaxation, equilibration, thermalization, all
depending on how the simulation is performed [36,37].

Figure 5 shows the simulation data obtained by solv-
ing the TDSE for Hamiltonian Eq. (11) with a bath of
NB = 28 spins. Qualitatively, model Eq. (11) repro-
duces all essential features of the experimental data
shown in Fig. 1.

In model Eq. (11), there are only two adjustable
parameters, namely the system-bath interaction strength
λ and the scale of the inter-bath interactions K. In view
of the fact that solving the TDSE for a system with 29

a

b

c

d

e

f

g

h

i

j

Fig. 5 Simulation results for the magnetization, as
obtained by solving the TDSE for Hamiltonian Eq. (11),
describing the system S coupled to bath-I, both subject to
a time-dependent magnetic field. Bath-I contains NB = 28
interacting spins, the spin-bath coupling λ = 6, J = 1 MHz,
K = 10 MHz, hd = 15 MHz, and hi = 0.12 hd = 1.8 MHz

spins is quite expensive in terms of computer resources,
we did not try to improve the qualitative agreement
with the experimental results by adjusting these param-
eters.

It should be noted that being exactly at the Floquet
resonance frequency Δ = 8.66MHz is not a necessary
condition to observe sustained Rabi oscillations: they
also appear in Fig. 5b, g (and Fig. 1b, g).

In Fig. 6 we present TDSE simulation data of the
energy of the system ES = 〈Ψ(t)|HS,RF|Ψ(t)〉, of
bath-I EB = 〈Ψ(t)|HB,RF|Ψ(t)〉, and the total energy
ES+EB+λESB〈Ψ(t)|H(t)|Ψ(t)〉. From a more general,
many-body physics viewpoint, these data show interest-
ing behavior.

It is not evident that the qubit will evolve to a sta-
tionary state if it is driven by a time dependent field (of
strength hi) [38,39]. Recall that for λ = 6, the qubit-
bath interaction is rather weak. Nevertheless, as Fig. 6
shows, in the case under study, it is clear that as time
progresses, both the qubit and bath-I end up in a sta-
tionary state, the details of which depend on the offset
Δ and the phase shift φ. Furthermore, if the value of Δ
matches the resonance condition Δ = hd/

√
3, the sys-

tem and total energy decay to the stationary state on
a much longer time scale than for Δ = 5, 7, 10, 12MHz
(see Fig. S9 of the Supplemental Material [30]).
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a b

Fig. 6 Simulation results for the energy of the spin bath
(dashed red line), the system (dotted blue line) and total
energy (solid black line), as obtained by solving the TDSE
for Hamiltonian Eq. (11), describing the single-spin system
S coupled to a spin bath, both subject to a time-dependent
magnetic field. The bath consists of NB = 28 spins, the
spin-bath coupling λ = 6, J = 1 MHz, K = 10MHz, hd =
15 MHz, hi = 0.12hd = 1.8 MHz, and Δ = 8.66 MHz. The
lines for the system and total energy nearly overlap. For t ≥
4µs, the energies oscillate on a scale that is hardly visible in
the plots. Results for non-resonant values of Δ = 8.66 MHz
are presented in Fig. S9

The period of the large-amplitude oscillations in
Fig. 6 is approximately 0.7µs ≈ P

(2)
R = 0.74µs. Thus,

at resonance (Δ = hd/
√

3), the system and total energy
exhibit a synchronized, damped oscillatory behavior
with a frequency that is approximately given by the
second Rabi frequency F

(2)
R = 3hi/4.

In Fig. 7 we show the correlation function

B(t)

=
1

NB

∑

α=x,y,z

NB∑

n=1

〈Ψ(t = 0)|Iα
n (t)Iα

n+1(t)|Ψ(t = 0)〉 ,

(13)

that is, the sum of all equal-time, nearest-neighbor cor-
relations of all bath-I pseudo spins components at the
Floquet resonance Δ = 8.66MHz. A first observation is
that these correlations are small (relative to the max-
imum of B(t) which is equal to one). A second obser-
vation, less clear than in the case hi = 1.8MHz and
φ = 0, is that as time proceeds, the correlations seem
to saturate. The transient dynamics includes signatures
of the Floquet and Rabi dynamics, because the spin
qubit is driving bath-I via the HSB interaction. Also,
it’s important to note that a saturation of the bath-I
internal dynamics can lead to an increase of the coher-
ence time, as it was observed in the case of molecular
magnets placed in high magnetic fields [40]. The behav-
ior of the bath-I correlation B(t) is very different from
the that of the correlations in the model of interacting
system spins, discussed in the next section.

