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Abstract: The significant roles of extracellular vesicles (EVs) as intracellular mediators, disease
biomarkers, and therapeutic agents, make them a scientific hotspot. In particular, EVs secreted by
human stem cells show significance in treating neurological disorders, such as Alzheimer’s disease
and ischemic stroke. However, the clinical applications of EVs are limited due to their poor targeting
capabilities and low therapeutic efficacies after intravenous administration. Superparamagnetic iron
oxide (SPIO) nanoparticles are biocompatible and have been shown to improve the targeting ability of
EVs. In particular, ultrasmall SPIO (USPIO, <50 nm) are more suitable for labeling nanoscale EVs due
to their small size. In this study, induced forebrain neural progenitor cortical organoids (iNPCo) were
differentiated from human induced pluripotent stem cells (iPSCs), and the iNPCo expressed FOXG1,
Nkx2.1, α-catenin, as well as β-tubulin III. EVs were isolated from iNPCo media, then loaded with
USPIOs by sonication. Size and concentration of EV particles were measured by nanoparticle tracking
analysis, and no significant changes were observed in size distribution before and after sonication,
but the concentration decreased after labeling. miR-21 and miR-133b decreased after sonication.
Magnetic resonance imaging (MRI) demonstrated contrast visualized for the USPIO labeled EVs
embedded in agarose gel phantoms. Upon calculation, USPIO labeled EVs exhibited considerably
shorter relaxation times, quantified as T2 and T2

* values, reducing the signal intensity and generating
higher MRI contrast compared to unlabeled EVs and gel only. Our study demonstrated that USPIO
labeling was a feasible approach for in vitro tracking of brain organoid-derived EVs, which paves the
way for further in vivo examination.

Keywords: human pluripotent stem cells; forebrain organoids; extracellular vesicles; nanoscale iron
oxides; magnetic resonance imaging

1. Introduction

Human induced pluripotent stem cells (iPSCs) have been a desirable replacement for
embryonic stem cells since Yamanaka’s breakthrough [1]. iPSCs have great potential in
differentiating to cells and organoids such as cardiomyocytes [2,3], kidney organoids [4,5],
brain organoids [6–8], neural progenitor/stem cells (NP/SCs) [9–11], etc. This differen-
tial potential is attractive in disease therapy; however, the tumorigenicity if iPSCs and
their derivatives remains a serious concern for clinical applications [9,12–14]. Recently,
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researchers discovered that the therapeutic efficiency of conditioned medium from mes-
enchymal stem cells (MSCs) was comparable to that of MSC administration, and the
primary reason for its therapeutic efficiency can be linked to the extracellular vesicles
(EVs) [15–17], making EVs a promising substitute for cell therapy.

Upadhya et al. [10] derived NSCs from iPSCs, isolated and characterized NSC-EVs
through small RNA sequencing, proteomics, in vitro macrophage assay, as well as in vivo
mouse and rat models, proving the brain repair ability of those EVs. However, the NSCs
were 2D cell cultures, and it is believed that 2D systems might be less effective than 3D
systems, considering the 3D cultures have cellular organization and extracellular matrix
that resemble physiological conditions [18,19]. For example, Yuan et al. [20] revealed
that the conditioned medium from mesenchymal stem cells (MSCs) in a 3D dynamic
culture outperformed the 2D monolayer culture in terms of reducing CD8+ cytotoxic T cell
proliferation, rejuvenating senescent cells, and decreasing reactive oxygen species.

Due to their significant roles not only as therapeutic agents [21–23] but also as intracel-
lular mediators [24], and disease biomarkers [25–28], EVs have become a scientific hotspot.
However, the clinical applications of EVs are limited due to their poor targeting capabil-
ities and low therapeutic efficacy after intravenous administration. Superparamagnetic
iron oxide (SPIO) nanoparticles are biocompatible and have been shown to improve the
targeting ability of EVs when an external magnet field is applied [29,30]. SPIOs transport
EVs to specific body locations under magnetic fields, and they can be readily controlled by
varying the intensity or magnetic field orientation [31]. Based on their diameters, SPIOs
are classified as standard SPIO (>50 nm) or ultra-small SPIO (USPIO, <50 nm). In the
two classifications, USPIO is more suitable for labeling nanoscale EVs due to their size.
When tracking EVs in vivo, SPIOs combined with magnetic resonance imaging (MRI) is a
promising method [32].

