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3D relaxation-assisted separation of wideline
solid-state NMR patterns for achieving site
resolution†‡

Adam R. Altenhof, ab Michael J. Jaroszewicz,c Lucio Frydman *bc and
Robert W. Schurko *ab

There are currently no methods for the acquisition of ultra-wideline (UW) solid-state NMR spectra under

static conditions that enable reliable separation and resolution of overlapping powder patterns arising

from magnetically distinct nuclei. This stands in contrast to the variety of techniques available for spin-1/2 or

half-integer quadrupolar nuclei with narrow central transition patterns under magic-angle spinning (MAS).

Resolution of overlapping signals is routinely achieved in MRI and solution-state NMR by exploiting relaxation

differences between nonequivalent sites. Preliminary studies of relaxation assisted separation (RAS) for

separating overlapping UWNMR patterns using pseudo-inverse Laplace Transforms have reported two-

dimensional spectra featuring relaxation rates correlated to NMR interaction frequencies. However, RAS

methods are inherently sensitive to experimental noise, and require that relaxation rates associated with

overlapped patterns be significantly different from one another. Herein, principal component analysis (PCA)

denoising is implemented to increase the signal-to-noise ratios of the relaxation datasets and RAS routines are

stabilized with truncated singular value decomposition (TSVD) and elastic net (EN) regularization to resolve

overlapped patterns with a larger tolerance for differences in relaxation rates. We extend these methods for

improved pattern resolution by utilizing 3D frequency-R1–R2 correlation spectra. Synthetic and experimental

datasets, including 35Cl (I = 3/2), 2H (I = 1), and 14N (I = 1) NMR of organic and biological compounds, are

explored with both regularized 2D RAS and 3D RAS; comparison of these data reveal improved resolution

in the latter case. These methods have great potential for separating overlapping powder patterns under

both static and MAS conditions.

1. Introduction

High-resolution techniques are important for separation of
overlapping patterns arising from chemically and magnetically
nonequivalent sites in solid state NMR (SSNMR) spectra, leading
to site-specific resolution and unambiguous spectral assignments.
For spin-1/2 nuclei, this includes techniques like phase-adjusted
spinning sidebands,1 magic-angle hopping,2 and magic-angle
turning.3 For quadrupolar NMR, techniques like multiple-quantum

magic-angle spinning (MQMAS),4,5 satellite-transition MAS
(STMAS),6 dynamic angle spinning (DAS),7 and double rotation
(DOR)8 are limited to resolving central transition (CT) patterns
of half-integer spin quadrupolar nuclei with relatively narrow
pattern breadths, of which only a handful (e.g., 11B, 17O, 23Na,
27Al) are routinely investigated. More recently, there have been
additional proposals for resolving wideline quadrupolar NMR
patterns under MAS conditions;9–12 while extremely useful,
these techniques are limited in their application to ultrawide
(UW) NMR spectra with overlapping patterns, due to factors
such as limited MQ or ST coherence generation, complicated
spinning-sideband manifolds, and/or challenges in precise
magic angle settings.13 Furthermore, few methods are helpful
under static (i.e., no MAS) conditions at the present time.
Finally, in the case of integer spin NMR where MQMAS experi-
ments are not necessary, high-resolution spectra are difficult to
obtain due to the need for extremely precise and stable magic
angle settings.14–16

An alternative possibility for separating and resolving over-
lapping magnetic resonance powder patterns is by relying on

a Department of Chemistry and Biochemistry, Florida State University, Tallahassee,

FL 32306, USA. E-mail: rschurko@fsu.edu; Tel: +1 (850)-645-8614
b National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive,

Tallahassee, FL 32310, USA
c Department of Chemical and Biological Physics, Weizmann Institute of Science,

Rehovot, 7610001, Israel. E-mail: lucio.frydman@weizmann.ac.il

† All RAS routines are written in MATLAB and are available at https://github.com/

rschurko/RAS.
‡ Electronic supplementary information (ESI) available: Additional experimental
details, experiments, and simulations. See DOI: https://doi.org/10.1039/

d2cp00910b

Received 23rd February 2022,
Accepted 10th August 2022

DOI: 10.1039/d2cp00910b

rsc.li/pccp

PCCP

PAPER

Pu
bl

is
he

d 
on

 1
1 

A
ug

us
t 2

02
2.

 D
ow

nl
oa

de
d 

by
 F

lo
ri

da
 S

ta
te

 U
ni

ve
rs

ity
 o

n 
11

/1
/2

02
2 

8:
04

:4
7 

PM
. 

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-8095-6373
https://orcid.org/0000-0001-8208-3521
https://orcid.org/0000-0002-5093-400X
http://crossmark.crossref.org/dialog/?doi=10.1039/d2cp00910b&domain=pdf&date_stamp=2022-09-15
https://github.com/rschurko/RAS
https://github.com/rschurko/RAS
https://doi.org/10.1039/d2cp00910b
https://doi.org/10.1039/d2cp00910b
https://rsc.li/pccp
https://doi.org/10.1039/d2cp00910b
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP024037


This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 22792–22805 |  22793

different site-specific magnetic resonance properties – for
instance, distinct spin relaxation, diffusion and/or dynamical
behaviours. The spin evolution defined by these properties is
usually given by a basis set of time-dependent exponential
functions; hence, subjecting the resulting NMR signals to an
inverse Laplace transform (ILT)17–19 could serve to resolve the
individual signals with these distinct properties. This is routinely
implemented in low-field NMR and in MRI, where diffusion and
relaxation are prime contrast mechanisms;20–22 however, their
routine use in SSNMR is rarer. Lupulescu et al. demonstrated
that relaxation assisted separation (RAS) could resolve relatively
narrow, overlapping CT powder patterns of half-integer
quadrupolar nuclei, using a pseudo-ILT with a non-negative
least-squares (NNLS) fitting of the relaxation data.23 Iijima and
Shimizu implemented RAS for static 2H NMR,24 while Boutis and
Kausik used it for separating patterns influenced by chemical
shift anisotropy (CSA).25

We have extended RAS methods for resolving overlapped
UW patterns,26 including those exceeding 250 kHz in breadth
due to large anisotropic NMR interactions,27 using stabilized
solutions of the NNLS with Tikhonov regularization (Non-
Negative Tikhonov Fitting – NNTF). RAS measurements based
on T1 and Teff

2 (i.e., effective T2) were used to resolve patterns of
both half-integer and integer-spin quadrupolar nuclei, as well
as spin-1/2 patterns influenced by large CSAs.26 These prece-
dents could further benefit from the application of WURST28,29

pulses (for direct excitation)30 or broadband adiabatic
inversion-cross polarization (BRAIN-CP) (for CP-enhanced
excitation),31 combined with measurements of T1 and T2 (or Teff

2 )
relaxation time constants using inversion recovery (IR)32 and
CPMG33,34 sequences, respectively.35 In particular, all of these
sequences are relatively simple, utilize low RF powers, and can be
applied to a wide array of spin-1/2 and quadrupolar nuclei.27,36,37