In summary: the model Eq. (11) reproduces the main
features (see Sect. 1) of the spin dynamics observed in
the ESR experiments on CaWO4:Gd3+.

Fig. 7 Simulation results of correlation Eq. (13) obtained
by solving the TDSE for Hamiltonian Eq. (11) describing
the single-spin system S coupled to a spin bath, both subject
to a time-dependent magnetic field. The bath consists of
NB = 28 interacting spins

6 System of interacting magnetic moments

In the previous section, we studied effects of environ-
ments on the spin dynamics and found decaying and
sustained Rabi oscillations. Regarding mechanisms for
the magnetization decay, as a alternative to the cou-
pling to environment, we may also consider interac-
tions among the Gd3+ moments and the inhomogeneity
of the microwave field. In this section, we study these
two aspects by considering a collection of spins, each
one representing the magnetic moment of a Gd3+ ion
(and without additional spins representing a bath). The
model describes NS spins that interact with the exter-
nal magnetic fields and with each other.

The Hamiltonian of the whole system takes the form

H(t) =
NS∑

n=1

{ − ω0S
z
n − 2ωdS

x
n sin[2π(f0 + Δ)t + φ]

− 2ωiS
x
n sin[2π(f0 − Δ)t − φ]

}

−λ

NS∑

1=m<n

∑

α=x,y,z

Cm,n,αSα
mSα

n , (14)

where the parameter λ is used to control the overall
strength of the coupling between the spins. The first
term in Eq. (14) describes the spins in the external
time-dependent magnetic field. The interaction between
the spins is described by the second term in Eq. (14).
The coefficients Cm,n,k’s are taken to be uniform ran-
dom frequencies in the range [−1MHz, 1MHz]. These
randomly chosen Cm,n,k’ s are assumed to mimic, in
a simple manner, the essential features of the dipolar
interactions between the Gd spins.

As before, it is advantageous to eliminate the very
fast motion associated with the Larmor angular fre-
quency ω0 by changing to the rotating frame. The
unitary transformation that accomplishes this is U =
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exp
[
iω0(Sz

1 + . . . + Sz
NS

)
]
. Keeping only the secular

terms, i.e. the terms that do not depend on ω0, the
interaction Hamiltonian does not change and Eq. (14)
becomes

H(t) = 2π

NS∑

n=1

{
ΔSz

n − hd (Sx
n sin φ + Sy

n cos φ)

+hi [Sx
n sin(4πtΔ + φ) − Sy

n cos(4πtΔ + φ)]
}

−λ

NS∑

1=m<n

∑

α=x,y,z

Cm,n,αSα
mSα

n . (15)

As the C’s in Eq. (15) are chosen uniformly random
in the interval [−1MHz,+1MHz], the average strength
of the spin–spin interactions is λ〈|Cm,n,α|〉 = λ/2MHz.
On the other hand, the characteristic energy scale of the
spins is 2πhd ≈ 94MHz. Therefore, for λ = 5 (the value
adopted in our simulations), this strength is at least
an order of magnitude smaller than the characteristic
energy scale of the qubit. In other words, the coupling
between the spins may be considered to be weak.

If we naively consider a uniform distribution of impu-
rities over the host lattice with the concentration that
we believe applies to the sample, we estimate the mag-
nitude of λC (see Eq. (17)) to be approximately 0.3
MHz. This is a factor of 10 smaller than the average
interaction strength (2.5 MHz) used in our simulations.
On the other hand, in our simulations, only a small (not
more than 28 spins) cluster of spins suffices to create the
“sustained Rabi oscillations”. Assuming that average
distance between the Gd3+ ions in this cluster is only
about two times smaller than for a uniform distribution
Gd3+ ions, changes the magnitude of magnitude of λC
to approximately 3 MHz. A slightly different, clustered
distribution of impurities would suffice. Clearly, there
is a lot of uncertainty in these estimates but at least
they are not off by orders of magnitude.