In the engineering of EV cargo, it is critical not to disrupt the integrity of the EV
membranes during the labeling in order to preserve their physiological functions [33,34].
SPIOs have the ability to label cells, then the labeled EVs are produced and secreted by
the cells [35]. However, cells without phagocytic ability have limited capacity in taking up
SPIOs, especially at low concentration [32,35]. Alternatively, SPIOs could be loaded into
EVs by incubation directly [36], which minimizes disturbance to the membranes of EVs.
Vesicle labeling via electroporation is another approach for labeling EVs with SPIOs [37,38].
One more labeling method is sonication, which is popular in loading active pharmaceutical
ingredients for drug delivery systems [39,40]. These latter two strategies are effective, but
they raise concerns regarding the integrity of EVs due to the strong force introduced to
create pores on the membranes [35].

In our previous work [35], NPC organoids were incubated with SPIOs, and EVs were
isolated from the conditioned medium. Though SPIOs were detectable in the organoids,
MRI images did not support the presence of SPIOs in the secreted EVs. Using 1–2 magnitude
higher SPIO concentrations, Dabrowska et al. [41] found their existence in the EVs through
TEM and MRI; however, the cytotoxicity of this concentration of SPIOs was not assessed. In
a drug delivery study [42], researchers loaded doxorubicin into macrophage-EVs through
cell incubation, EV incubation, or EV sonication, and they showed that at pH 8.0, both the
EV incubation and sonication groups loaded 2-fold doxorubicin than the cell incubation
group. Besides, the EV sonication method showed higher gemcitabine loading capacity
than the EV incubation method [43]. Therefore, it is hypothesized that sonication of EVs
with USPIOs could achieve a desired USPIO loading efficiency.

In this paper, iNPCo was derived from iPSCs, and characterized for several key
markers of the organoids. Then, the isolated EVs from the iNPCo condition media were
loaded with USPIOs in EVs by sonication for 30 s in total, followed by incubation at 37 ◦C for
one hour. EVs with or without USPIOs were characterized in terms of size, concentration,
morphology, and miRNA expression. Besides, in vitro MRI analysis was performed for
the USPIO-labeled EVs verses unlabeled EVs, showing the T2 and T2

* contrast. This work
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could serve as a foundation for future injection of forebrain organoid-EVs in animal models
such as ischemic stroke, which can be tracked by MRI.

2. Materials and Methods
2.1. Cortical Organoid Differentiation from hiPSCs

Undifferentiated human iPSK3 cells were seeded into Ultra-Low Attachment (ULA)
24-well plates (Corning Inc., Corning, NY, USA) at 3 × 105 cells/well in differentiation
medium composed of DMEM/F-12 plus 2% B27 serum-free supplement (Life Technologies,
Carlsbad, CA, USA). iPSK3 cells were seeded in the presence of Y27632 (10 µM). After 24 h,
Y27632 was removed and the formed embryoid bodies (EB) were treated with dual SMAD
signaling inhibitors of 10 µM SB431542 (Sigma-Aldrich, St. Louis, MO, USA) and 100 nM
LDN193189 (Sigma) over 7 days. Then, on day 8, the spheroids were treated with fibroblast
growth factor (FGF)-2 (10 ng/mL, Life Technologies, Carlsbad, CA, USA) and cyclopamine
(an Shh inhibitor, 1 µM, Sigma, St. Louis, MO, USA) for cortical differentiation for up to
21 days [44–46]. The cells were re-plated onto growth factor reduced Matrigel-coated
surfaces for another 8 days.