All RAS approaches involve an inversion of the NMR relaxa-
tion data, transforming it from the time domain to the
relaxation-rate domain. Ill-posed inversion problems of this
type are inherently sensitive to experimental noise, and the
resulting solutions can be quite unstable.38 Previous RAS work
implemented regularization procedures by incorporating an
additional l2-norm constraint in the NNLS regression,39,40

truncated singular value decompositions (TSVD),38,41–43 l1-
norm constraints,44–46 and elastic net (EN) regularizations;43,47

the use of neural networks48 and principal component analyses
(PCA) have also improved the robustness of these relaxation
measurements.49,50 Previous work also demonstrated the reso-
lution improvement capabilities of using T1–T2 correlations to
obtain higher-dimensional relaxation spectra.42,44,51,52

This study describes the potential of using improved
regularized methods for resolving overlapping SSNMR powder
patterns. To this end, protocols were developed to acquire
R1(T1

�1)- and R2(T2
�1)-encoded NMR datasets using WCPMG-

IR, BRAIN-CP-IR, and QCPMG-IR pulse sequences.35 RAS
processing of these data employed custom-written routines
stabilized with TSVD and EN regularization, which substantially
reduce both the computational requirements and sensitivity to
artifacts, as well as denoising by PCA. An improved pattern

resolution can be realised by encoding both R1 and R2 domains,
as 3D RAS datasets separating powder patterns along the R1 and
R2 axes can yield separations that are not achievable from 2D
datasets. Experimental applications to the resolution of 2H (I = 1),
35Cl (I = 3/2) and 14N (I = 1) UWNMR datasets are discussed.

2. Theory
2.1 Multidimensional inverse Laplace transforms with EN
and TSVD regularization

Although the challenges of and solutions for multidimensional
ILT of NMR and MRI relaxation datasets have been described in
detail,38,41,51,53 a summary of the inversion methods used in the
current work are explained herein for clarity. 2D or 3D struc-
tures defined over a continuous domain are capitalized (e.g., F);
their discrete analogues are capitalized and boldfaced (e.g., F);
and any 1D vectors are lowercase and boldface (e.g., f). Quantities
spanning domains of Rm�1, Rm�n, and Rk�m�n, are 1D vectors, 2D
matrices, and 3D arrays, respectively.

The problem considered here is that of a signal giving rise to
a broad NMR powder pattern, which is undergoing simultaneous
exponential decay due to two independent relaxation mechan-
isms (e.g., T1 and T2). This signal can be modelled as:

G t; t0; tð Þ

¼
ððð

K R1;R2; t; t0ð Þ expðintÞF R1;R2; nð ÞdR1dR2dn þ e t; t0; tð Þ

(1)

where G(t, t0, t) is the signal viewed as a function of a direct,
spectrum-encoding acquisition time t and over two indirect
relaxation dimensions t and t0; F(R1, R2, n) is a distribution
correlating the powder patterns to their associated relaxation
rates; e(t, t0, t) describes experimental noise; and K is the kernel
that encodes the relaxation behaviours. This is modelled as a
product of a kernel that encodes R1, K1(R1, t) = 1 � 2 exp(�R1t),
with a kernel that encodes R2, K2(R2, t0) = exp(�R2t0) (vide infra).
The goal of RAS is to estimate F(R1, R2,n) from G(t, t0, t). This is a
3D inversion problem that can be reduced to 2D by considering
eqn (1) on a frequency-by-frequency basis;41 i.e., by Fourier
transforming the signal over the direct-acquisition time dimen-

sion, t, such that G t; t0; tð Þ ���!FTðtÞ
G t; t0; nð Þ. Considering only a

single frequency point, nk, the problem then reduces to solving a
2D Fredholm integral of the first kind:38

Gk t; t0ð Þ ¼
ðð

K R1;R2; t; t0ð ÞFk R1;R2ð ÞdR1dR2 þ e t; t0ð Þ (2)

This 2D inversion problem is evaluated numerically with a non-
negative least-squares (NNLS) regression, which is reduced to a
1D inversion problem by

f
g
k ¼ min

f�0
K � fk � skk k22

� �
(3)

where discrete matrix representations of Fk(R1, R2) and Gk(t, t0)
have been vectorized by rearranging and stacking their columns
as fg

k A R(n1�n2)�1 and sk A R(m1�m2)�1, respectively, and the discrete
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kernel K = K1 # K2 with K A R(m1�m2)�(n1�n2). The label ‘g’
differentiates the signal fg that minimizes the norm from f in the
regression. n1 and n2 refer to the number of rates used to model R1

and R2 relaxation, respectively, and m1 and m2 are the number of
experimental time increments used to encode R1 (t increments)
and R2 (t0 increments; also, the number of CPMG spin echoes)
relaxation rates, respectively. A non-negativity constraint is imposed
since the experimental rates describing relaxation are strictly non-
negative. Any constraints enforced in the NNLS in general are
referred to as regularization (vide infra). In general, JxJ2 and JxJ1

denote the l2 and l1 Euclidean norms of x, respectively.
In principle, the resultant fg that minimizes the norm in

eqn (3) can be transformed back into a matrix for every k,
thereby forming a 3D dataset as Fg A Rk�n1�n2. Solutions to
eqn (3), however, are extremely sensitive to the experimental
noise; such problems are classified as ill-posed,54 and require
additional regularization constraints to help stabilize their
solutions. Elastic-net (EN) is one form of regularization that
we have adopted, and refers to the linear combination of
additional l2 and l1 norm constraints.35,47 The additional l2

norm serves to minimize the condition number of the kernel by
penalizing its small non-zero singular values, which attenuates
the amplitude of the experimental noise in the NNLS fit. The l1

norm imposes a sparsity constraint that can force some solu-
tions to zero, which is often useful for multi-component
relaxation or distributions of relaxation rates.45,47 EN regular-
ization introduces these norms into eqn (3):

f
g
k ¼ min

f�0
K � fk � skk k22þa fkk k22þl fkk k1

� �
(4)

where a and l are called the regularization parameters, which
are weighting factors for the l2 and l1 norm constraints,
respectively. The l2 norm constraint is implemented here using
Tikhonov regularization,26,39,40,54 such that

f
g
k ¼ min

f�0

K

aL

 !
fk �

sk

0

 !�����
�����
2

2

þ lfkk k1

0
@

1
A (5)

where LA R(n1�n2�2)�(n1�n2) is the discrete, second-order deriva-
tive operator necessary for inversion.26,43,54,55 In this work, the
NNLS regression including the l1 constraint is evaluated
directly in eqn (5) using the novel interior point method
developed by Boyd et al.45 The optimal l for the l1 norm
constraint can be determined with a characteristic S-curve by
examining the log of the residual norm as a function of l
(vide infra; see Fig. S5, ESI‡).42,56

As mentioned, the kernel in eqn (5) is defined as the outer product
between the two kernels used to describe R1 and R2 relaxation