Another aspect, not explicitly included in our simu-
lation models is the following. As a spin system, Gd3+

has 2S + 1 = 8 levels, two of which are effectively used
in the ESR experiment. It is well-known, e.g. in the field
of superconducting qubits [41,42], that multilevel struc-
tures contribute to decoherence of the two-level system
regarded as the qubit. The two-level systems of the bath
are a very simple model that can mimic this mecha-
nism. Of course, two-level systems can mimic “almost
anything”, as we also point out in the text. Also in this
case, it is hard to put a reliable number on the interac-
tion strength.

In the present case, to study the Rabi oscillations, we
solve the TDSE with Hamiltonian Eq. (15) and take as
the initial state the product state of all spins up (along
the z-axis), that is

|Ψ(t = 0)〉 = | ↑〉1 ⊗ · · · ⊗ | ↑〉NS . (16)

Instead of the plotting the expectation value of the
z-component of each spin, we now plot 〈Mz(t)〉 =

∑NS
n=1〈σz

n(t)〉, that is the z-component of the total mag-
netization.

Figure 8 shows the simulation data obtained by solv-
ing the TDSE for Hamiltonian Eq. (15) with a system of
NS = 28 interacting spins. Clearly, there is a significant
qualitative difference between φ = 0 and φ = 45◦ data.
Furthermore, the latter does not compare well with the
data shown in Fig. 1(h–j). For completeness, Figs. S11
and S12 of the Supplemental Material [30] show the
simulation data for the time evolution of the energy of
the model Eq. (15).

6.1 Inhomogeneity of the microwave fields

A trivial modification to the Hamiltonian of the system
of interacting spins allows us to account for the inho-
mogeneity of the microwave fields. As we now show,
the combination of spin–spin interactions and the inho-
mogeneity of the microwave fields yields satisfactory
results for the main features observed experimentally
(for details see section IV C of the Supplemental Mate-
rial [30]).

Instead of Eq. (15), we now take

H(t) = 2π

NS∑

n=1

{
ΔSz

n − hd,n (Sx
n sin φ + Sy

n cos φ)

+hi,n [Sx
n sin(4πtΔ + φ) − Sy

n cos(4πtΔ + φ)]
}

−λ

NS∑

1=m<n

∑

α=x,y,z

Cm,n,αSα
mSα

n . (17)

In words, we place each spin n in its own microwave
fields (hd,n, hi,n) where hd,n/hd and hi,n/hi are uni-
form random numbers in the range [1−δ, 1+δ], δ being
a dimensional measure of the microwave inhomogene-
ity. This modification has no impact on the computer
resources it takes to solve the TDSE. For the simula-
tions reported in this paper, the number of different
(hd,n, hi,n) pairs is equal to NS = 28.

Figure 9 shows the simulation data obtained by solv-
ing the TDSE with Hamiltonian Eq. (17). Although
the microwave inhomogeneity is weak (δ = 0.1), it has
considerable impact on the magnetization dynamics.

In the absence of spin–spin interactions (λ = 0) and
inhomogeneities, all the spins perform the same motion,
as discussed in Sect. (4). If λ = 0, small differences in
the microwave amplitudes hd,n and hi,n, see Eq. (17),
lead to quantitative but no qualitative differences in
the motion of the spins. However, if λ �= 0, the random
interactions among the spins act against the coherent
motion of the spins and the Rabi oscillations decay on
a short time scale, as illustrated in Fig. 9a, f, except
when the value of Δ satisfies the condition for the first
Floquet resonance, see Fig. 9c, h.

