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Disorder-dominated quantum criticality in
moiré bilayers

Yuting Tan 1 , Pak Ki Henry Tsang1 & Vladimir Dobrosavljević 1

Moiré bilayer materials have recently attracted much attention following the
discovery of various correlated insulating states at specific band fillings. Here
we discuss the metal-insulator transitions (MITs) that have been observed in
the same devices, but at fillings far from the strongly correlated regime
dominated by Mott-like physics, displaying many similarities to other exam-
ples of disorder-dominated MITs. We propose a minimal theoretical model
describing the interplay of interactions and disorder, which is able to capture
all the universal aspects of quantum criticality, as observed in experiments
performed on several devices.

The field of themetal–insulator transitions1,2, which still retains an aura
ofmystery andmystique3, is living a veritable revolution. The principal
obstacle, from the experimental perspective, is the challenge to care-
fully tune to the transition point, while avoiding the effects of spurious
charge, spin, or orbital orders, which can mask the genuine mechan-
isms associated with theMIT3. This difficult quest has suddenly shifted
in high gear over the last few years. An extraordinary flurry of activity
was triggered by the recent discovery of moiré bilayer materials of
various kinds, which allows unprecedented control over the physical
properties of the electron systems at hand. Narrow bands have been
engineered4, which can be carefully tuned both in terms of the band-
width and the band filling, allowing precise and systematic studies of
several regimes of interest around various insulating states. A number
of correlated insulators have indeed been discovered5 at partial band
fillings, signaling the dominance of electron–electron interactions in
the narrow band limit. While the intricate interplay of electron corre-
lations and band topology6 remains a fascinating subject of ongoing
debate for moiré graphene bilayers, a somewhat simpler situation is
found in moiré transition metal dichalcogenide (TMD) bilayers. Here,
genuine Mott–Hubbard physics was theoretically predicted7 and
observed8 close to half filling (f = 1, one electron per moiré cell).

A remarkable recent paper9 documented such an approach to the
Mott point, by electric field control of the bandwidth at half filling. The
reported transport behavior, as well as thermodynamic response,
displayed all the characteristic features previously established in other
Mott systems, such as the “spin-liquid" molecular materials10,11. The
same study, on the other hand, demonstrated very different behavior
in a regime far away from half-filling, where strong correlation effects

should not play a significant role. Here, themagneticfield response has
indeed proven to be remarkably mild, suggesting the lack of spin
localization, which is the hallmark ofMott physics. Nevertheless, aMIT
was clearly observed upon bandwidth tuning at integer band filling
f = 2 (two electrons per moiré cell), which so far has not been a subject
ofmuch scrutiny. A closer look at the experimental data reveals several
interesting signatures, which clearly distinguish this regime from the
behavior around the Mott point.

The following features standout (see Fig. 1a), data providedby the
experimental group12, and Supplementary Fig. 69): (i) On the metallic
side, the resistivity displays linear-T behavior at low temperatures:
R(T) ≈R0 +AT, withA >0 further away from the transition. This result is
in dramatic contrast to what is found in the same device around the
Mott point (f = 1), where the Fermi Liquid T2 law is very clearly seen9. Its
absence here hints at the lack of strong correlation effects away from
half-filling. (ii) As the transition is approached, the slope A initially
increases, reaches a maximum, and then decreases again towards the
transition. An (almost) “flat" curve, sometimes called the “separatrix"13

(or the “Mooij point"14) is seen before the transition is reached. This
behavior is similar to what is frequently observed in disorder-driven
MITs13,15. (iii) A characteristic temperature scale T* marks the extent of
the leading linear-T regime, and is seen to decrease towards the tran-
sition. (iv) The residual conductivity σ0 = 1/R0 also decreases steadily,
extrapolating to zero past the “Mooij point"—exactly as in many other
examples of disorder-driven MITs3. (v) The activation gap Δ displays a
similar decrease on the insulating side, interpolating to zero at pre-
cisely the same point where conduction vanishes, suggesting a con-
tinuous transition. We follow the same procedure used in ref. 9 to
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extract the activation gap. The details of how to extract A, T* are given
in Supplementary Note 3 (Supplementary Fig. 5).