K = K1 # K2 (6)

where K1 A Rm1�n1, K2 A Rm2�n2, and K A R(m1�m2)�(n1�n2). When
many relaxation rates are used to define K, the inversion
problem becomes computationally expensive. One approach
to overcome the computational cost is to reduce the dimen-
sionality of the problem using truncated singular value decom-
position (TSVD).41,43 The SVD of Ki (i = 1, 2) can be written as

Ki = UiRiV
T
i (7)

where Ui A Rmi�mi and Vi A Rni�ni are orthogonal matrices
whose columns form the singular vectors of Ki, Ri A Rmi�ni has
diagonal non-negative singular value entries sr (r = 1, . . ., mi) of
progressively decreasing magnitude, and the superscript T
indicates matrix transposition. To reduce the dimensionality of
the kernel, it is projected onto a low-rank subspace using only the
first ri singular values and corresponding singular vectors:

~Ki ¼ Rri
i Vi

rið ÞT (8)

K̃ = K̃1 # K̃2 (9)

and the signal is compressed as41

~Sk ¼ U
r1
1

� �T�Sk �Ur2
2 (10)

where U
ri
i 2 Rmi�ri , V

ri
i 2 Rni�ri ,

Pri
i 2 Rri�ri , K̃ A R(r1�r2)�(n1�n2),

Sk A Rm1�m2, S̃k A Rr1�r2, and ri is some value less than mi that is
determined with the maximum entropy-based criterion sepa-
rately for each kernel Ki.

43,57 S̃k is then rearranged into a vector
to be used in 1D NNLS as s̃k A R(r1�r2)�1. The total dimensionality
of the kernel and signal can then be substantially reduced
depending on number of singular vectors and values retained,
resulting in faster calculations and increased regularization. With
these provisions, eqn (5) can be described as the sparse non-
negative Tikhonov fitting (sparse NNTF):

f
g
k ¼ min

f�0

~K

aL

� 	
fk �

~sk

0

� 	����
����2
2

þl fkk k1

 !
(11)

where the total concatenated kernel size is R(r1�r2+n1�n2�2)�(n1�n2)

and the concatenated signal size is R(r1�r2+n1�n2�2)�1. As men-
tioned, this way of casting the ILT problem then needs to be
evaluated for every frequency point, k (k = 1, 2, 3, . . ., np) defining
the SSNMR powder pattern, the result of which is used to form
the 3D dataset Fg.

2.2 Spectral denoising with principal component analysis

A 3D n–R1–R2 correlation experiment, as described above, can
be useful for achieving high resolution; however, its perfor-
mance is sensitive to the signal-to-noise ratio (SNR) – a para-
meter that directly affects the performance of any NNLS
regression. Spectral reconstruction with principal component
analysis (PCA) can be implemented to increase overall
SNRs.49,50 PCA fundamentally operates along similar lines of
the SVD described in eqn (7), except in this case the matrix of
the centered 2D NMR signal X = G(t, n) or G(t0, n) is factored
with SVD. If X is the centered matrix of G according to

X = (x1 � %x1, . . . xp � %xp)T (12)

where p is the column index for X, then the SVD of X is

X = URVT (13)

where the columns of V are the principal directions/axes of X, and
the columns of U�R are the corresponding principal components.
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Similar to TSVD, only the first b columns are retained from V and
U�R, which are a lower variance representation of the data (i.e., a
low dimensional subspace or projection). The signal is then
reconstructed as

Zj = Ub
j R

b
j (Vb

j )T (14)

where Z has the same dimensions as X but is now of lower rank,
and j indexes the relaxation-delay increment (i.e., tj or t0j). The
2D NMR signal is thus denoised for every point in the other
relaxation dimension. For example, every 2D n–t plane of the
3D data is individually denoised for each j ( j = 1, 2, 3, . . . m2)
number of echoes using this procedure. It is possible to
determine b with a maximum entropy criterion (vide supra);
however, we have empirically found robust performance with
b = 2 or 3 throughout this work. It is important to note that PCA
denoising is performed during pre-sparse NNTF processing, on
the input NMR relaxation data (i.e., before evaluating eqn (11));
in this way the data is denoised without augmented spectral
features, and retains its original dimensions.

3. Experimental methods
3.1 Samples

Glycine HCl [Sigma Aldrich], histidine monohydrate HCl [Sigma
Aldrich], isoxsuprine HCl [Sigma Aldrich], xylazine HCl [VWR],
betaine HCl [Sigma Aldrich], and 1,8-dimethylnapthalene-d12

[Cambridge Isotopes] were purchased; all were all used in
subsequent NMR experiments without further purification. The
identities and purities of the samples were verified through
comparisons with previously reported NMR spectra.58–61 A novel
RbCl:CdCl2:Urea cocrystal was prepared mechanochemically via
ball milling of the dried reagents in the appropriate molar ratios
(1 : 1 : 1): rubidium chloride [Sigma Aldrich], cadmium chloride
[Sigma Aldrich], and urea [Sigma Aldrich]. This synthesis used a
Retsch Mixer Mill 400, 10 mL stainless steel milling jars, and two
7 mm stainless steel ball bearings. All samples were ground into
fine powders and packed into 5 mm outer-diameter glass tubes
that were sealed with Teflon tape.

3.2 Solid-state NMR spectroscopy

NMR spectra were acquired using a Bruker Avance NEO console
and a 14.1 T Magnex/Bruker (n0(1H) = 600 MHz) wide-bore
magnet at resonance frequencies of n0(14N) = 43.348 MHz,
n0(35Cl) = 58.792 MHz, and n0(2H) = 92.104 MHz. A home-
built 5 mm double-resonance (HX) probe was used for all
experiments. All data were collected under static conditions
(i.e., stationary samples). Spectra were acquired with 1H
continuous-wave (CW) decoupling using RF fields of 50 kHz.
RF pulse powers and chemical-shift reference frequencies were
calibrated using the following standards: (i) 14N reference:
NH4Cl with diso = 0 ppm; (ii) 35Cl reference: NaCl (s) with diso =
0.0 ppm; and (iii) 2H reference: D2O (l) with diso = 4.8 ppm.

3.3 Spectral processing

All datasets were processed in MATLAB using custom-written
code. NMR data were acquired using pulse sequences that
implemented inversion-recovery (IR) – sometimes with the aid
of an adiabatic pulse and CPMG refocusing: WCPMG-IR, BRAIN-
CP-IR, or QCPMG-IR (Scheme 1).35,62 During each IR delay incre-
ment, t, NMR signals were acquired with CPMG-windowed acqui-
sitions; the individual spin echoes where then individually Fourier
transformed and phase-corrected with an automatic zeroth, first,
and second-order phasing routine, resulting in a 3D dataset,
G(t, t0, n). For 2D RAS processing, the 3D dataset was summed
over the rate dimension that is not being analyzed. For example,
R1-RAS was accomplished by summing over the entire R2 dimen-
sion in the 3D dataset, resulting in a 2D G(t, n) data set. Thirty-two
logarithmically sampled t increments were measured in every
experiment. SNRs were calculated as the ratio of maximum
spectral intensity to the standard deviation of the baseline noise
along the relaxation dimension for a 1D slice of any 2D or 3D
dataset presented herein: SNR = max(s)/snoise.63,64 Sparse NNTF
was calculated in MATLAB using custom code that implements
the regularization toolbox by Hansen55 and the l1-regularized
NNLS routine of Boyd et al.45 All MATLAB code used is available
at github.com/rschurko/RAS; simulation input files and pulse
programs are available from the authors upon request.

