
1. Introduction
The Ordovician Period hosts one of the largest marine biodiversification events in Earth history, the Great Or-
dovician Biodiversification Event (GOBE). After this proliferation of marine fauna, however, the second-larg-
est mass extinction in Earth history occurred, the Late Ordovician Mass Extinction Event (LOME; (Harper 
et al., 2014)). The LOME resulted in the loss of ∼85% of marine species between two distinct extinction pulses, 
with the first occurring at the Katian‒Hirnantian boundary, and the second in the late Hirnantian (Brenchley 
et al., 2001; Harper et al., 2014; Jabolinski, 1991). Traditionally, the first LOME pulse has been associated with 
rapid global cooling and widespread glaciation that resulted in major eustatic sea-level fall, creating widespread 
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marine habitat loss and ecologic shifts (Harper et al., 2014). The second LOME pulse has been associated with 
sea-level rise and an expansion of anoxic (potentially euxinic: anoxic and sulfidic water column) conditions (Dahl 
et al., 2021; Hammarlund et al., 2012). However, recent studies have invoked widespread anoxia/euxinia for both 
LOME pulses, indicating that the redox conditions surrounding this event might be more complex than initially 
understood (Zou et al., 2018). Associated with the LOME was a major perturbation in the global carbon cycle, 
recorded as a positive excursion in the marine carbon isotope record known as the Hirnantian carbon isotope 
excursion (HICE) (Brenchley et al., 2003).

The primary causal mechanisms for the HICE has previously been attributed to changes in carbonate weathering 
regimes during eustatic sea-level fall (Kump et al., 1999) and/or enhanced burial of organic matter associated 
with increased preservation resulting from decreased marine oxygenation (Brenchley et al., 2003; Hammarlund 
et al., 2012; Jones & Fike, 2013). Traditional sulfur (S) isotope approaches have investigated the dynamics and 
extent of euxinic marine conditions during the LOME. Pyrite sulfur isotope (δ34Spyr) profiles across multiple 
globally distributed paleobasins show nearly synchronous positive excursions, suggesting a global perturbation, 
albeit with local overprints to explain the variable enrichments between 15‒40‰. Overall, the positive δ34Spyr 
shift may reflect increased pyrite burial under widespread sulfidic conditions (Hammarlund et al., 2012; Jones 
& Fike, 2013). However, the single reported seawater sulfate (δ34SCAS) record shows little variation in this global 
redox proxy throughout the HICE, suggesting a minimal change in global pyrite burial rates over this interval and 
thus a limited global expansion of euxinic conditions (Jones & Fike, 2013).

Additionally, non-traditional paleoredox proxies have been applied to assess the extent of widespread reducing 
conditions as a potential kill mechanism for both LOME pulses. Specifically, uranium and molybdenum (δ238U 
and δ98Mo) stable isotope records have been interpreted to reflect global to regional changes in marine redox, and 
have identified possible shifts towards more reducing conditions—but at differing times during the Hirnantian 
(Bartlett et al., 2018; Dahl et al., 2021; Zhou et al., 2015). Models based on δ238U data from eastern Laurentia 
suggest up to 15% of the total seafloor area experienced anoxic conditions just before the end of the Ordovician 
(Bartlett et al., 2018). Meanwhile, δ98Mo data from South China have been interpreted to record local shifts from 
suboxic to euxinic conditions prior to and during the early Hirnantian (Zhou et al., 2015). However, each of these 
marine redox interpretations is based on singular datasets within widely different depositional environments. 
Moreover, delineating the timing of these inferred changes in redox relative to one another remains problematic, 
as the lack of a universally accepted, fully integrated Upper Ordovician biostratigraphic scheme limits the reso-
lution of correlations (see Supporting Information S1). Additionally, these two paleoredox proxies have different 
specific responses due to their position on the redox ladder, that is, changes in increasingly reducing marine 
conditions, which creates additional complications for understanding the onset of non-sulfidic anoxia (δ238U) 
versus euxinia (δ98Mo).

To better elucidate critical gaps in our understanding of the mechanistic underpinnings for the LOME, we present 
new I/(Ca + Mg) ratios and δ34SCAS datasets from three low-latitude but widely distributed Upper Ordovician car-
bonate successions. Our study localities were deposited in different paleocean basins and record the HICE along 
with major fluctuations in eustatic sea level (Finney et al., 1997; Ghienne et al., 2014; Kiipli & Kiipli, 2020; 
Young et al., 2010). These new-paired geochemical datasets provide a more comprehensive understanding and 
specificity of marine redox conditions (local and global) and climate that led to the second-largest extinction 
event in Earth history.

2. Background
2.1. Geologic Setting

Epeiric seaways were widespread throughout much of the Late Ordovician as a result of elevated eustatic sea lev-
els (Rasmussen et al., 2019). Widespread carbonate deposition dominated these epeiric seaways with carbonate 
successions found even within sub-tropical regions such as the paleocontinent of Baltica (Figure 1). Subsequent-
ly, nearly every marine setting records a major decrease in sea level during the latest Katian and Hirnantian 
marked by subaerially exposed carbonate platforms and significantly reduced shallow-water marine habitats.

The first study site is a thick succession outcropping in the Monitor Range, Nevada, where high-resolution δ13Ccarb 

records have previously documented the HICE (Finney et al., 1997, 1999; Jones et al., 2016). This section con-
sists of the Late Ordovician Hanson Creek Formation as well as the early Silurian Roberts Mountain Formation 
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(Finney et al., 1997). These marine carbonates were deposited in an upper slope setting on the western passive 
margin of Laurentia in the Panthalassic Ocean and contain facies that range from deep water thinly laminated 
lime mudstones and bedded cherts to wave agitated cross-laminated oolitic grainstones (Finney et al., 1997). The 
second study site is a thick succession recorded within the Kärdla drill core, southern Estonia consisting of the 
Late Ordovician Jonstorp, Halliku, Kuldiga, and Saldus formations, and the early Silurian Õhne Formation (Kaljo 
et al., 2001). These carbonates were deposited along the southern margin of Baltica with direct connection to the 
Iapetus Ocean and contain facies ranging from offshore argillaceous wackestones to shallow water oolitic grain-
stones (Kiipli & Kiipli, 2020). Last, the Point Laframboise section on Anticosti Island, Quebec, contains the Late 
Ordovician Ellis Bay and early Silurian Becscie formations. This is a mixed siliciclastic and carbonate succession 
deposited on a storm-dominated ramp in a foreland basin on eastern Laurentia (Desrochers et al., 2010). Facies 
range from distal bioturbated mudstones through shallow patch reef limestones. Each of our study localities has 
been the subject of extensive biostratigraphic and δ13Ccarb chemostratigraphic studies, allowing for correlation 
between the sections (Figure S1 in Supporting Information S1).