In the rest of this paper, we present a robust physical picture that
is able to capture all the qualitative (and even some quantitative)
trends seen in the experiment. At filling f = 2, the narrowmoiré band is
completely full, but the corresponding band gap shrinks as the bands
broaden, eventually leading to band overlap and metallic behavior9.
When band overlap is modest, one expects electron and hole pockets
with very small Fermi surfaces for charge carriers, which in this regime
become vulnerable to even modest amounts of disorder. At finite
temperatures, charge transport is also affected by additional scatter-
ing from thermal excitations, which is further enhanced in the dilute
carrier limit. Thermal and impurity effects, however, cannot be clearly

decoupled in this regime of poor conduction, as generally found also
for many other disorder-driven metal–insulator transitions16. This
leads to a nontrivial interplay of interactions and disorder, and the
associated change of sign of A = dR(T)/dT, the “Temperature Coeffi-
cient of Resistivity” (TCR) preceding the MIT, a widely observed phe-
nomenon sometimes called the “Mooij correlation”14. All these features
can be captured in a self-consistent theory of interactions and
disorder14,16, which can be viewed as the minimal model for disorder-
dominated MITs in (moderately) interacting electron systems. It
describes how certain interaction effects are generally enhanced in
presence of disorder, leading to strong disorder renormalization,
which in some cases also triggers polaron formation. This physical
picture differs significantly3 from (non-interacting) Anderson

Theory

Experiment

a

d

f

e

b

c

1.00

0

0.399 V/nm

0.544 V/nm

E-field

ϵAB / t

Fig. 1 | Transport behavior across the MIT at integer band filling. All the quali-
tative features found in experiments (upper panel) are captured by our CPA-DMFT
theory (bottom panel). a Experimental R(T) curves provided by experimental
group12, with 0.399 V/nm ≤ E ≤0.544V/nm; d theoretical curves for 0 ≤ ϵAB/t ≤ 1.00.
The dashed lines in a, d are critical curves Rc. The insets b, e, show the extrapolated
T =0 conductivity σ0, the boundary of linear resistivity region T*, and the activation

energy Δ, as function of electric field E (experiments) or band separation ϵAB
(theory). EM, Ec correspond to experimental Mooij point and critical point, while
ϵMAB, ϵ

c
AB were obtained from theory. c, f, The slope A describing low-T resistivity

R(T) ≈R0 +AT, displays non-monotonic behavior as a function of R0. The same
analyses are also performed on data in ref. 9 (Supplementary Fig. 6).
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localization, illustrating the seminal ideas of Phil Anderson himself
going back to 1970s17. It also predicts the precise form of the scaling
behavior for the family of resistivity curves (see below), thus for-
mulating a concrete phenomenology that can be very useful in ana-
lyzing future generations of experiments.

Results
Model of interactions and disorder
Motivated by the experimental setup in moiré TMD bilayers9, we
consider a two-band model of electrons at integer band filling, in
presence of moderate disorder, and where interaction effects are
represented by the coupling of carriers to a bosonic field16. Here we do
not specify the physical origin of the bosonic excitations, which could
be soft phonons specific to the bilayer structure18, but could also
represent the response of other low-energy collective modes19–21 to
single-particle displacements. Guided by experiments, which clearly
demonstrate the absence of Mott-like physics at integer filling, we
ignore the spin degree of freedom and thus any significant role of the
on-siteHubbardU, or thepossibility of any kindofmagneticorder.Our
model is described by the following Hamiltonian:

H= � t
X

hi,ji
cyi cj +

X

i2A
ϵAc

y
i ci +

X

i2B
ϵBc

y
i ci

+
X

i

ðξ i � μÞcyi ci + g
X

i

X iðcyi ci � nÞ+Hb,
ð1Þ

where cyi ci
� �

are the creation (annihilation) operators for spinless
electrons hopping between sites i and j of a triangular lattice, with
hopping integrals t. The two-bandmodel (Fig. 2a, Supplementary Fig. 1)
is obtained by periodically modulating the site energies within a unit
cell consisting of three sites, with one site in the unit cell (sublattice B)
having site energy ϵB, while the other two sites (corresponding to the
two degenerate sublattices) have energies ϵA. We define the “band
splitting” energy ϵAB = ϵA − ϵB. Extrinsic disorder is characterized by a
random distribution of site energies ξi, with a uniform distribution of
the form Po ξð Þ= 1

W θð W
2

� �2 � ξ2Þ, where W measures the disorder
strength. In addition, the electrons interact locally with dispersionless
bosons of frequencyωo =

ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
, describedbyHb =

P
iKX

2
i =2 +P

2
i =2M.

We use t= 1 as our unit of energy. The strength of electron-boson
coupling is measured by the dimensionless coupling constant λ= g2

2KD,
where 2D = 9t is thebarebandwidthofour triangular lattice. In addition,
the latticefillingn= 1

N

P
ic

y
i ci

D E
is kept constant atn = 1/3, giving a band

insulator (lowest band fully occupied) in the split-band limit.