4. Results and discussion
4.1 Overview

WCPMG-IR, BRAIN-CP-IR, or QCPMG-IR pulse sequences
(Scheme 1) were used to experimentally acquire 3D n–t–t0

datasets.35 R1 was encoded via IR over a logarithmically incre-
mented delay t, leading to an exponential recovery of the form
1 � a exp(�R1t), where a = 2 for direct excitation, and a = 1 + e
for CP, where e is the CP enhancement factor.35 R2’s were
encoded with CPMG sequences over a delay t0 that was linearly
incremented via the number of CPMG loops, N (where N = m2 in
the theory section), leading to an exponential decay of the form
exp(�R2t0) (N.B.: R2 is in fact reflecting the effective T2, Teff

2 , in
cases where 1H-S dipolar coupling is present and decoupling is
active on the 1H channel; however, herein R2 is used in every
case for simplicity of notation). The result is a 3D data set, but
since the t0 increments are obtained as a result of windowed
CPMG acquisitions, the experimental time requirements are
the same as those of a standard 2D NMR experiment. For both
T1 and T2, it is also possible that the encoded relaxation
behaviour is multiexponential. An example of an experimental
3D n–t–t0 dataset is shown in the (Fig. S1, ESI‡).

Herein, we describe the use of BRAIN-CP-IR, WCPMG-IR,
and QCPMG-IR experiments to acquire experimental 2D or 3D
datasets suitable for RAS. First, the application of 2D RAS is
benchmarked on synthetic datasets to systematically demon-
strate the outcomes of EN and TSVD regularization methods
as well as those of PCA denoising; these methods are then tested
with one experimental 2H (I = 1) dataset. Second, 3D RAS is
demonstrated with synthetic datasets that outline the processing
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pipeline and test these same numerical methods. Finally, 3D
RAS is demonstrated for several experimental datasets and
compared with 2D RAS, including 35Cl (I = 3/2), 2H (I = 1), and
14N (I = 1) NMR examples that show the potential of 3D RAS for
separating overlapping powder patterns with clearly resolved
features.

4.2 2D RAS

The effects of EN and TSVD regularization were first examined
using a 2D implementation of the sparse NNTF inversion
described above, as applied to n–t or n–t0 datasets. To this
end, a synthetic CPMG dataset of two overlapping powder
patterns, with parameters typical of 35Cl in organic hydrochloride
(HCl) salts, was used as input (Fig. S2, ESI‡); 100 echoes were
simulated across the t0(R2) dimension and 1000 logarithmically
spaced rates supplied to the kernel. The size of the kernel was
K A R(100)�(1000) without TSVD and K̃ A R(22)�(1000) with TSVD,
resulting in much faster calculations in the latter case. Fig. 1 (and
Fig. S3, ESI‡) shows evaluations of the sparse NNTF for several
input signals with distinct SNRs, and for different R2 rates applied
to each powder pattern. In these simulations, a represents the
amount of l2 regularization, which can be determined with a
characteristic L-curve;26,55 the resulting optimal a is often on the
order of the standard deviation of the noise and is set as such

throughout. l represents the amount of l1 regularization, which
can vary depending on the amount of noise and/or how close the
rates or distributions of rates are to one another. If l is set too low,
then no sparsity is imposed – but if it is too high, then multiple
unique rates will appear as just a single rate distribution in the
RAS spectrum, thereby hindering pattern separation (Fig. S4,
ESI‡). The optimal l is determined using a S-curve routine in this
work (Fig. S5, ESI‡).42,56

These simulations show that when the supplied rates are far
apart (e.g., R2,A = 0.2 ms�1 and R2,B = 0.033 ms�1) and the SNR
of the input data is high, two distinct rate distributions are
observed in the frequency-R2 contour plot and the 1D R2

projection, where each corresponds to a distinct powder pat-
tern in the CPMG dataset (Fig. 1a). Solutions in this relatively
low-noise regime are stable and provide two distinct rate dis-
tributions even as the rates become increasingly similar (Fig. 1b
and 1c). As the SNR decreases, two isolated rate distributions can
still be identified when the rates are far apart (Fig. 1d), but the
distributions start to overlap as the rates get closer (Fig. 1e);
however, the sparsity constraint of l1 regularization still helps to
maintain two distinct distributions, as evidenced by the two
peaks in the R2-dimension (even though there is still some
degree of overlap). Eventually, if noise is high and rates are
closely spaced, two distributions are not identifiable even with

Scheme 1 (a) The BRAIN-CP-IR pulse sequence, (b) the WCPMG-IR pulse sequence, and (c) the QCPMG-IR pulse sequence. The delay time, t, is
logarithmically incremented in every case which encodes R1 relaxation. t0 represents the R2 encoding, which is incremented linearly via the number of
loops, N. In (a) the phase of the 1H excitation pulse controls whether signal is stored as �Sz(t) during t; this can also vary depending on the WURST-A
sweep direction. These details have been previously described.35 In (c) a y refocusing pulse is used for signal enhancement and j1 and j2 are
incremented with an 8-step phase cycle.62,65–67
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EN and TSVD regularization (Fig. 1f). This can be problematic,
resulting in either long experimental times for improving the

SNR, or preventing studies of intrinsically insensitive or chemi-
cally dilute nuclei of interest. Reconstructing the input data with

Fig. 2 (a) Experimental 1D 2H NMR of 1,8-dimethylnaphthalene-d12. (b) 2D R1 RAS of 1,8-dimethylnapthalene-d12 with regularization parameters a =
0.015 and l = 0.02 using R1 data acquired with QCPMG-IR as input. PCA denoising was not necessary for this dataset. (c) Projections of the powder
patterns associated with each rate distribution from above and below the dashed red line from the RAS spectrum. Relative intensities of the patterns are
scaled according to the factors on the right.