However, detailed correlations of stratigraphic sections from hydrographically separate paleobasins remain dif-
ficult in any study, especially when comparing sections with biostratigraphic zonation based on different taxo-
nomic groups. Here we base our Late Ordovician-early Silurian stratigraphic correlations on available graptolite, 
conodont, and chitinozoan biostratigraphy, as well as the high-resolution δ13Ccarb trends. The Monitor Range sec-
tion contains diagnostic Late Ordovician graptolites (e.g., Metabolograptus extraordinarius and Metabolograp-
tus persculptus biozones) and conodonts (Amorphoganathus ordovicicus biozone) (Finney et al., 1997, 1999; 
Murphy et al., 1979), which provide direct and reliable high-resolution integration of this section with the latest 
calibrated Ordovician Time Scale 2020 (Goldman et  al.,  2020). Unfortunately, neither the western Anticosti 
Island nor Kärdla drill core successions contain the diagnostic M. extraordinarius or M. persculptus graptolites 
(Melchin, 2008) which are found in correlative shale-dominated sequences, and thus direct integration with the 
Ordovician Time Scale 2020 is not as straightforward. However, these two carbonate-dominated sequences do 
contain diagnostic chitinozoans (Achab et al., 2011; Brenchley et al., 2003; Young et al., 2010) which allows 
them to be integrated into the most recent global Ordovician biostratigraphic framework (Goldman et al., 2020). 
Both the western Anticosti Island and Kärdla drill core sections contain the chitinozoan Belonechitina gamachia-
na and Spinachitina taugourdeaui biozones, allowing for the precise correlation between these two localities. Be-
cause of the lack of a common biostratigraphic scheme, we also rely on the carbon isotope stratigraphy previously 

Figure 1. Paleogeographic reconstruction of the Late Ordovician (Sandbian-Katian). Modified from Melchin et al., 2013. Study site localities are marked as stars, with 
the locations of other study areas shown in black circles.
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documented from each study site to augment some issues in integrating differing biostratigraphic schemes from 
these three successions (see Supporting Information S1).

2.2. Local and Global Redox Proxies

Iodine-to-calcium (I/Ca + Mg) ratios in carbonate minerals are thought to capture local changes in water column 
oxygen contents (Lu et al., 2010). When discussing concentration patterns, iodine abundances are normalized 
to carbonate contents and magnesium (Mg) concentrations are included to account for varying carbonate min-
eralogy (Hardisty et al., 2014, 2017; Lu et al., 2018). Although iodine has a relatively long residence time in 
the modern ocean (∼300 kyr), iodine responds rapidly to changes in local reducing conditions due to its redox 
potential (Hardisty et al., 2021; Rue et al., 1997). Under well-oxygenated local conditions, iodate (IO3

−) is the 
dominant species of iodine, while under reducing conditions iodate is converted to iodide (I−) (Rue et al., 1997). 
The redox potential of iodate to iodide is similar to that of O2, Mn2+, and NO3

−, thus high iodate concentrations in 
foraminifera (>2.6 μmol/mol) tend to correlate with well-oxygenated portions of the modern surface oceans and 
predictably decrease in oxygen minimum zones (OMZs; 0.5–2.5 μmol/mol) (Lu et al., 2010; Rue et al., 1997). 
A recent study on the Eastern Tropical Northern oxygen-deficient zone has shown that I/Ca ratios <1.5 μmol/
mol are likely to have been precipitated within local water masses with local O2 concentrations of <7 μmol/L 
(Hardisty et al., 2021). Within this framework, concentrations of iodate within carbonate minerals can be used 
to track local paleoredox conditions, as iodate readily substitutes for the carbonate ion, while iodide is excluded 
from the lattice structure (Lu et al., 2010). Furthermore, iodine has a higher reduction potential than more widely 
used U, and S proxies within carbonates, as well traditional shale‒based proxies (Fe, V, Mo), and thus responds 
more readily to local low-oxygen conditions (Lu et al., 2010).

Sulfate-S isotope compositions and concentrations in the global oceans are controlled by the input and output flux-
es of sulfur to and from the oceans. The two major input fluxes are riverine sulfate and volcanic outgassing, which 
have a combined value of 1.5 × 1018 mol/Myr, and both have isotopic compositions that range between 0‰ to 
+9‰ (Burke et al., 2018). Important output fluxes for sulfur are the burial of sulfate-evaporites (0.83 × 1018 mol/
Myr), which has a minor isotopic fractionation, and sedimentary pyrite with a flux of 0.67  ×  1018  mol/Myr 
(Burke et al., 2018). Pyrite formation via microbial sulfate reduction (MSR) records up to a −70‰ sulfur isotope 
fractionation between sulfate and the product sulfide, (approximated by Δ34S; Δ34S = δ34SSO4 – δ34SH2S) and thus 
leaves residual sulfate isotopically heavier, compared to isotopically light sulfide (Lang et al., 2020; Pasquier 
et al., 2021). This process occurs in anaerobic environments and is dependent on the availability of labile organic 
matter, reactive iron, and sulfate (Gomes & Hurtgen, 2015; Sim, 2019). Sulfur isotopes of carbonate-associated 
sulfate (δ34SCAS) are commonly used to generate high-resolution spatiotemporal records of global marine sul-
fate-sulfur isotope compositions. Since marine sulfate throughout the Phanerozoic had a significantly longer 
residence (105–107 yrs) time than inter-ocean mixing timescales (103 yrs) and thus is homogenous throughout 
ocean basins, δ34SCAS values are generally representative of the global seawater reservoir. Pyrite sulfur (δ34Spyr) 
isotopes, in contrast, are best used as a local proxy for MSR activity and the associated factors that control the 
magnitude of fractionation, such as rates of sulfate reduction, iron availability for pyrite formation, and interplays 
between open and closed system dynamics (Lang et al., 2020; Pasquier et al., 2021).

3. Materials and Methods
Weathered surfaces, when present, were removed from samples via a water-cooled saw to ensure the fresh mate-
rial was utilized for geochemical analysis. In-depth details regarding sample processing and purification for car-
bonate-associated sulfate (CAS), pyrite sulfur, and I/(Ca + Mg) are described in the Supporting Information S1.