Comparison of theoretical and experimental features
In the following, we present a detailed solution of our model, which
due to its simplicity can be analytically solved in several limits, while
the corresponding numerical solution can be obtained with any
desired accuracy. To be specific, we select the following values of the
model parameters g = 1, K = 1, and W = 1, corresponding to moderate
disorder (W/2D ≈0.1) and moderate electron-boson coupling
(λ ≈0.1). The evolution of the single-particle density of states (DOS)
ρ(ω) at T = 0, as a function of band splitting at ϵAB is shown in Fig. 2b.
For ϵAB = 0, it resembles the conventional density of states of the
triangular lattice, however with some rounding introduced by dis-
order. When ϵAB increases, the DOS at the Fermi energy starts to
decrease, until a hard insulating gap forms at ϵcAB =0:854, indicating
theMIT. Near the critical point, ρ ~ω1/3, as clearly shownwith largerW
and broader critical region (see Supplementary Figs. 3 and 4). The
corresponding residual conductivity σ0 (blue dashed line in Fig. 1e)
decreases linearly as the MIT is approached: σ0 = σ(T = 0) = 1/R(T =
0) ~ δ μ, where δ = ðϵcAB � ϵABÞ=ϵcAB measures the distance to the tran-
sition and the conductivity exponent is μ = 1. Our model can be fur-
ther solved at finite temperature, producing the entire family of
resistivity curves (Fig. 1d), similar as in the experiments, which we
now analyze in detail.

As in the experiment, the theoretical curves exhibit linear-T
behavior at low temperatures on the metallic side of the transition.
The evolution of the slope (TCR) with external field exactlymatches
the experimentally-observed trends, as can be seen from (Fig. 1c
and f). The slope A (and R0) initially increases upon application of
the electric field, because the number of available carriers decrea-
ses as the size of the electron (hole) Fermi pockets shrink (Sup-
plementary Fig. 2). At larger fields, the trend reverses, recovering
the “Mooij correlation” behavior expected when disorder becomes
dominant. This phenomenon, which implies the breakdown of
Matthiessen’s rule, generally precedes MIT itself14, and is caused by
the buildup of correlations between the increasingly inhomoge-
neous electronic density and the bosons responsible for thermal
scattering.

An additional energy scale characterizing themetallic regime is T*,
the boundary of the linear-T region, which decreases linearly towards
the transition as T* ~ δ. Similar behavior is also found for the activation
gap Δ ~ δ, which describes the approach to the transition from the
insulating side. Remarkably, all the qualitative trends and the values of
the critical exponent μ = 1 predicted by our model precisely match the
experimental findings.

a b

Fig. 2 | Moiré lattice and the density of states. a Triangular lattice with lattice
spacing a, hopping parameter t, and three sites in unit cell. One site has site energy
ϵB (blue dot), while the other two have site energy ϵA (orange and green dots).
bDisorder-averaged single-particle density of states per site ρ(ω) for different band

separation ϵAB; hereω ismeasuredwith respect to the Fermi energy. The bands split
beyond critical separation ϵAB>ϵ

c
AB =0:854, producing a continuous

metal–insulator transition, where all quantities display power-law behavior.
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Quantum critical scaling
A direct analysis of the resistivity curves (Fig. 1; see insets), both
experimental and theoretical, clearly indicates a continuous (i.e.,
quantum critical22) character of the MIT. On very general grounds, the
presence of criticality implies scaling behavior of various observables,
and in the specific case of theMITs, we expect3 the resistivity R(T, δ) to
take the form

RðT ,δÞ=RcðTÞf ðT=ToðδÞÞ: ð2Þ

Here Rc(T) =R(T, δ =0) ~T−x is the critical resistivity curve, f(y) is a uni-
versal scaling function, and To ~ δνz is the crossover temperature asso-
ciated with the approach to quantum criticality. Guided by these
expectations, we next perform the appropriate scaling analysis3 to both
the experimental (range: 0.412 V/nm ≤ E ≤0.450V/nm; dots in Fig. 3a)
and the theoretical resistance curves (range: 0.802 ≤ ϵAB ≤0.905).