Fig. 1 2D R2 RAS of simulated nonequivalent CT powder patterns using synthetic CPMG data. The simulated patterns correspond to the case of two
magnetically-distinct 35Cl nuclei with EFG tensor parameters of CQ = 10 and 9.8 MHz and ZQ = 0.6 and 0.1, respectively, at 14.1 T. The first two columns
show the 2D RAS n–R2 contour spectrum and a projection of the corresponding 1D R2 dimension for different SNRs, as indicated. Each row has a unique
combination of applied rates R2,A (T2,A

�1) and R2,B (T2,B
�1). In every case (a–g) the regularization parameters used for RAS are noted as a for the l2 norm

and l for the l1 norm constraint, respectively. (g) The same input signal as (f) is denoised using PCA prior to RAS. (h) Projections of the individual powder
patterns from their respective rate distributions in the RAS spectrum from (g).
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PCA (eqn (12)–(14)), which effectively discards high-noise (or
high-variance) components in the spectral data,49 can alleviate
this problem. This is illustrated in Fig. 1g, which took the input
data corresponding to the challenging case above (Fig. 1f), and
reconstructed it using just two principal components. PCA
improves the SNR of the input relaxation data (i.e., the data
pre-processed before sparse NNTF) by approximately a factor of
12, making the solution of the 2D RAS problem much more
stable and identifying the correct rate distributions with little
overlap and few artifacts. Individual powder patterns can be
projected from their respective rate distributions (Fig. 1g), reveal-
ing complete separation from one another (Fig. 1h).

2D RAS processing was applied to an experimental 2H NMR
dataset for 1,8-dimethylnapthalene-d12, for the purpose of
separating the overlapping powder patterns. The 1D NMR
spectrum shows two nonequivalent 2H sites associated with

methyl and aromatic deuterons (Fig. 2a).61 A modified QCPMG-
IR sequence (Scheme 1) was used to encode R1’s for either site
while providing T2-weighted signal enhancement in this case,
where the refocusing pulses use a flip angle of y = 361 for signal
enhancement.62,67–71 The 2D R1 RAS sparse NNTF routine with
EN and TSVD regularization results in a 2D spectrum indicating
unique R1 distributions for each deuteron site (Fig. 2b). PCA
denoising was not necessary for this dataset. The added
regularization constraints permit high-resolution separation
of the overlapped powder patterns. These distributions are
characteristic of R1-anisotropy as has been previously observed
in 2H SSNMR spectra.35,72,73 There is a low intensity (i.e., o1%
max spectral intensity) rate distribution around 0 Hz for the
broad aromatic site, since in this frequency region, the two
patterns are the most overlapped in the 1D spectrum and the
pattern corresponding to the aromatic site is approximately five

Fig. 3 (a) Synthetic t–t0 data at a single frequency point (Sk) of two nonequivalent simulated 35Cl NMR patterns that are summed together and used as
input for 3D RAS without added noise and (b) 1D frequency representation of the individual sites and their sum. The patterns are simulated with EFG
tensor parameters of CQ = 10 and 9.8 MHz and ZQ = 0.6 and 0.1 for sites A and B, respectively, at 14.1 T. Relaxation time constants are applied for each
site with R1,A = 4 s�1, R1,B = 1.5 s�1, R2,A = 550 s�1, and R2,B = 300 s�1. 2D projections after performing 3D RAS on the synthetic 3D dataset of the mixture
for the (c) n–R2 projection (summed over the R1 dimension) and the (d) n–R1 projection (summed over the R2 dimension). (e) The R1–R2 correlation map
obtained by summing over the frequency dimension; no regularization is used as indicated by a = 0.0 and l = 0.0. (f) Projections of the individual powder
patterns associated with each rate distribution. (g) Synthetic t–t0 data with added noise and (h) a 1D frequency representation of the data. The R1–R2

correlation map after 3D RAS (i) without regularization (a = 0.0, l = 0.0), and (k) with regularization and PCA reconstruction such that the SNR of the input
data increases (i.e., the SNR prior to RAS processing). (j and l) Projections of the individual powder patterns associated with the rate distributions in each case.
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times less intense than that of the methyl site. Summing over
specified rates in the distribution can recover uniform powder
patterns corresponding to each site; the rates that are summed
over can easily be fine-tuned for optimal separation (i.e., as
represented by the dashed red line in Fig. 2b). Projections of
the powder patterns from each rate distribution reveal 2H
patterns that match well with typical line shapes for 2H methyl
and aromatic moieties (Fig. 2c). 2D R2 RAS in this example was
not as useful as R1-encoding, as both 2H sites have similar,
closely overlapping R2 distributions; however, the R2 encoding
may be useful for 3D RAS for this sample (vide infra).

It is important to note that, in general, the rate distributions
associated from 2D RAS may not correspond to the ground-
truth rate values (i.e., the exact rate distributions, R1 and/or R2,
that could be measured in the absence of noise): sparse NNTF
solutions are sensitive to the experimental noise, which can
bias the calculated, inverted rates. Regularization can stabilize
the solutions; however, it can also affect the inverted rate
distributions – especially the l1 norm constraint used in EN.47

In the current work, RAS is used to resolve overlapped patterns;
hence, the resulting rates should be interpreted with caution
and verified with other methods.35

4.3 3D RAS

Synthetic datasets for 3D RAS used simulated spectra based on
two overlapping static CT patterns corresponding to two non-

equivalent 35Cl sites though in principle, the shape of the
frequency pattern could be anything (e.g., CSA patterns, Pake
doublets, spinning sideband manifolds, disordered distributions,
etc.). The two sites (A and B) were simulated with EFG tensor
parameters of CQ = 10 and 9.8 MHz and ZQ = 0.6 and 0.1,
respectively, at a 14.1 T field and relaxation time constants are
applied for each site with R1,A = 4 s�1, R1,B = 1.5 s�1, R2,A = 550 s�1,
and R2,B = 300 s�1. IR behavior is modelled with 32
logarithmically-spaced t increments, and transverse decays are
modelled with 64 linearly-spaced CPMG echoes (Fig. 3a and b). R1

and R2 kernels were sampled with 200 rates each, resulting in a
kernel size of K A R(2048)�(40000) without TSVD and K̃ A
R(78)�(40000) with TSVD, again offering a substantial reduction in
computational cost. Eqn (11) was evaluated for the Sk dataset after
rearranging it into a vector for sparse NNTF input as

Sk ���!TSVD ~Sk �����!rearrange
~sk for every frequency point, initially without

l1 and/or l2 regularization in this example. The output is therefore
a vector containing the joint R1 and R2 rate distributions that can

be rearranged into a matrix f
g
k �����!rearrange

F
g
k for every frequency

point, thereby yielding a multidimensional array describing R1,
R2, and n. As this can be difficult to visualize and interpret, it may
be useful to instead examine the 2D n–R2 (Fig. 3c) or n–R1 plots
(Fig. 3d), which are generated by summing over all the rates in the
opposite rate dimension. Sometimes, it is also beneficial to
examine the 2D R1–R2 correlation map by summing over all
frequency points (Fig. 3e). 2D RAS processing of the noiseless,

Fig. 4 Experimental 35Cl 2D R1 RAS NMR spectrum of a glycine HCl : histidine HCl 3 : 1 w/w mixture with regularization parameters (a) a = 0.0001 and l =
0.0 and (b) a = 0.0001 and l = 0.3. PCA denoising was not necessary for this dataset. In (a) the histidine pattern is indicated with †, and the ST signal is
denoted below ca. 80 kHz. (c) Projections of the powder patterns from each of the highlighted rate distributions in (b). R1–R2 correlation obtained from
3D RAS with sparse NNTF (d) without EN regularization and (e) with regularization. (f) Projections of the powder patterns from each rate distribution in
(e) with ideal 35Cl NMR simulations of each pattern in red.
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two-site synthetic dataset yields a R1–R2 correlation map showing
just two high-resolution peaks, as expected. Each peak appears at
rates that match perfectly with the simulated rates, as do the
projections of both powder patterns extracted from each of the
unique rate distributions (Fig. 3f).