Extracted CAS precipitated as BaSO4 and sedimentary pyrite as Ag2S were weighed into tin capsules with excess 
V2O5 and analyzed for their δ34S values using a ThermoFisher Delta V at the University of California Riverside 
or a Finnigan MAT 252 at Indiana University. All sulfur isotopic ratios are reported in standard per mil (‰), 
using delta notation (δ) relative to Vienna Canyon Diablo Troilite (V-CDT) with reproducibility for all sulfur 
analyses better than ±0.2‰ based on replicates of the samples and standards. Standards used for sulfur isotopic 
analysis include the international standards NBS–127 = 21.1‰; IAEA S–1 = −0.30‰; IAEA S–2 = 22.7‰; 
IAEA S–3 = −32.3‰; and EMR–CP = 1.07‰ an internal lab standard at Indiana University. I/(Ca + Mg) ratios 
were analyzed using an Agilent 7500cs inductively coupled-plasma mass spectrometer (ICP-MS) at the National 
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High Magnetic Field Laboratory at Florida State University following standard methods (Lu et al., 2010). Internal 
standard curves were made fresh daily from high purity standards and compared to in-house and previously pub-
lished geo-standards KL 1–2 and KL 1–4 from Hardisty et al. (2017) and were found to be within ±0.5% of the 
reported value. The precision of duplicate samples and replicate analysis were within ±0.08 μmol/mol or better.

4. Results
4.1. Monitor Range, Nevada, USA

Detailed carbon isotope data have been published from the Monitor Range section, documenting the HICE and 
other minor excursions (Finney et  al.,  1999; Jones et  al.,  2016; Murphy et  al.,  1979). The new I/(Ca + Mg) 
ratios from this section show relatively low values throughout the Katian and Hirnantian (Figure 2), with aver-
age values in the Dicellograptus ornatus graptolite biozone at ∼1.5 μmol/mol, declining to 0 μmol/mol in the 
Paraorthograptus. pacificus to Diceratograptus murnis biozones and remaining at 0 μmol/mol to the uppermost 
part of the section where values rise to an average of ∼1.5 μmol/mol. δ34SCAS data from this section show an 
average of +36‰ throughout much of the lower Hanson Creek Formation, with a protracted fall beginning in the 
late Katian D. ornatus biozone and reaching minimum values of +26‰ in the early Hirnantian M. extradinarious 
biozone. Within the late Hirnantian M. persculptus biozone, δ34SCAS values increase to an average of +29‰ and 
continue to increase to +35‰ in the Silurian Rhuddanian Distomodus kentuckyensis conodont biozone.

4.2. Kärdla Drill Core, Estonia

A detailed carbon isotope record has also been published from the Kärdla core, Estonia, where the HICE was 
also identified (Kaljo et al., 2001; Young et al., 2010). Unfortunately, due to the limited amount of core material 
available and the relatively large sample amounts required for sulfur isotope analyses, I/(Ca + Mg) analyses 
were not possible below the uppermost Halliku Formation. The I/(Ca + Mg) values within the upper Halliku 
Formation show a consistent absence of iodine (0 μmol/mol) but begin to increase within the Kuldiga Formation 

Figure 2. Geochemical and lithologic profile of Monitor Range, Nevada. Biozones, lithologic profile and sea level curve are from Finney et al., 1997, 1999 and 
Murphy et al., 1979 (* indicates conodont biozone). (a) δ13Ccarb replotted from Jones et al., 2016. (b) δ34SCAS, this study. (c) I/(Ca + Mg) ratios, this study. (d) δ15NNT 
replotted from LaPorte et al., 2009. D. kent.* = D. kentuckyensis, D. staur.* = D. staurognathoides R.M. Fm = Roberts Mountains Formation.
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(Conochitina scabra biozone) to a maximum value of 1.6 μmol/mol. The values fall to near zero (<0.1 μmol/mol) 
at the top of the formation (Figure 3). Iodine contents increase again within the Saldus Formation to a maximum 
of 1.5 μmol/mol and then decline to near-zero values within the basal Õhne Formation. Finally, I/(Ca + Mg) 
ratios increase steadily throughout the Õhne Formation (Spinachitina fragilis biozone) to a maximum of 2 μmol/
mol. The δ34SCAS data from the Kärdla core show a negative perturbation in the lowermost Halliku Formation, 
within the Katian lower Conochitina rugata chitinozoan biozone, from maximum values of +30‰ to minimum 
values of +20‰. Subsequently, δ34SCAS values remain relatively invariant, ranging between +20‰ to +25‰ 
into the Hirnantian (upper C. rugata through S. scabra biozones), where average values trend to +30‰ in the 
upper Kuldiga through Õhne formations (S. fragilis biozone). The corresponding δ34Spyr values range between 
−35‰ and +7‰, with an average of ∼−17‰ within the Halliku Formation. The overlying Kuldiga and Saldus 
formations record δ34Spyr values that steadily increase to a maximum value of +37‰, and these values return to 
a new baseline of ∼−30‰ in the overlying Õhne Formation.

4.3. Anticosti Island, Canada

The Point Laframboise section on western Anticosti Island has been studied extensively, including previous-
ly published geochemical data for carbon, sulfur, and uranium isotopes in addition to carbonate clumped- and 
conodont paleothermometry (Jones et al., 2011; Finnegan et al., 2011; Jones & Fike, 2013; Bartlett et al., 2018). 
Previous studies have documented the HICE in detail from this section in addition to cooling trends in sea-surface 
temperatures and increases in global marine anoxia. The placement of the Katian-Hirnantian boundary within the 
upper Ellis Bay Formation (Figure 4) is based upon previous high-resolution δ13C chemostratigraphy (i.e., HICE) 
that has been integrated with detailed biostratigraphic studies from this section and other Upper Ordovician suc-
cessions globally (Bergström et al., 2020; Jones et al., 2011; Young et al., 2010). This chronostratigraphy differs 
from Bartlett et al. (2018) who assign the entire Ellis Bay Formation to the Hirnantian Stage. The placement of 
the Katian‒Hirnantian boundary on Anticosti Island is still the subject of much debate, however, this interpreta-
tion is consistent with the global chitinozoan biozones, which are documented from this section and integrated 
into the recent Ordovician Time Scale 2020 (Goldman et al., 2020; see Supporting Information S1).