2.2. Flow Cytometry

The re-plated spheroids were trypsinized. For marker detection, trypsinized cells
were fixed with 4% paraformaldehyde (PFA) and permeabilized with 100% cold methanol,
blocked with 5% FBS in PBS, then stained with the corresponding marker antibody (Supple-
mentary Table S1) overnight. The secondary Alexa Fluor 488 or 586 antibody was later used,
incubated for one hour, then removed and rinsed with PBS twice, and then taken for flow
cytometry measurement. The cells were acquired with a BD FACSCanto II flow cytometer
(Becton Dickinson, Franklin Lakes, NJ, USA) and analyzed against isotype control using
FlowJo software.

2.3. EV Collection and Isolation

The conditioned media were collected from the cortical spheroid cultures. The culture
media contained serum-free B27 supplement, which had minimal EV interference from the
media. To isolate cortical spheroid-derived EVs, a differential ultracentrifugation method
was performed. Briefly, the conditioned media were centrifuged at 500× g for 5 min at 4 ◦C.
The supernatants were collected and centrifuged again at 2000 g for 10 min. The collected
supernatants were then centrifuged at 10,000× g for 30 min. Next, EVs were isolated using
an inexpensive polyethylene glycol (PEG)-based method as reported previously [47,48].
The collected supernatants were mixed with PEG solution (24% wt/vol in 1.5 M NaCl) at
a 2:1 volume and incubated at 4 ◦C overnight. The mixtures were then centrifuged at a
series of speeds (1000× g for 10 min, 2000× g for 10 min, and then 3000× g for 40 min).
The purpose of these steps is to collect as much EV pellet as possible. The crude EV pellets
were resuspended in PBS and then ultra-centrifuged at 100,000× g for 70 min. Purified EV
pellets were resuspended in 100 µL PBS.

2.4. Nanoparticle Tracking Analysis (NTA)

Nanoparticle tracking analysis (NTA) was performed on the isolated EV samples in
triplicate to determine size distribution and particle concentration. NTA was performed
on a Nanosight LM10-HS instrument (Malvern Instruments, Malvern, UK) configured
with a blue (488 nm) laser and sCMOS camera [47]. The EV samples were diluted to
1000 fold in PBS. For each replicate, three videos of 60 s were acquired with the camera
shutter speed fixed at 30.00 ms. To ensure accurate and consistent detection of small
particles, the camera level was set to 13, and the detection threshold was maintained at
three. The laser chamber was cleaned thoroughly with particle-free water between each
sample reading. The collected videos were analyzed using NTA3.4 software to obtain the
mode and mean size distribution, as well as the concentration of particles per mL of solution.
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Compared to the mean size, the mode size is usually a more accurate representation because
the vesicle aggregates may affect the mean size.

2.5. Preparation of Ultra-Small SPIOs

Two types of SPIO were used in this study. 1. SPIO-1 (8–10 nm and 15–20 nm). The
iron oxide nanopowder (Fe3O4, high purity, 99.5+%) with Stock #: US3230, CAS#:1317-61-9
was purchased from US Research Nanomaterials, Inc. (Houston, TX, USA) Iron oxide
nanopowder was mixed with sterile water at a concentration varying from 1 µM to 10 µM.
The solution was water bath sonicated to distribute nanopowder into the water. 2. SPIO-2
(5 nm) The SPIO was prepared in water by Sigma Aldrich (725331-5ML) (St. Louis, MO,
USA) and diluted with EV solution to a final volume of 500 µL mixture with an end
concentration of 0.1 to 0.5 mg/mL.

2.6. EV Labeling with Nanoscale Iron Oxides by Sonication

EVs were isolated from iNPCo media and analyzed by NTA for particle concentration.
Roughly 1 × 1010 EVs were suspended in 100 µL of PBS for sonication. The SPIOs were
sonicated with EVs at a final concentration of 0.5 mg/mL of SPIO in EV solution at a
volume of 500 µL. Sonication was conducted for 5 cycles of 2 s on followed by 2 s off and
completed 3 times for each cycle, with 2 min of rest in between each cycle (30 s total). The
dial was 2 Watts. After sonication, EVs + SPIO were incubated for 1 h at 37 ◦C. The EV +
SPIO solution was then further purified by PEG spinning to remove EVs with SPIO from
free SPIO in the solution. The EVs were then collected with particle free PBS at 100,000× g
for 30 min and resuspended in 100 µL of PBS for further analysis.