The same dataset is presented in Fig. 3g and h, except with
the addition of Gaussian noise. The R1–R2 correlation map
arising after performing 3D RAS without any regularization
(Fig. 3i) shows many spurious artifacts, and a low-resolution
‘‘smear’’ of the signal between the two expected (R1, R2) solutions.
This complicates the identification of the two components from
projections, and the retrieval of clean powder patterns (Fig. 3k).
PCA denoising based on two principal components improves the
SNR of the input relaxation signal by approximately an order of
magnitude, greatly improving the performance of the sparse
NNTF. The resulting R1–R2 correlation maps then show two
distinct components corresponding to each powder pattern
(Fig. 3j) that can be projected separately with only minor distor-
tions originating from the noise (Fig. 3l).

Using these numerical methods, the experimental 3D n–R1–
R2

35Cl NMR dataset of a glycine HCl : histidine HCl 3 : 1 w/w
mixture (Fig. S1, ESI‡) was processed using both 2D and 3D
RAS. The benefits of regularization from l1 and l2 penalties are
first compared using a 2D R1-RAS example. 2D R1-RAS is
initially used with only TSVD and l2 Tikhonov regularization
(Fig. 4a), similar to the NNTF method previously reported by
our research group.26 An intense narrow signal is identifiable
around +5 kHz and below R1 = 1 s�1, which is likely associated
with histidine HCl (denoted by †); however, there is still a
substantial amount of broad signal (i.e., above 10 kHz and
below �10 kHz) around the same rate distribution that likely
corresponds to glycine HCl. Above R1 = 1 s�1, the broad glycine
HCl powder pattern appears to span two general rate distributions
with several artifacts, which agrees with the observation that the
T1(35Cl) for glycine HCl is described by a biexponential decay.35

Additionally, there is signal intensity outside of the bandwidth of
the CT powder pattern of glycine HCl that appears at multiple
rates below ca. �80 kHz, which is likely ST signal. By contrast, if
2D R1-RAS is executed with the additional l1 norm, the rate
distributions associated with each pattern are clearly identifiable
(Fig. 4b). The low-frequency signal is also isolated and can be
attributed to satellite transition (ST) signal. The CT powder
patterns can be extracted from each rate distribution, revealing
the patterns for glycine HCl and histidine HCl (Fig. 4c); however,
the powder patterns are distorted, and the narrow pattern corres-
ponding to histidine HCl appears to have residual signal from
glycine HCl (i.e., the broader, low-intensity features). 2D R2-RAS
cannot separate the patterns, since the R2 distributions between
the two samples are overlapped, mainly due to the large R2

distribution from glycine HCl (Fig. S6, ESI‡).
3D RAS was used to process this entire 3D NMR dataset,

initially without regularization. The resulting R1–R2 correlation
map shows many artifacts and spurious signals with evidence
of potentially three components in the mixture, which likely
originate from the two R1 terms for glycine HCl and a single R1

and R2 for histidine HCl (Fig. 4d). Processing the data with

regularization, including a relatively large l1 constraint (l),
reduces the R1–R2 correlation map to two distinct regions of
signal (Fig. 4e). The optimal l was first determined with a
S-curve routine (Fig. S5, ESI‡), and then refined empirically
(Fig. S4, ESI‡) by running 3D RAS with three different l’s until
an optimal pattern separation was obtained with l = 50. PCA
denoising was not necessary for this dataset. In this case, only
the frequency points that were associated with substantial
regions of NMR signal intensity were used as input for eqn 11
(i.e. only the frequency points from ca. �100 to +70 kHz in this
case) to reduce computational costs. These compounds have
unique R1’s, but glycine HCl has a distribution of R2 values,
which overlaps with the small R2 distribution of histidine HCl.
Still, projecting the frequency dimension from suitable (R1, R2)
regions reveals patterns that match exceptionally well with the
ideal simulations for either species58,59 (Fig. 4f). Regardless of
the R2 overlap, the additional information provided by the

Fig. 5 (a) Experimental 1D 35Cl NMR spectrum of an isoxsuprine (isox)
HCl : xylazine (xyla) HCl 1 : 1 w/w mixture. (b) R1–R2 correlation map
obtained from 3D RAS with sparse NNTF and PCA denoising with a =
0.0001 and l = 5. PCA increased the SNR of the input data from 118 to 694.
(c) Projections of the powder patterns from each rate distribution with
ideal 35Cl NMR simulations of each pattern in red.
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R2-dimension offers a higher-resolution separation of the pow-
der patterns with 3D RAS than 2D RAS.

35Cl NMR of an isoxsuprine HCl : xylazine HCl 1 : 1 w/w mixture
was acquired with the direct excitation WCPMG-IR pulse
sequence (Fig. 5a). An R1–R2 correlation map was obtained with
3D RAS using all of the aforementioned regularization methods as
well as PCA denoising with three principal components (Fig. 5b);

in this case, the SNR of the input data increases ca. 6-fold with
PCA. This mixture serves as good test case, since the resulting R1

and R2 distributions are unique for both sites; the separation of the
two patterns is very clear, and their projections match extremely
well with the ideal simulated 35Cl power patterns (Fig. 5c).74

3D RAS processing of a 35Cl NMR dataset was also used for
the characterization of a novel RbCl:CdCl2:Urea cocrystal