Figure 3. Geochemical and lithologic profile of the Kärdla Drill Core, Estonia. Chitinozoan biozones and lithologies are modified from Brenchley et al., 2003 and 
Young et al., 2010. (a) δ13Ccarb replotted from Young et al., 2010. (b) δ34SCAS this study. (c) δ34Spyr this study. (d) Δ34S, this study. (e) I/(Ca + Mg) ratios, this study.
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Our new I/(Ca + Mg) data set (Figure 4) from this section shows low values (<2 μmol/mol) within the B. ga-
machiana and S. taugrourdeaui biozones of the mid-inner ramp facies of the Lousy Cove Member, but values 
increase rapidly to an average of 6 μmol/mol, ranging from ∼0.5 to 9 μmol/mol, within the patch reef facies of the 
Laframboise Member. Subsequently, I/(Ca + Mg) ratios within the early Silurian inner-mid ramp carbonates of 
the overlying Becscie Formation (Ancyrochitina ellisbayensis and Plectochitina nodifera biozones) show a return 
to consistently low values (<1 μmol/mol).

5. Discussion
5.1. Evaluation of Diagenetic Influences

Assessing I/(Ca + Mg) and δ34SCAS values for potential diagenetic overprints is paramount to ensure the recorded 
signals represent primary changes in seawater. Importantly, a recently published study using δ44Ca and Sr/Ca 
ratios addressed the extent of diagenetic influence on both the Monitor Range and western Anticosti Island sec-
tions (Jones et al., 2020). This study suggests that deeper water settings like that of Monitor Range and western 
Anticosti Island, generally retain primary seawater geochemical signatures (i.e., sediment buffered), while strata 
deposited in shallower water settings are more likely to reflect geochemical signatures akin to sediment pore-
waters (Jones et al., 2020). Unfortunately, extensive diagenetic studies have not been performed on the Kärdla 
drill core, however, this section is interpreted to be deposited in a deeper shelf setting (albeit shallower than the 
upper slope setting of the Monitor Range section), suggesting that this section likely preserves mostly primary 
geochemical signatures (Kaljo et al., 2011). Importantly, if the Kärdla drill core were diagenetically altered, there 
would be a lack of co-varying trends that can be correlated to other sections and regions (i.e., the absence of the 
HICE, significantly lighter or heavier carbon and/or sulfur isotopes, etc.), as well as extensive karstic features and 
low statistical variation within cross-plots (see below).

Figure 4. Geochemical and lithologic profile of Anticosti Island, Canada. Lithofaciess are modified Jones & Fike, 2013. (a) δ13Ccarb replotted from Young et al., 2010. 
(b) δ34SCAS replotted from Jones & Fike, 2013. (c) δ238U replotted from Bartlett et al., 2018. (d) I/(Ca + Mg) ratios, this study. Placement of Katian‒Hirnantian 
boundary is based on detailed chitinozoan biostratigraphy that is calibrated to the Ordovician Time Scale 2020 (Achab et al., 2011; Goldman et al., 2020).
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Meteoric diagenesis has been shown to decrease the concentrations of both iodine (Hardisty et  al.,  2017; Lu 
et al., 2010) and sulfate in carbonates, as freshwater typically contains lower concentrations of these ions. Howev-
er, there are no known processes that can increase iodine in carbonates, and in the case of CAS, meteoric diagen-
esis itself imparts a negligible isotopic effect (Gill et al., 2008). However, other early diagenetic processes (i.e., 
non-meteoric processes) can still impart isotopic effects, such as authigenic carbonate formation (see below for 
further discussion). While there is an abundance of low I/(Ca + Mg) values recorded in our datasets, we interpret 
these as predominantly primary seawater signatures as significant diagenetic alteration cannot explain the very 
high I/(Ca + Mg) ratios, some of the highest in the early Paleozoic (Lu et al., 2018), recorded within the shallow 
marine patch reef facies of the western Anticosti Island section. These high I/(Ca + Mg) values were recorded 
during a lower stand of sea level in the Hirnantian, a stratigraphic interval, and carbonate facies that would have 
been most susceptible to extensive diagenesis (Figure S3b in Supporting Information S1). Studies of Cenozoic 
carbonates from the Great Bahamas Bank have shown that iodine concentrations may also be reduced during 
early diagenesis in carbonate settings (Hardisty et al., 2017). Intervals that were affected by meteoric diagenesis 
contained I/(Ca + Mg) values close to 0 μmol/mol (Hardisty et al., 2017), likely reflecting alteration by reducing 
fluids rather than primary seawater values. While it is possible that processes similar to these may have contribut-
ed to lowering general iodine concentrations in carbonates from this study if fluid migration were to greatly affect 
primary geochemical signals it would be in the units that would have originally contained the highest porosity and 
lowest permeability (i.e., the shallow-water facies). In other words, the Lamframboise Member-Ellis Bay Forma-
tion, Anticosti Island, and the Saldus Formation, Estonia, by this prediction would have low I/(Ca + Mg) values. 
However, these respective intervals within our carbonate successions contain the highest I/(Ca + Mg) values, 
while the lowest values are found in fine-grained carbonate and clay-rich facies where porosity and permeability 
would have likely inhibited significant fluid migration. Additionally, these Bahamian drill cores have shown other 
evidence for meteoric diagenesis in these intervals with near-zero I/(Ca + Mg) values, including carbon isotopic 
signatures that are significantly more negative compared to the original aragonitic sediments that passively record 
primary seawater (Swart & Oehlert, 2018), whereas the Late Ordovician carbon isotopic data from our study 
sections do not show these types of signatures even surrounding intervals of glacioeustatic exposure (Brenchley 
et al., 2003; Desrochers et al., 2010; Jones et al., 2016; Young et al., 2010).

Geochemical crossplots are also a widespread tool used to assess the fidelity of geochemical signatures, where 
correlating trends with high R2 values can point to mixing of primary marine signal with those from diagenetic al-
teration. Recrystallization of carbonates during diagenesis can yield δ13C, δ18O, δ34S and I/(Ca + Mg) signatures 
that deviate from primary seawater values, reflecting a mixture of primary and secondary sources and producing 
linear or asymptotic relationships among the geochemical parameters (Ahm et al., 2018; Swart & Oehlert, 2018). 
Here we have cross-plotted δ18Ocarb, δ13Ccarb, [CAS], δ34SCAS, and I/(Ca + Mg) datasets, and these show weak 
to no correlations, indicating that complete diagenetic overprint is absent from our datasets (Figure S3 in Sup-
porting Information S1). The only crossplots that show significant correlation are I/(Ca/Mg) versus δ18Ocarb and 
δ18Ocarb versus δ13Ccarb from Anticosti Island, however, these trends simply reflect two distinct data populations 
that within each population do not correlate. Further, clear trends that continue across formational boundaries 
and major facies changes suggest that geochemical signatures found in these successions are largely primary and 
contain limited diagenetic alteration.