2.7. In Vitro MRI Sample Preparation

EVs labeled with SPIO or without any SPIO suspended in 100 µL of PBS were layered
in 1% agarose gel, each with a particle concentration of 1 × 1010/mL. Initially, 2% agarose
gel (VWR, Suwannee, GA, USA) was heated to 42 ◦C in a 50 mL centrifuge tube to liquefy
the gel and subsequently mixed with PBS or EV + PBS to form a 1% gel. The agarose gel
was layered in a 10 mm glass NMR tube in the following specific sequence: the 200 µL
1% blank gel layer on the bottom of the tube was followed by a 100 µL control layer of
non-labeled EVs. A 150 µL 1% blank gel was then layered between the control and the
100 µL SPIO labeled EVs layer. Any extra layers of EVs + SPIO were separated by 1% blank
gel layers and a 200 µL 2% gel cap was applied on top. The 10 mm tube was kept on ice
during this process to allow each layer to solidify before the next layer was applied.

2.8. In Vitro MRI Analysis

All MRI experiments were performed at the 21.1-T, 900-MHz vertical MRI scanner at
the National High Magnetic Field in Tallahassee, FL, USA [49]. The magnet was equipped
with a Bruker Avance III console and scans were recorded using Paravision 5.1 (Bruker, Inc.,
Billerica, MA, USA). An NMR tube containing the agarose-EV samples was loaded into a
10 mm birdcage 1H coil tuned to 900 MHz. Following that, several scans were acquired to
calculate T2, T2

*, and T1 values, all of which were acquired at (50 µm)2 in-plane resolution
and 0.5 mm slice thickness. In brief, T2 relaxation was assessed using a multi-slice, multi-
echo (MSME) pulse sequence with an effective TR = 5 s and TE in 14 ms increments ranging
from 14 to 112 ms. Four averages were acquired for a total scan time of 1.1 h. T2

* relaxation
was measured using a multi-echo GRE sequence with TR = 5 s and TE = 3.5 to 62 ms in
6.5 ms increments; 4 averages were acquired in a 50 min total scan time. T1 relaxation was
measured using an MSME with variable repetition time (TR = 450, 908, 1450, 2111, 2960,
4150, 6150 and 15,000 ms) and an effective TE = 14 ms with two averages for a total scan
time of 3.7 h. The acquisition temperature was maintained at 28 ◦C.

Average signal intensities of a region of interest delineated for each sample layer were
measured in ParaVision and the resulting intensity vs. time profiles were plotted in Prism
GraphPad 9.2.0 (GraphPad Software, San Diego, CA, USA). For T2 and T2

*, an exponential
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decay function was fitted to the data, and values were calculated from their respective R2
and R2

* according to:

T2 =
1

R2
or T∗

2 =
1

R∗
2

T1 values were calculated in a similar manner from the R1 which was extracted using
an exponential growth function fit to the saturation recovery data.

2.9. microRNA RT-PCR Analysis

Total microRNA (miRNA) was isolated from different EV samples using the miRNeasy
Micro Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. Re-
verse transcription was carried out using the commercial qScript miR cDNA synthesis kit
(Quantabio, Beverly, MA, USA). The PerfeCTa® Universal PCR Primer (QuantaBio, Beverly,
MA, USA) has been designed and validated to work specifically with the PerfeCTa SYBR
Green SuperMix using miRNA cDNA produced. The levels of miRs were determined
with SNORD44 as a housekeeping gene for normalization of miR expression levels (Primer
sequences are shown in Supplementary Table S2). Real-time RT-PCR reactions were per-
formed on an Applied Biosystems Quantstudio 7 flex (Applied Biosystems, Foster City, CA,
USA), using SYBR1 Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA).
The amplification reactions were performed as follows: 10 min at 95 ◦C, and 40 cycles of
95 ◦C for 15 s and 60 ◦C for 30 s, and 70 ◦C for 30 s. Fold variation in gene expression was
quantified by means of the comparative Ct method: 2−(∆Ct treatment−∆Ct control), which is based
on the comparison of expression of the target gene (normalized to the endogenous control)
between the compared samples.