We identify the value of the critical field in the experiments, at
which a simple power-law dependence of Rc(T) is observed (Fig. 3b),
and we find the exponent x ≈ 1, consistent with our theory (Supple-
mentary Fig. 9). Remarkably, this power-law behavior occurs precisely
at the same critical field where σ0, T*, and Δ all extrapolate to zero (see
Fig. 1), further confirming the quantum-critical character of our tran-
sition, both in the experiment and in theory.We then normalize R(T, δ)
by the critical resistance Rc(T), and after rescaling T by a field-
dependent factor To(δ), the curves collapse onto two branches, as
shown in Fig. 3a (dots). We emphasize that in implementing such an
“unbiased" scaling procedure3, we do not assume any specific form for
the field dependence of the crossover temperature To(δ). Instead, we
directly verify that it indeed vanishes at the critical point, by plotting it
as a function of δ on a log-log scale, as shown in Fig. 3c, giving the
experimental estimate for the critical exponent zν = 1 ± 0.1 (here the
error estimate reflects the uncertainty associated with the scaling
collapse procedure for the experimental data).

The scaling of the theoretical resistance curves is performed fol-
lowing an identical procedure, with To(δ) shown in Fig. 4 (red dashed
line), giving the theoretical exponent zν = 1. This analysis (Supplemen-
tary Note 5) also provides us with the precise quantitative form of the
universal scaling function f(y) for our model (red line in Fig. 3a), which
we can directly compare to the experimental findings without any
adjustable parameters. A similar analysis is also performed for another
experimental data set9 (Supplementary Figs. 6, 7, and 8), providing
further support for our picture. Although we have used a relatively
broad range of fields and temperatures in analyzing the experimental

data, we find a remarkable quality of scaling. Almost-perfect agreement
with the theoretical prediction is found, not only concerning the esti-
mated values for all critical exponents but also for the precise form of
the scaling function f(y). We also observe that, both in the experiment
and in theory, the metallic and insulating branches are quite asym-
metric with respect to each other. This is precisely what one generally
expects for disorder-dominated transitions, where the resistivity dis-
plays only modest temperature dependence on themetallic side, while
it is generally exponentially strong in any insulator. We shouldmention
that such behavior is in dramatic contrast (Supplementary Note 7) to
what is seen for the Mott transition (f = 1 curves experimentally
obtained9 for the same device), which reveals pronounced “mirror
symmetry" of the scaling function23, consistent with both microscopic
theory24 and careful experiments25,26 on other Mott systems.

We should emphasize that, on general grounds, a universal scaling
behavior should be expected27 only in the immediate vicinity of the

Fig. 3 | Scaling analysis for both experimental and theoretical results. a Scaling
analysis is performed for the experimental resistance curves corresponding to
Fig. 1a, within 0.412 V/nm ≤ E ≤0.450V/nm, revealing near-perfect agreement with
the theoretical scaling function (red line), with no adjustable parameters.bCritical
resistanceRc ~ T−x on experiments displays behavior consistentwith the theoretical

prediction for exponent x = 1 (Supplementary Fig. 9). c Crossover temperature
To(δ) obtained from the scaling collapse of experimental data (the superscripts M
and I designate respectively the metallic and insulating branch. The estimated
critical exponent zν ≈ 1 ± 0.1 is consistent with the theoretical value zν = 1.

Fig. 4 | Theory phase diagram for disorder-drivenMIT. Blue dots T* (dashed line
obtained by fitting), serving as the boundary of the linear-T resistivity region,
extrapolate linearly to ϵcAB. The so-called Mooij region 0.760 < ϵAB<0.782 (yellow),
where the slope A ~ R0, is sitting around the Mooij point ϵMAB =0:772. Red dots are
the theory scaling temperatures To, indicating the critical region
0.802< ϵAB <0.905. The critical exponent zν = 1. The scaling argument shows that
the critical region can not go past the Mooij point. The respective color codes of
Log(R/Rc) are given to the right, which displays a fan-shaped pattern.
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critical point, and not necessarily over an extended range across the
phase diagram. A natural question, therefore, is how large is the critical
region in the case we consider here, especially concerning the non-
monotonic behavior and the vanishing of the TCR parameter A in the
Mooij correlation regime14 (Fig. 1). In the following, we use general
scaling arguments to demonstrate that strictly speaking the critical
region cannot intercept with the Mooij regime, as shown in the theo-
retical phase diagram in Fig. 4. To start with, the critical resistance has a
simple power-law dependence on temperature: Rc ~T−1. It is obvious
that, on the metallic side, the slope A = ∂R/∂T→ −∞ as we approach the
transition.On theother hand, the conditionofhavingfinite resistivityR0
in the T→0 limit (within the metallic phase) requires that, for
y =T/T0(δ)≪ 1, the scaling function must assume the form f(y) = yα(1 +
ayβ +⋯ ). It follows that RðT ,δÞ∼T�α