The likelihood of bulk CAS to faithfully record primary seawater sulfur isotope values has previously been 
called into question. Bulk δ34SCAS may incorporate sulfate from both primary and secondary carbonate phases 
potentially leading to more “noise” in isotopic datasets, while δ34SCAS from well-preserved brachiopod carbonate 
components in the same section show more invariant values (Present et al., 2015). Unfortunately, abundant and 
well-preserved brachiopods at regularly spaced and high-resolution intervals are not present throughout all the 
studied sections and thus were not a viable option for performing high-resolution component-specific CAS meas-
urements. Studies comparing early Cenozoic bulk CAS, planktonic foraminiferal CAS, and authigenic barite 
found that while species-specific foraminiferal data yielded vital effects up to ±1‰ versus barite, bulk CAS 
faithfully follow the recorded changes in secular δ34Ssulfate in both duration and magnitude (Toyama et al., 2020; 
Yao et al., 2020). Other studies have shown that fine-grained carbonate sediments, similar to those found in this 
study, may preserve a combination of primary seawater-derived CAS as well as MSR-derived porewater sulfates 
preserved as secondary cements (Edwards et al., 2019; Present et al., 2019). Present et al. (2019) showed that stra-
ta with low porosity and fine-grained texture are more likely to preserve extensive early diagenetic MSR-derived 
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overprints, reflecting the residual sulfate pool, resulting in a more positive δ34SCAS record compared to coarse-
grained, low porosity equivalent strata.

The heavy δ34SCAS values found in Katian strata of the Monitor Range section could be the result of early di-
agenetic MSR-derived authigenic carbonates precipitation, facilitated by organic matter remineralization, which 
increases pore‒water alkalinity, subsequently incorporating isotopically heavy sulfate, as they are more positive 
than the few previously published, roughly time-equivalent, middle to late Katian δ34SCAS values (Kampschulte 
& Strauss, 2004; Present et al., 2020). If the positive δ34SCAS values at the Monitor Range reflect early diage-
netic MSR-derived authigenic cements (e.g., Present et al., 2019), then the sulfur isotope compositions should 
correspond to the lowest I/(Ca + Mg) values. Sulfate reduction is further down the marine redox ladder than 
iodate reduction, and unlike iodate, the product iodide does not incorporate readily into the carbonate lattice (Lu 
et al., 2010). Within the Monitor Range section, most of the highest I/(Ca + Mg) values occur alongside the heav-
iest δ34SCAS values, and the lowest I/(Ca + Mg) values occur with the most negative δ34SCAS values (Figure 2). 
Other studies have suggested that sedimentation rates may be the most important factor for modulating MSR and 
subsequent control on fractionation factors between porewater sulfate and sulfide due to the increased discon-
nection between porewater and water column sulfate (Pasquier et al., 2021). Sea-level reconstructions and pre-
vious biostratigraphic studies of the Monitor Range section indicate that sedimentation rates were mostly stable 
throughout the late Katian at this locality, which would limit the extent of fluctuations in sulfur isotope fraction-
ation between sulfate and sulfide due to a more constant diffusive length between porewaters and water column 
sulfate. This relationship in our Monitor Range datasets are thus not consistent with an MSR-driven sulfate model 
as the principle explanation for the positive δ34SCAS values. Furthermore, if MSR-derived authigenic carbonates 
were largely responsible for our Monitor Range δ34SCAS values, then we should expect isotopically light δ13Ccarb 
profiles via concomitant organic matter oxidation throughout the section that significantly deviate from other 
δ13Ccarb records interpreted to reflect the global DIC reservoir (Schrag et  al.,  2013). In contrast, the Monitor 
Range δ13Ccarb records show no significant and widespread carbon isotope deviations from other previously pub-
lished time equivalent δ13Ccarb records (Bergström et al., 2010; Jones et al., 2016; Kump & Arthur, 1999; LaPorte 
et al., 2009; Saltzman & Young, 2005).

Lastly, if the δ34SCAS values of the Monitor Range were significantly affected by MSR-derived authigenic car-
bonate formation during diagenesis, then positive δ44Ca values would be expected from this succession, as was 
shown from Miocene offshore carbonates purported to have formed within sedimentary intervals with exten-
sive MSR (Blättler et al., 2015). In contrast, however, a recent δ44Ca study of the Upper Ordovician carbonate 
successions in the Monitor Range revealed the most negative δ44Ca values throughout the Great Basin (Jones 
et al., 2020). While it is certainly possible that some early diagenetic mechanisms (e.g., MSR-derived authigenic 
carbonates) could have contributed to our positive δ34SCAS values, it is unlikely that these processes were the 
primary factors controlling the first-order trends observed in these datasets.

Additionally, δ34SCAS records presented here across multiple paleobasins on separate paleocontinents from vari-
able bathymetric depths show biostratigraphically, well correlated first-order trends (i.e., the fall δ34S in the late 
Katian and a return to more positive values within the late Hirnantian-Rhuddanian) also suggest preservation of 
primary seawater signatures (Figures 2–4). While local diagenetic processes may have influenced the δ34SCAS 
data, it is very unlikely that each of the study sections would experience similar early and late diagenetic histories 
that resulted in similar first-order trends. These local diagenetic histories can more likely explain the smaller 
magnitude variations (∼2–4‰) within and between δ34SCAS records from the study sites.