2.10. Transmission Electron Microscopy (TEM)

Electron microscopy imaging was used to confirm the morphology and size of EVs.
Briefly, EV isolates were resuspended in 30 µL of filtered PBS. For each sample preparation,
intact EVs (15 µL) were dropped onto Parafilm. A carbon coated 400 Hex Mesh Copper
grid (Electron Microscopy Sciences, EMS) was positioned using forceps with the coating
side down on top of each drop for 1 h. Grids were rinsed three times with 30 µL filtered PBS
before being fixed in 2% PFA for 10 min (EMS, EM Grade). The grids were then transferred
on top of a 20 µL drop of 2.5% glutaraldehyde (EMS, EM Grade) and incubated for 10 min.
Samples were stained for 10 min with 2% uranyl acetate (EMS grade). Then, the samples
were embedded for 10 min with a mixture of 0.13% methyl cellulose and 0.4% uranyl
acetate. The coated side of the grids were left to dry before imaging on the Transmission
Electron Microscope HT7800 (Hitachi, Janan). Image analysis was performed in ImageJ to
determine the average sizes of EVs.

2.11. Statistical Analysis

The representative experiments were presented, and the results were expressed as
[mean ± standard deviation]. To assess the statistical significance, one-way ANOVA or
student’s t-test followed by Fisher’s LSD post hoc tests were performed. A p-value < 0.05
was considered statistically significant.

3. Results
3.1. In Vitro Characterizations of Forebrain Organoid−EVs

The differentiation timeline of the forebrain organoids (iNPCo) was described in
Figure 1A. The cells were cultured in low−attachment wells, facilitated with Y27632 in
the first 24 h to promote aggregates formation. From day 0 to day 21, the cell aggregates
grew into embryoid bodies and further developed into organoids (Figure 1B). Organoids
harvested on day 21 were dissociated into single cells for markers staining and flow
cytometry (Figure 1C). FOXG1 was moderately expressed (49.4%). Nkx2.1 expression level
was high (65.9%). α−catenin had even higher expression (87.7%). β−tubulin III was highly
expressed (80.8% and 91.4%) (Figure 1D).
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Figure 1. Characterization of cortical organoids derived from hiPSCs for EV collection. (A) Schematic
illustration of cortical organoid differentiation from hiPSCs (B) Morphology of cortical organoids
derived from hiPSCs; Scale bar: 200 µm. (C) Flow cytometry analysis of cells from cortical organoids
for FOXG1, Nkx2.1, and α−catenin. Red line: negative control; Blue line: marker of interest.
(D) Flow cytometry analysis of β-tubulin III. Blue: negative control.

The organoids were replated for 8 days, and the conditioned media were collected
every two days. The process of EV isolation was shown in Figure 2A. The EV size distribu-
tion and particle counts were determined by NTA. Before the sonication, the mean size of
EVs was 157.0 nm, and the mode size was 117.0 nm. After iron oxide labeling by sonication
(the dial was 2 Watts), the EV mean size barely changed to 161.7 nm, while the mode size
decreased slightly to 101.8 nm (Figure 2B,C, Supplementary Table S3). After sonication, the
particle concentration per mL of conditioned media significantly decreased by about 60%
(Figure 2C).
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Figure 2. NTA for forebrain organoid-EV before and after sonication. (A) Schematic illustration of EV
isolation by ExtraPEG method. The illustration was plot by Katelyn Sears. (B) Representative NTA
EV size distribution, Before sonication; and after sonication. (C) EV size and concentration before
and after sonication. * indicates p < 0.05.