0 Tα�1ð1 +aðT=T0Þβ + :::Þ, and a is a
universal constant. Since R(T, δ) ≈R0 +AT on the metallic side, we con-
clude that α = β = 1, and to leading order A∼T�2

0 ∼ δ�2. This means that
∣A∣ decreases monotonically away from the transition, but it cannot
change the sign within the critical region, where leading power-law
scaling is obeyed. Indeed, since T0 ~ δνz ~ ξ−z (where ξ is the relevant
correlation length associatedwith the critical point), ∣A∣becoming small
indicates that the corresponding correlation length also becomes short,
marking the boundary of the critical region. All these features are very
clearly seen in examining the details of our theoretical solution (Sup-
plementary Fig. 10). On the other hand, the relevant violations of scal-
ing, as introduced by the change of sign of A, prove to remain
parametrically small in a very broad range of parameters, much beyond
the Mooij point. In this interval, approximate scaling behavior is
observed, with the same scaling function describing the strict critical
regime. Exactly the same situation is found in experiments, where the
theoretical scaling function collapses the experimental data within a
surprisingly broad range of parameters, displaying quantitative agree-
ment with theory without any adjustable parameters.

Discussion
We presented and solved a minimal theoretical model for disorder-
dominated transitions, as motivated by the experiments on moiré
TMDbilayermaterials at integer bandfilling. It paints a physical picture
of bosonic modes which strongly renormalize the potential energy
landscape seen by themobile electrons at the verge of band splitting—
driving a continuous metal–insulator transition. We showed that this
transition displays all the features generally expected for a disorder-
dominated MIT, revealing critical behavior in a striking agreement
between theory and experiments. Ours is the first example of a theory
for disorder-dominated MITs that is able to fully explain all the uni-
versal aspects of a real experimental system, which represents a sig-
nificant step forward for this age-old problem residing at the heart of
solid-state physics.

Methods
Theoretical
In ourmodel,weneglect theon-siteHubbardUaswell as the long-range
Coulomb interaction. We do so because we focus on the f = 2 regime
(proximity to the band insulator), which is very far from half-filling
(f = 1). Here theonsiteCoulomb repulsionU is generally not expected to
play any significant role, nor is the long-range component of the Cou-
lomb interaction. The latter is expected to play a dominant role in the
formation of Wigner crystals at low band filling (f≪ 1)28,29; in our case,
the tendency to form such charge-ordered states is suppressed due to
reduced compressibility. To solve our model we use a self-consistent
theory of interactions and disorder14, which combines Dynamical Mean
Field Theory for the interaction effects and the Coherent Potential
Approximation for describing the effects of disorder. Similarly, as for
the popular SYKmodel30, this theory becomes an exact solution both in
the limit of infinite range hopping or for large coordination. Details of
the calculations can be found in Supplementary Note 1, where we also

show how to use the Kubo formula to calculate the corresponding
transport properties within this approach.

Because we attribute the linear-T behavior of the resistivity to
incoherent electron-boson scattering above an appropriate Debye
scale, which can be very low in energy18,31, we can ignore the dynamics
of the bosons, which in turn enables a fully self-consistent solution of
the problem in the semi-classical (thermal) regime. For the same rea-
son, the actual form of the boson dispersion is irrelevant to our pur-
poses and we ignore it. As a matter of fact, a close look at the
experimental data (Fig. 1a) reveals that the resistivity deviates from
linear behavior at the very lowest temperatures (T < 1 K), which can be
viewed as the lower boundary for the validity of our semi-classical
treatment. Describing the interplay of thermal bosonic excitations
with disorder within a poormetal is the central goal of our theory. This
mechanism should not be confused with “Strange Metal” behavior30

found in many Mott materials and other examples of strongly corre-
lated matter. The latter is not likely to be of relevance in the regime
around integer band filling we consider, where the strong correlation
effects are neither expected nor experimentally detected9.

Experimental
The additional experimental data (Device 2) we analyze in this paper
were obtained in the same fashion as the data presented in ref. 9, at
f = 2 (Device 1), but on a different device.

Data availability
The experimental data that support the findings of this study are
provided in Source Data files. The theoretical data generated during
this study are available from the corresponding author upon reason-
able request. Source data are provided with this paper.

Code availability
The custom codes generated during this study are available from the
corresponding author upon reasonable request.
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