5.2. Modeling the Sulfur Cycle

Our δ34SCAS trends recorded from the Monitor Range documents an ∼10‰ fall leading into the Hirnantian. The 
data at the base of the Kärdla core appear to capture the very end of this fall and, when taken with the Monitor 
Range data, suggest this represents a global perturbation in the sulfur cycle. Here we constructed a forward 
sulfur isotope mass balance box model to reproduce the magnitude of the isotope perturbation and to provide 
quantitative constraints on global pyrite burial and weathering fluxes. We prescribed initial conditions based 
on modern estimates of weathering and pyrite burial rates (Kurtz et al., 2003), and sensitivity tests were ex-
plored for all fluxes (for initial parameters and values explored see Table S1 in Supporting Information S1). All 
forcings were changed as a multi-step function rather than a pulse to simulate progressive changes (see Figure 
S4 in Supporting Information S1 for graphical representation of model forcings). While this type of modeling 
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cannot provide a single unique solution from the changes in the sulfur cycle, it does provide a range of plausible 
first-order quantifications for these various parameters. It is important to note that all model runs presented here 
(Figure 5) were prescribed with a change in the sulfur isotope fractionation (Δ34S). We start with an initial value 
of +35‰ and decrease it to +20‰ during the perturbation, consistent with a global average of previously pub-
lished Δ 34S values (see Table S2 in Supporting Information S1) and those determined in this study. The starting 
seawater sulfate-S isotope composition for the late Katian of ∼+35‰ is based on our δ34SCAS data set from the 
Monitor Range. We have used recent Sr isotope weathering models for the Late Ordovician (Hu et al., 2017) and 
previously published Late Ordovician-Silurian global redox studies (Bartlett et al., 2018; Stockey et al., 2020) 
for further model constraints for changes in the pyrite burial flux. The time interval adopted for all model runs is 
5 Myr for the duration of the negative δ34SCAS excursion based on graptolite biostratigraphy of the Monitor Range 
section that can be well integrated into the latest calibrated Ordovician Time Scale 2020 (Goldman et al., 2020; 
see Supporting Information S1 for more details on age constraints). Any model run that does not return to near 
baseline conditions within the prescribed 5 Myr timeframe is unlikely to explain the observed stratigraphic trend.

Importantly, no single model parameter was able to reproduce the fall in δ34SCAS in the required timeframe (Sup-
porting Information S1). However, model runs assuming moderate decreases in pyrite burial in concert with an 
increase in weathering can generate the observed δ34SCAS drop (Figure 5). A 50%–75% reduction in pyrite burial 
(i.e., 50% Fpyr and 25% Fpyr of initial burial rate, respectively) combined with a 25%–60% increase in the weath-
ering flux (i.e., 125% Fw and 160% Fw, respectively) produces a ∼10‰ negative excursion using an initial marine 
sulfate concentration of 5 mM. This scenario is the most parsimonious with the initiation of sea-level fall, which 
would reduce shelf area and thus the total aerial extent of pyrite burial, as well as increase the weathering inputs. 
This change in sea level is a result of changes in global climate and associated changes in thermohaline circulation 

Figure 5. Results of geochemical box modeling showing changes in pyrite burial (Fpry), weathering fluxes (Fw) needed 
to reproduce seen CAS trends in Monitor Range for a 3 mM SO4

−2 scenario (panels A and B) and a 5 mM SO4
−2 scenario 

(panels C and D). Also shown are changes in sulfate concentrations resulting from the associated weathering and pyrite 
burial fluxes (panels B and D). Dashed line indicates (a)10‰ excursion for all scenarios. For additional sensitivity tests, see 
Supporting Information S1.
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at this time (see Section 5.3 below) may have increased marine oxygenation of the Late Ordovician oceans, and 
further reduced global pyrite burial. These combined effects would both contribute to the observed δ34SCAS drop.

A starting marine sulfate concentration of 5 mM is consistent with previous estimates for Late Ordovician seawa-
ter (Horita et al., 2002; Jones & Fike, 2013). Model simulations starting with 3 mM marine sulfate concentrations 
require smaller changes in the weathering and pyrite burial fluxes (i.e., 25% reduction yields a value of 75% Fpyr) 
to simulate the negative excursion (Figure 5a). However, we do not favor an initial marine sulfate concentration of 
3 mM or less due since it is the low end of estimates based on fluid inclusions and previous Late Ordovician sul-
fur isotope modeling (Hammarlund et al., 2012; Horita et al., 2002; Jones & Fike, 2013). Furthermore, sensitivity 
tests with an initial 3 mM oceanic reservoir show changes in seawater sulfate sulfur isotopes that are faster than 
those documented from Upper Ordovician records in terms of reaching the minimum value and the later return to 
baseline. Additionally, our model places an upper constraint on Late Ordovician marine sulfate concentrations, 
as our simulations with initial values of 10 mM or greater cannot reproduce the observed sulfur isotope records 
unless unreasonable changes in weathering and pyrite burial fluxes are prescribed (Supporting Information S1).

Most significantly, the observed negative δ34SCAS perturbation requires a major decrease in pyrite burial, thus 
potentially requiring a reduction in the global extent of euxinic conditions (since pyrite burial is highly efficient 
under such conditions). Thus, if we assume that most reduced sulfur is buried as pyrite in euxinic settings, we can 
calculate a maximum estimate of euxinic seafloor area. This approach is an oversimplification since pyrite is also 
formed in reducing sediments overlain by oxic and anoxic non-sulfidic waters. However, since pyrite burial in 
these settings is less efficient, an even greater reduction in the area of the seafloor subject to reducing conditions 
is required. Initial pyrite burial flux for the late Katian required a Fpyr of 1.1 × 1018 mol of S/Myr, compared to the 
modern global rate of 0.67 × 1018 mol of S/Myr (Kurtz et al., 2003). The extent of euxinic conditions in the mod-
ern oceans is estimated at ∼0.15% of the global seafloor (Reinhard et al., 2013), with reduced sulfur burial flux 
that would equate to ∼3.1 × 1016 mol of S/Myr, most of which occurs in the Black Sea (Neretin et al., 2001). This 
reduced sulfur burial flux includes pyrite burial and any intermediate valence reduced S species, as well as or-
ganically bound S, and is thus a maximum estimate for reduced sulfur burial. Given this data from modern oceans 
and the estimated late Katian pyrite burial rates, we can estimate the extent of euxinic conditions in the late Katian 
at most was ∼35 × more than the modern, equating to an aerial extent of approximately 5.3% (35 × 0.15% of the 
modern). We estimate that a subsequent 75% to 50% reduction in pyrite burial—corresponding to the minimum 
δ34SCAS values—would reduce the maximum global estimate for the extent of euxinia to ∼1.3–2.7% within the 
Hirnantian. We observe a shift back to more positive δ34SCAS values in the late Hirnantian‒early Silurian, likely 
signaling a return to more reducing conditions with the oceans.