In the case of the bath-I model, see Sect. 5, the spin
and the bath-I spins establish some kind of station-
ary state.. In the case of model Eq. (17), the interac-
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Fig. 8 Simulation results for the total magnetization
obtained by solving the TDSE with Hamiltonian Eq. (15)
for a system of Ns = 28 interacting spins, subject to a time-
dependent magnetic field. The spin–spin coupling strength
λ = 5, hd = 15MHz, and hi = 0.12hd = 1.8 MHz

tions among all the spins may destroy the correlations
between the individual spins as time proceeds. In the
present case, we take as a measure for these correlations

C(t) = C0

NS∑

1=m<n

〈Ψ(t = 0)|Sz
m(t)Sz

n(t)|Ψ(t = 0)〉 ,

(18)

where C0 = 2/NS(NS − 1). Equation (18) is the sum
of all equal-time correlations of the z-components of all
spins. Here we do not present real-time data for C(t)
(see Fig. S13)) but rather show its Fourier transform,
see Fig. 10. As our main interest is in the long-time
behavior of C(t), we discard the transient regime by
considering real-time data for 1µs ≤ t ≤ 5µs only.

In the absence of the image drive hi = 0 (see Fig. 10a,
d), the Fourier transformed C(t) exhibits almost no
structure and has low intensity in comparison to the
maximum intensities observed if the image drive is
active (hi = 1.8MHz, see Fig. 10b, c, e, f).

If the image drive is present (hi = 1.8MHz, Δ =
5MHz and φ = 0), Fig. 10b suggests a correlated
motion with a frequency of ≈ 10MHz ≈ 2Δ (and some
weak higher harmonics). The spin system is outside the
Floquet resonance regime and therefore the only source
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e

f

g

h

i

j

Fig. 9 Simulation results obtained by solving the TDSE
with Hamiltonian Eq. (17) for a system of NS = 28 inter-
acting spins, spin-bath coupling λ = 5 and microwave field
inhomogeneity δ = 0.1

of correlation is imposed by the image field drive, sim-
ilarly to the case of bath-I presented in the previous
section. Since the image drive runs at 2Δ, the correla-
tion is driven at the same frequency.

This picture changes drastically if the image drive is
present and Δ satisfies the condition for the first Flo-
quet resonance 2Δ = (h2

d + Δ)1/2 = FR ≈ 17.3MHz.
Then Fig. 10e suggests a correlated motion with a fre-
quency of ≈ 35MHz ≈ 4Δ = 2FR, that is a frequency of
four (not two as in the case Δ = 5MHz) times the Rabi
frequency. Assuming that the z-component of each spin
is oscillating with some frequency, then multiplying two
such components (see Sz

m(t)Sz
n(t) in Eq. (18)) gives rise

to an oscillation with twice that frequency. Thus, the
clear signal at ≈ 4Δ suggests that z-component of each
spin is oscillating with a frequency of 2Δ imposed by
the image drive and that there is some collective motion
of these components. In other words, at the Floquet
resonance, the image drive induces long-time correla-
tions between the spins seen in the Fourier transform
at a frequency of 2FR. For φ = 45◦ the magnetization
dynamics shows a much richer structure (see Fig. 9h)
which is also reflected in a more complicated spectrum,
see Fig. 10g, but the signal at 2FR is also clearly visible.

The results the TDSE simulations for the model of
interacting spins can be summarized as follows:
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a d

b e

c f

Fig. 10 Simulation results of the Fourier transformed cor-
relation Eq. (18) obtained by solving the TDSE for Hamil-
tonian Eq. (17), describing a system of NS = 28 interacting
spins, The microwave field inhomogeneity δ = 0.1. The posi-
tions of 2Δ and 4Δ are indicated by the two vertical dashed
lines. The plots b, c, e and f correspond to plots a, c, f,
and h in Fig. 9, respectively. At the Floquet resonance, the
spins tend to develop a synchronized motion seen as a signal
at 4Δ

1. Qualitatively, model Eq. (15) does not reproduce the
features of the Rabi oscillations shown in Fig. 1.
In particular, there is a clear qualitative difference
between Figs. 1h–j and 8h–j, that is if φ = 45◦.
Therefore, model Hamiltonian Eq. (15) alone does
not seem to describe well such oscillations.

2. However, accounting for the inhomogeneity of the
microwave field as in model Eq. (17) considerably
improves the qualitative agreement with the experi-
mental data (compare Fig. 1 with Fig. 9).

3. At the Floquet resonance, all interacting spins are
developing a synchronised motion. The effect disap-
pears quickly when the resonance condition is not
met.