Fig. 6 (a) Experimental 1D 35Cl NMR spectrum of a RbCl:CdCl2:Urea cocrystal acquired with WCPMG and processed by coadding all 200 spin echoes
and (b) processed by coadding the first 10 spin echoes. ‡ Indicates a broad powder pattern in (a and b) of unknown origin (i.e., it is not clear if it is a unique
CT pattern or signal arising from overlapping ST patterns). (c) R1–R2 correlation map obtained from 3D RAS with sparse NNTF and PCA denoising with a =
0.0001 and l = 1. PCA increased the SNR of the data from 112 to 1450. The area between R1 = 1.5 to 2.5 s�1 marked with ‡ corresponds to the unassigned
broad pattern. (d) Projections of the CT powder patterns from each rate distribution with 35Cl NMR simulations of each pattern in red.
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synthesized by our research group. This material was first exam-
ined using 1D WCPMG, where two distinct CT powder patterns
are observable, distinct from the CdCl2 starting material (Fig. 6a
and Fig. S7, ESI‡). A separate narrow resonance, which may be
unreacted RbCl, is observable if fewer echoes from the CPMG
train are processed (Fig. 6b). Additional signal above ca. 150 kHz
and below ca. �230 kHz (as indicated by ‡) spans several
hundreds of kHz and extends well beyond the tuning range of
the probe – it cannot be assigned as another CT pattern or as ST
patterns (Fig. S8, ESI‡); therefore, experimental acquisitions for
RAS selectively and uniformly swept over only the�350 kHz offset
range. The R1–R2 correlation map displays the reconstructed
signals that spread over several rate distributions (Fig. 6c). Projec-
tions from the lower R1–R2 distributions reveal separation of two
of the CT powder patterns, possessing low ZQ’s, and some residual
overlap between them at ca. +40 and �50 kHz (Fig. 6d). There is
also a distinctive high-valued R1–R2 distribution that reveals a
narrow pattern with a higher value of ZQ that does not match with
the NMR of bulk RbCl (Fig. 6d and Fig. S9, ESI‡) and likely
corresponds to a novel site in the cocrystal. The separation of this
latter pattern using 3D RAS can allow for the measurement of the
EFG tensor parameters (Table S6, ESI‡), which would not be
possible using standard 1D static or MAS NMR for this sample.
Finally, the unassigned broad underlying pattern also has a
distinct rate distribution, as indicated by ‡ (Fig. 6c).

3D RAS was also implemented for the separation of over-
lapping 2H patterns of 1,8-dimethylnaphthalene-d12 (Fig. 7a), in
which each 2H site has a unique R1 (vide supra) but overlapping
distributions of R2’s. The sparse NNTF R1–R2 correlation map
(Fig. 7b) shows two distinct regions of signal corresponding to
each 2H site. As discussed for the 2D R1 RAS of this data, the
R1’s are unique for each site, but both display a distribution over
the R1 dimension, which may be characteristic of R1-anisotropy
that has been widely observed for static 2H NMR.35,72,73 The R2’s
clearly overlap for these sites, limiting the potential of 2D R2 RAS
for pattern separation; as in the case of 35Cl NMR of glycine HCl,
there is also a large distribution over the R2 dimension for the
2H-methyl site. Each static 2H powder pattern can be resolved
(Fig. 7c) with minor distortions in the case of the broad aromatic
2H site (around �20–50 kHz), likely from small residual spectral
intensities arising from the much more intense methyl pattern.

A final example of 3D RAS’s ability to resolve overlapping
powder patterns is demonstrated for a 14N NMR dataset of a
glycine HCl : betaine HCl 1 : 1 w/w mixture. 14N experiments yield
UWNMR patterns that are very time-consuming to acquire;75

however, it has been demonstrated that the combination of
1H-14N BRAIN-CP and targeted acquisitions with selected trans-
mitter frequencies can accelerate this process.76,77 Moreover, it
has been demonstrated that spectral regions from only one half
of the spin-1 14N patterns, are necessary for characterizing the
EFG tensor parameters;35,76,77 targeting one half of the integer-
spin powder pattern also offers additional signal enhancement
due to the direct enhancement of integer spin magnetization
(DEISM) effect.78 Experiments were accelerated by acquiring only
half of the patterns;79,80 in the current example, by sweeping all
WURST pulses from low-to-high frequency. The 1D 14N spectrum

of the mixture was acquired with a targeted transmitter frequency
such that the positive half of the betaine HCl pattern appears
uniform, and the ‘‘horn’’ and shoulder’’ discontinuities of the
glycine HCl pattern are visible (Fig. 8a); for the latter, these two
discontinuities alone are sufficient to characterize the EFG tensor
parameters.76 3D RAS data for the mixture were acquired with
BRAIN-CP-IR; PCA denoising with 3 principal components was
used, resulting in an increase in the SNR by a factor of ca. 10.
The resulting regularized 3D RAS transformation reveals a R1–R2

correlation map showing two distinct R1’s, and partially
overlapped R2 distributions (Fig. 8b). As in the case of the 35Cl
glycine HCl:histidine HCl mixture (cf. Fig. 4), although the R2

distributions are slightly overlapped, the added information from
the R2 dimension assists in the overall separation. The projections
from these rate distributions show clearly resolved powder patterns
that match well with simulations (Fig. 8c). The dip in the glycine

Fig. 7 (a) An experimental 1D 2H NMR spectrum of 1,8-dimethylnapthalene-
d12. (b) R1–R2 correlation map obtained from 3D RAS with sparse NNTF with
a = 0.001 and l = 0.1. PCA denoising was not necessary for this dataset.
(c) Projections of the powder patterns from each rate distribution.
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HCl spectrum at ca. 100 kHz is characteristic of targeted spin-1
BRAIN-CP and is of no consequence for characterizing the powder
pattern.77,80 In this case, as well as all others, 3D RAS is only
evaluated for frequency points associated with NMR signal in order
to save on computation costs (ca. 0 to 550 kHz region).

5. Conclusions

2D and 3D RAS implemented with TSVD, EN regularization,
and PCA denoising can provide clear separation of overlapping
static UWNMR spectra, as demonstrated by experimentally
acquired and numerically simulated 2H (I = 1), 35Cl (I = 3/2),

and 14N (I = 1) SSNMR spectra. TSVD greatly reduces computa-
tional costs for 2D and 3D RAS and regularizes sparse NNTF
solutions. EN regularization further stabilizes these solutions, and
in particular, the l1-norm constraint can aid in the separation of
powder patterns for samples with nuclei influenced by either
multiexponential relaxation rates or distributions of rates. The
SNR of the raw input data prior to RAS can be increased by up to
12-fold with PCA reconstruction. RAS is ultimately limited by
experimental noise, requiring that the relaxation time constants
associated with different nuclear sites and their concomitant
powder patterns be unique from one another. Denoising and
regularization schemes greatly alleviate these drawbacks, making
RAS amenable to a wider array of possible samples, potentially
even those with complex relaxation behaviour. The samples
investigated herein are highly crystalline and their NMR data
correspond to relatively sparse distributions of relaxation rates.
We anticipate that further considerations and methodology will
be required when analyzing amorphous samples that often yield
broad distributions of relaxation rates (e.g., alternative regression
algorithms or the use of neural networks).43,81 Even if non-
equivalent sites do not have unique T1’s and/or (effective) T2’s,
the rotating frame T1, T1r, and the dipolar frame T1, T1D, are also
suitable exponential decay constants,23,82 that could be encoded
and used with the RAS processing described herein. Furthermore,
if the effective T2’s of two magnetically distinct sites at a given
decoupling power are similar, it may be possible to differentiate
them further by varying the heteronuclear dipolar decoupling RF
fields;60 variation in CP efficiency with variable contact times
could serve to highlight similar site differences.83