Due to the susceptibility of carbonate-associated sulfate data to be possibly compromised from various diagenetic 
processes (see above Section 5.1) that can lead to some variability within the recorded δ34SCAS values, we per-
formed a series of sensitivity tests allowing for some degree of overprinting of primary δ34SCAS values (Figures 
S4–S6 in Supporting Information S1). These tests reveal that our fundamental conclusions of decreased seafloor 
euxinia do not change within a range of reasonable δ34SCAS variations and possible diagenetic overprinting, but 
simply affects estimated ranges of total seafloor euxinia. Through careful sample selection and laboratory treat-
ment (i.e., preference of less permeable, low porosity micrite over pack/grainstone, careful extraction procedures 
to avoid pyrite oxidation) we have generated robust δ34SCAS datasets that are in good agreement with correlative 
and previously published δ34SCAS datasets (Jones & Fike, 2013; Present et al., 2015). However, it is important to 
acknowledge that diagenetic overprints are still possible but given the results of our sensitivity tests, agreement 
of trends among sections, and large-scale (>5‰) trends within a section these secondary processes cannot be the 
primary mechanisms responsible for the major trends in data recorded from these study sites. Ultimately these 
model results have produced conservative estimates for the extent of seafloor euxinia in the Late Ordovician 
oceans.

5.3. Late Ordovician Cascade of Redox, Environmental, and Biotic Change

The negative excursion in δ34SCAS recorded from the late Katian is interpreted to indicate a reduction in global 
euxinia, which is counter to the occurrence of undifferentiated “anoxic” black shales (i.e., anoxic, ferruginous, 
or euxinic) found at many locations across the globe during this interval (Melchin et al., 2013). Our I/(Ca + Mg) 
trends indicate that sub-oxic to anoxic conditions were locally pervasive at least in the sections we studied and by 
inference may have been widespread in the late Katian oceans and persisted into the Hirnantian. The explanation 
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for this apparent contradiction may lie with the fact that iodine and sulfur respond to different types of reducing 
conditions, with iodine responding to changes in redox near O2 reduction (i.e., non-sulfidic anoxia), while sulfate 
reduction occurs in more reduced settings further down the redox ladder (Froelich et al., 1979; Lu et al., 2010; Rue 
et al., 1997). Additionally, these two proxies reflect different spatiotemporal relationships, with iodine reflecting 
local water-column conditions, while δ34SCAS values record changes in sulfur cycling in the global oceans. In the 
discussion that follows we focus on this new level of paleoredox specificity for the Late Ordovician oceans in the 
context of coincident changes in the environment, eustatic sea level, and the marine biosphere.

Significant changes in local and global marine redox conditions began in the late Katian and were coincident 
with high sea level, elevated sea surface temperatures (SSTs), and generally high levels of marine biodiversity 
(Figure 6; Finnegan et al., 2011; Finney et al., 1999; Haq & Schutter, 2008; Rasmussen & Harper, 2011; Trotter 
et al., 2008). There is growing evidence from clumped oxygen isotopes and conodont paleothermometry that 
global average SSTs began declining in the latest Katian with the initiation of Gondwanan ice sheet expansion 
(Finnegan et al., 2011; Trotter et al., 2008). This relationship suggests that the negative δ34SCAS excursion and the 
implied changes in global average temperature were initiated by the intensification of thermohaline circulation as 
a result of increased deep-water formation around Gondwanan margins, consistent with sedimentary indicators 
of upwelling in the Monitor Range section (i.e., bedded cherts and phosphates; Figure 2) (Pope, 2003). Increased 
thermohaline circulation would have led to cooler globally averaged SSTs and increased renewal of dissolved 
deep marine O2, thus ventilating portions of previously euxinic environments along continental margins, shifting 
the sulfidic chemocline deeper and likely into the sediments in many regions. The ultimate result was a reduced 
global pyrite burial flux. Thus, euxinic water column conditions may have decreased globally in the latest Katian. 
Changes in global ocean circulation patterns similar to ones proposed here, have also been proposed as a driver 

Figure 6. The generalized geochemical trends of Late Ordovician-Silurian global marine redox proxies from carbonates (δ34SCAS and δ238U) and the relationship to 
mass extinction pulses, climate, and sea level. (a) Generalized late Katian-early Rhuddanian δ13Ccarb trends. (b) The δ238U data are replotted from Bartlett et al., 2018 
(purple dots) and Lu et al., 2017 (purple triangle). (c) The δ34SCAS, datasets from this study are the green dots/line representing the Kärdla drill core and the orange 
dots/line representing the Monitor Range section. The blue dots/line are from the western Anticosti Island section (replotted from Jones & Fike, 2013); brown inverted 
triangles are brachiopod-CAS; brown squares are bulk-CAS data from Kampschulte and Strauss (2004); yellow stars are brachiopod-CAS; and yellow triangles are 
bulk-CAS from Present et al. (2015). Note the clear overlap in δ34SCAS values from bulk- and brachiopod-CAS datasets throughout the upper Katian-Hirnantian stages. 
(d) Generalized changes in the extent of global marine anoxia. (e) Generalized changes in the extent of global marine euxinia. (f) Average Sea Surface Temperatures 
data replotted from Finnegan et al. (2011). (g) Eustatic sea level from Goldman et al. (2020).

 2576604x, 2022, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021A

V
000563 by Florida State U

niversity C
olle, W

iley O
nline L

ibrary on [03/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AGU Advances

KOZIK ET AL.

10.1029/2021AV000563

13 of 17

for the main phases of the GOBE (Rasmussen et al., 2016). However, these changes in the Late Ordovician global 
circulation patterns may have driven a decrease in biodiversity of the deep-water Foliomena fauna in the latest 
Katian (Finnegan et al., 2016), as well as major changes in geographic and bathymetric range of the Hirnantia/
Edgewood-Cathay Fauna (Rong et al., 2020). Widespread sulfidic sediment pore waters may help explain the 
mild enrichments in molybdenum concentrations and iron speciation records of anoxic, sulfide limited, wa-
ter-column conditions leading into the Hirnantian as recorded in black shales/deep basinal settings on Laurentia, 
Baltica, Avalonia, and peri-Gondwana (Hammarlund et al., 2012; Hardisty et al., 2018).