7 Conclusion

Following its experimental implementation presented
in Ref. [26], a spin qubit subject to two different
microwave drives, one that induces Rabi oscillations
and a much weaker second one aiming to preserve
coherence was shown to extend the coherence time
of a spin qubit. In this paper, this protocol is ana-
lyzed theoretically by numerically solving the time-
dependent Schrödinger equation of two different micro-
scopic many-body systems. The models considered are:
(i) a spin qubit interacting with a collection of two-level
systems representing a bath (bath-I) and (ii) weakly
interacting spin qubits in which the spin qubits them-
selves act as a bath (bath-II).

We discuss the conditions for properly describing
the measured Rabi oscillations [26] and analyze the
microscopic internal dynamics simulated for each type
of bath. We find a small amount of saturation build-
ing up in the spin–spin correlations of bath-I at long
time scales while the transitory regime shows signatures
of the Floquet dynamics. For the second model with
bath-II, one clearly observes the build up of a synchro-
nised motion of the bath spins, sustained for very long
times. Both microscopic models are shown to be capable
of reproducing the main feature of the spin dynamics
observed in the ESR experiments on CaWO4:Gd3+.

The results of our simulation work suggest that in
order to capture the essence of the real-time dynamics
of a spin as observed in the ESR experiments described
above, the effect of dynamics of this spin on the dynam-
ics of the bath degrees of freedom has to be taken into
account. The dynamics of the bath degrees must be
treated on the same footing as the dynamics of the spin
itself. The build up of correlations between the spin and
the bath spin result in a synchronous motion of all the
spins, having the effect of partial preservation of the
phases.

In the standard situation the bath determines the
temperature. However, if the whole system is driven by
the external field, as is case for the systems studied in
this paper, it is not so clear what “temperature” means.
Still, the effect of the energy exchange between the spin
bath and the system is important, as our results also
show. Under these circumstances the role of the bath is
not to determine the temperature but to promote relax-
ation by energy exchange. Of course, if the Hamiltonian
is time independent and the whole system is closed, its
dynamics is governed by the TDSE and there is no dis-
sipation. However, a spin that is subject to external,
time-dependent microwave fields and in contact with an
environment can, and also does, exchange energy with
the spin bath. Thus, the total energy is not conserved
and the exchange of energy between the spin and the
spin bath is the source of dissipation and decoherence
(in this case).”

Even if initially the bath energy is zero, the energy of
the total system is not conserved and the final energy
does not need to be zero because the whole system is
driven. Nevertheless, the fact that also in this driven
case, the energy of the single spin and the total energy
approach stationary values is an important character-
istic of the systems studied in the present paper.

We have demonstrated that with the computational
resources that are available today, it is possible to sim-
ulate the real-time dynamics of many-body quantum
spin systems over a time span that is experimentally
relevant. Our numerical simulations show how correla-
tions are building up in the baths when the Floquet
protocol is implemented, leading to a preservation of
the coherence of the qubit. Both microscopic models are
shown to be capable of reproducing the main feature of
the spin dynamics observed in the ESR experiments on
CaWO4:Gd3+.

In view of the various physical mechanisms that may
be at play, it would be best to consider a model that
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simultaneously includes several of them. Unfortunately,
limitations imposed by computer resources force us to
consider the effects of different mechanisms separately.

Author contributions

All authors contributed to the study conception and
design. Experiments were designed, carried out and
analyzed by Sylvain Bertaina, Herve Vezin and Irinel
Chiorescu. The theoretical description was formulated
by Sylvain Bertaina, Irinel Chiorescu, Seiji Miyashita
and Hans De Raedt. Hans De Raedt authored the sim-
ulation software. Hans De Raedt and Kristel Michielsen
performed the large-scale simulations. Sylvain Bertaina,
Irinel Chiorescu, Seiji Miyashita and Hans De Raedt
wrote the manuscript.

Funding Open Access funding enabled and organized
by Projekt DEAL. The authors gratefully acknowledge
the Gauss Centre for Supercomputing e.V. (http://www.
gauss-centre.eu) for funding this project by providing com-
puting time on the GCS Supercomputer JUWELS at
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