3D RAS is particularly useful for separating overlapping half-
integer spin CT powder patterns of quadrupolar nuclei with
large CQ’s, of the kind that cannot be resolved with MQMAS or
STMAS. The example of a histidine HCl:glycine HCl mixture
demonstrates the improved site resolution capabilities of 3D RAS
over 2D RAS. The case of the isoxuprine HCl:xylazine HCl mixture
suggests that RAS may be useful in the characterization of active
pharmaceutical ingredients with 35Cl NMR.59,74 2H RAS of 1,8-
dimethylnapthalene-d12 and 35Cl RAS of RbCl:CdCl2:Urea demon-
strate the capabilities of site-resolution for multiple sites in the
same sample – including in the latter example, the identification
of a 35Cl pattern and corresponding site that would not resolvable
using other methodologies. WCPMG-IR, BRAIN-CP-IR, and
QCPMG-IR pulse sequences used for RAS are facile to implement
and the RAS routines have been written in end-user friendly
functions in MATLAB that are freely available to use. It is antici-
pated that the aforementioned 2D and 3D RAS protocols will be
used for high-resolution static and MAS SSNMR in a wide variety of
organic, inorganic, organometallic, and hybrid systems with spin-
1/2 and quadrupolar nuclei of elements across the Periodic Table.

Author contributions

M. J. J. and A. R. A. wrote the MATLAB code for RAS. A. R. A.
acquired and processed the experimental datasets. All authors
contributed to the writing of the manuscript.

Fig. 8 (a) Experimental 1D 14N NMR spectrum of a glycine HCl : betaine
HCl 1 : 1 w/w mixture with a simulated 14N spectrum of both ideal patterns
summed together in red. (b) R1–R2 correlation map obtained from 3D RAS
with sparse NNTF and PCA denoising with a = 0.0001 and l = 0.0. PCA
increased the SNR of the input data from 94 to 920. (c) Projections of the
powder patterns from each rate distribution with ideal 14N NMR simula-
tions of each pattern in red. All WURST-A and WURST-B pulses in the
sequence are swept from low-to-high frequency and the center offset of
the sweep is set to +139 kHz with respect to n0(14N).

Paper PCCP

Pu
bl

is
he

d 
on

 1
1 

A
ug

us
t 2

02
2.

 D
ow

nl
oa

de
d 

by
 F

lo
ri

da
 S

ta
te

 U
ni

ve
rs

ity
 o

n 
11

/1
/2

02
2 

8:
04

:4
7 

PM
. 

View Article Online

https://doi.org/10.1039/d2cp00910b


22804 |  Phys. Chem. Chem. Phys., 2022, 24, 22792–22805 This journal is © the Owner Societies 2022

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Cameron Vojvodin is thanked for synthesizing the RbCl:CdCl2:
Urea cocrystal. R. W. S. and A. R. A. would like to thank the
National Science Foundation Chemical Measurement and Ima-
ging Program, with partial co-funding from the Solid State and
Materials Chemistry Program (NSF-2003854), for supporting this
work, as well as The Florida State University and the National
High Magnetic Field Laboratory (NHMFL), which is funded by
the National Science Foundation Cooperative Agreement (DMR-
1644779) and by the State of Florida. M. J. J. would like to thank
the Perlman Family Foundation for a student-initiated research
grant and the EU Horizon 2020 program (Marie Sklodowska-Curie
Grant 642773). L. F. thanks the Israel Science Foundation (Grants
965/18); he holds the Bertha and Isadore Gudelsky Professorial
Chair and Heads the Clore Institute for High-Field Magnetic
Resonance Imaging and Spectroscopy at the Weizmann Institute,
whose support is also acknowledged.

References

1 W. T. Dixon, J. Chem. Phys., 1982, 77, 1800–1809.
2 A. Bax, N. M. Szeverenyi and G. E. Maciel, J. Magn. Reson.,

1983, 52, 147–152.
3 Z. Gan, J. Am. Chem. Soc., 1992, 114, 8307–8309.
4 L. Frydman and J. S. Harwood, J. Am. Chem. Soc., 1995, 117,

5367–5368.
5 A. Medek, J. S. Harwood and L. Frydman, J. Am. Chem. Soc.,

1995, 117, 12779–12787.
6 Z. Gan, J. Am. Chem. Soc., 2000, 122, 3242–3243.
7 A. Samoson, E. Lippmaa and A. Pines, Mol. Phys., 1988, 65,

1013–1018.
8 Y. Wu, B. Sun, A. Pines, A. Samoson and E. Lippmaa,

J. Magn. Reson., 1990, 89, 297–309.
9 A. Venkatesh, M. P. Hanrahan and A. J. Rossini, Solid State

Nucl. Magn. Reson., 2017, 84, 171–181.
10 A. Venkatesh, X. Luan, F. A. Perras, I. Hung, W. Huang and

A. J. Rossini, Phys. Chem. Chem. Phys., 2020, 22,
20815–20828.

11 I. Hung and Z. Gan, J. Magn. Reson., 2021, 324, 106913.
12 I. Hung and Z. Gan, J. Magn. Reson., 2021, 328, 106994.
13 Z. Gan, J. Chem. Phys., 2001, 114, 10845–10853.
14 H. J. Jakobsen, A. R. Hove, R. G. Hazell, H. Bildsøe and

J. Skibsted, Magn. Reson. Chem., 2006, 44, 348–356.
15 H. J. Jakobsen, A. R. Hove, H. Bildsøe, J. Skibsted and

M. Brorson, J. Magn. Reson., 2007, 185, 159–163.
16 T. Giavani, H. Bildsøe, J. Skibsted and H. J. Jakobsen,

J. Magn. Reson., 2004, 166, 262–272.
17 J. H. Lee, C. Labadie, C. S. Springer, G. S. Harbison,

J. H. Lee, C. Labadie, C. S. Springer and G. S. Harbison,
J. Am. Chem. Soc., 1993, 115, 7761–7764.

18 P. Galvosas and P. T. Callaghan, C. R. Phys., 2010, 11, 172–180.

19 P. Berman, O. Levi, Y. Parmet, M. Saunders and
Z. Wiesman, Concepts Magn. Reson., Part A, 2013, 42, 72–88.

20 M. A. Bernstein, K. F. King and X. J. Zhou, Handbook of MRI
Pulse Sequences, Elsevier, 2004.

21 Y.-Q. Song, J. Magn. Reson., 2013, 229, 12–24.
22 D. Topgaard, J. Magn. Reson., 2017, 275, 98–113.
23 A. Lupulescu, M. Kotecha and L. Frydman, J. Am. Chem. Soc.,

2003, 125, 3376–3383.
24 T. Iijima and T. Shimizu, Solid State Nucl. Magn. Reson.,

2018, 91, 1–8.
25 G. S. Boutis and R. Kausik, Int. J. Mol. Sci., 2019, 20, 5888.
26 M. J. Jaroszewicz, L. Frydman and R. W. Schurko, J. Phys.

Chem. A, 2017, 121, 51–65.
27 R. W. Schurko, Acc. Chem. Res., 2013, 46, 1985–1995.
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