The collective data suggest that a combination of cooling temperatures, reduction of habitable space on shelves 
and in epeiric seaways due to eustatic sea-level fall (Figure S3 in Supporting  Information  S1), and our new 
evidence for possibly widespread non-sulfidic anoxic marine conditions in many local basins culminated in the 
first LOME pulse near the Katian‒Hirnantian boundary. Consistent with this hypothesis, the first appearance of 
bedded chert in the Monitor Range section, suggesting an increase in local upwelling, coincides with indicators 
of local sea-level fall (Finney et al., 1997) and expansion of a local OMZ recorded in a drop in I/(Ca + Mg). 
There is also evidence within previously published bulk nitrogen data (LaPorte et al., 2009) for a shift toward 
more reducing conditions. This data shows a trend to more negative δ15N values after our I/(Ca + Mg) ratios drop 
to near 0 μmol/mol (Figure 4d) where it is attributed to a local increase in denitrification. Denitrification occurs 
after iodine reduction on the redox ladder (Lu et al., 2010), consistent with the observed relationship to our iodine 
data. Together these local redox proxies suggest a progressive loss of oxygen in this local environment before the 
Katian-Hirnantian boundary. Although many Hirnantian localities show evidence of locally reducing conditions, 
the anomalously high I/(Ca + Mg) ratios recorded from western Anticosti Island are likely due to lowered local 
sea level allowing for changes in surface currents and nutrient dynamics. The net result was well-oxygenated 
conditions in very shallow waters that supported patch reef environments in this region. Given the similarities 
in the iodine data across multiple basins and our inferred global signatures in δ34SCAS, we suggest that euxinia 
likely decreased globally while, paradoxically, less severe anoxia expanded globally in shallow settings thus 
non-sulfidic anoxia impacted marine life leading into the first LOME pulse. This reduction in euxinic conditions 
may be attributed to the observed global cooling of surface waters and subsequent increased solubility of O2, 
combined with enhanced thermohaline circulation, thus ventilating previously euxinic portions of Late Ordo-
vician oceans. This enhanced ocean circulation may have in turn intensified local upwelling around continental 
margins throughout the globe, thus leading to more local primary productivity, enhancing global carbon burial 
and local anoxia, as evidenced by I/(Ca + Mg) trends. These climatic and oceanographic conditions during the 
late Katian-Hirnantian may have provided a unique balance that resulted in expansion of anoxic non-sulfidic 
water masses, but the increased oxygen solubility and circulation may have prevented these water masses from 
being pervasively euxinic. Ultimately, these marine redox conditions would have had a major impact on marine 
life in productive continental margins and remaining shallow seaways.

Changes in global marine redox conditions associated with eustatic sea-level rise have been invoked as a causal 
mechanism for the second LOME pulse in the late Hirnantian (within the M. persculptus graptolite biozone) 
(Harper et  al.,  2014). As Gondwanan ice sheets melted and the late Hirnantian climate warmed (Finnegan 
et al., 2011), marine stratification and chemocline migration during eustatic sea-level rise likely played an im-
portant role in the second LOME pulse. The δ238U records from carbonates on western Anticosti Island (Bartlett 
et al., 2018)—along with δ98Mo and δ238U data, Mo concentrations, and iron speciation from organic-rich shale 
successions (Hammarlund et al., 2012; Stockey et al., 2020; Zhou et al., 2015; Zou et al., 2018)—indicate a re-
turn to widespread reducing conditions in global oceans during this time. Our iodine and sulfur isotope datasets 
are consistent with a shift to more reducing conditions. Specifically, late Hirnantian-early Silurian I/(Ca + Mg) 
values indicate local anoxia at all three sections, and δ34SCAS profiles from all sites trend positively by ∼7‰ 
(Figure 5), indicating a return to increased global pyrite burial. Increased reducing conditions along continental 
margins during this time would have largely tracked eustatic sea-level rise, warming sea surface temperatures 
would have led to decreased O2 solubility and circulation. As OMZs expanded from deep shelf/slope to shallower 
areas on the continental shelf during the late Hirnantian-early Silurian this increased the overall areal extent of 
seafloor overlain by anoxic and euxinic bottom waters.
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6. Conclusions
Paired iodine and sulfur isotope geochemistry reveal new spatiotemporal relationships between marine non-sulfid-
ic anoxia and euxinia associated with the Late Ordovician Mass Extinction. Our I/(Ca + Mg) ratios are low 
throughout this time interval in all sections, except for a set of high values (average of 6 μmol/mol) recorded 
from the shallow patch reef facies on western Anticosti Island. At the same time, our new δ34SCAS records show a 
large negative excursion of ∼10‰ magnitude over the late Katian-Hirnantian. Modeling of these δ34SCAS records 
suggests that the negative excursion was driven by moderate decreases in the pyrite burial rates combined with 
small increases in weathering. The implications include a reduction of global pyrite burial, which equates to a 
maximum decline of seafloor euxinic conditions by ∼3% from the late Katan into the Hirnantian. This decrease is 
roughly consistent with recent models of Hirnantian to early Silurian global redox conditions (Bartlett et al., 2018; 
Stockey et al., 2020) based on different proxies (δ98Mo, δ238U) with different redox sensitivities. Importantly, this 
transition does not preclude the possibility of increasing oxygen deficiency as recorded in iodine data in marginal 
settings due to enhanced upwelling as seen in the Monitor Range. Additional data from redox-sensitive elements 
are needed from multiple paleobasins to constrain the extent of these non-sulfidic reducing conditions.

In sum, our multiproxy data and modeling indicate widespread ventilation of marine environments followed 
by enhanced weathering during the late Katian-early Hirnantian. This sequence of events likely resulted from 
enhanced thermohaline circulation and growth of Gondwanan ice sheets that cooled sea surface temperatures 
and potentially increased deeper ocean oxygenation, therefore reducing euxinic conditions in the global oceans. 
However, non-sulfidic anoxic conditions remained pervasive throughout shallow shelf settings due to attendant 
increases in productivity resulting from increased upwelling and ocean circulation. These relationships indi-
cate that a unique combination of reducing marine conditions, climatic cooling, falling sea level and narrowing 
ecospace led to the first LOME pulse. Subsequently, deglacial eustatic sea-level rise during the late Hirnantian 
that coincided with warming temperatures, deoxygenation, and decreased ocean circulation led to an expansion 
of global euxinic conditions, broadly coincident with the second LOME pulse. Our study sheds new light on the 
possibility of a complex and evolving redox landscape reflecting the interplay of multiple interrelated controls—
with severe biotic turnover as a consequence. More generally, these results hint at the improved perspective that 
can come by integrating multiple local and global proxies from a wide distribution of locations.
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