TEM imaging showed the double−layer cup−shape morphology of the EVs
(Figure 3A). The darkness presented inside of the EVs indicated the successful involvement
of USPIOs by the EVs. RNA was isolated from EVs before and after sonication. Then, the
miRNA was reverse transcribed and amplified. The total RNA from unlabeled EVs was
slightly lower than the labeled EVs (93.8 ng/µL vs. 126.8 ng/µL). The expression levels of
4 out of 6 miRNAs were significantly decreased in the after−sonication group, possibly
due to the step loss of removing the extra USPIO through ultracentrifugation (Figure 3B).
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Figure 3. miRNA cargo for Organoid−EV before and after sonication and labeling. (A) Images of
transmission electron microscopy (TEM) for EV morphology; Scale bar: 90 nm. (B) miRNA expression
in the EVs before and after sonication determined by RT-PCR (n = 3), * indicates p < 0.05.

3.2. In Vitro MRI of Labeled Forebrain Organoid−EVs

The feasibility of utilizing MRI to visualize and compare SPIO−labeled EVs was
assessed. Agarose gel phantoms are commonly used to induce longitudinal and transversal
relaxation rates comparable to that of in vivo tissues [50,51]. In vitro MRI analysis of labeled
EVs embedded in 1% agarose gel was performed and compared between the different
SPIO sizes and preparation methods. Figure 4 demonstrated minimal contrast within the
layers of gel containing 15–20 nm SPIO−labeled EVs. The T2 and T2

* values were extracted
from the average signal intensity and time profiles for each sample by fitting the respective
data to a first exponential decay. As seen in Figure 4, only nominal changes in T2 and T2

*

relaxation were established between sample layers, likely as a result of partial volume
effects. This preparation method was repeated with similar outcomes using 8–10 nm of
SPIO, as can be seen in Supplemental Figure S1.

To minimize partial volume effects, the gel volume of EV layers was reduced, in-
creasing the EV concentration within each layer. As demonstrated in Figure 5 (15–20 nm
SPIO−labeled EVs), this resulted in slightly increased contrast, albeit still in a punctu-
ated, heterogeneous manner, suggesting EV aggregation. When quantified, labeled EVs
shortened T2 approximately 26.3% and T2

* 43.5% compared to unlabeled EV. Interestingly,
unlabeled EV lengthened T2 and T2

* values by 15.5 and 30.6%, respectively, compared to
gel only. Similarly, T1 saturation was also assessed, and values were extracted from the
average signal vs. recovery time profile by fitting an exponential rise to maximum. As
expected, T1 effects remained minimal with labeled EVs decreasing T1 only 6.4%.
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Figure 5. In vitro MRI for labeled brain organoid−EVs (15–20 nm) with a revised gel preparation
method. (A) MR images demonstrated punctuated contrast in the labeled EVs layer compared to un-
labeled EV. (B) T2 (left) and T2

* (middle) decay rates as well as T1 saturation (right) are demonstrated
for labeled and unlabeled EV compared to gel only. (C) T2, T2

*, and T1 values were extracted from
their respective plots.

A more homogenous layer of SPIO−generated contrast within the labeled EV layer was
prepared by exposure to the SPIO of 5 nm at 0.5 mg/mL followed by ExtraPEG removal of free
SPIO (Figure 6). Similar to previously, longitudinal and transverse relaxation were shortened
within the SPIO-labeled EV layer. While the unlabeled EV layers exhibited comparable T2,
T2

* and T1 values, as expected, this preparation resulted in 63.6, 68.1 and 19.5% reductions,
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respectively, for the labeled EVs. It is important to note that the region of interest used in the
analysis avoided the central region of inhomogeneity caused by gel artifact.
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T1 values for labeled EVs compared to their unlabeled counterparts.

4. Discussion

This study derived iNPCo from iPSCs using a dual SMAD inhibition method [52]. The
organoids showed forebrain neural identity due to the addition of FGF2 and sonic hedgehog
(SHH) inhibitor cyclopamine [53]. β−tubulin III, a neuronal marker, was highly expressed
in our iNPCo. α−catenin is a molecular link between β−catenin and the actin cytoskeleton,
which is a crucial protein at cell junctions. It is also abundant in neural cells [54], and
our iNPCo expressed α−catenin at a high level. During cerebral development, SHH
promotes the hindbrain and posterior forebrain identity [53,55]. However, cyclopamine
leads to a near complete inhibition of SHH signaling activity [53], and contributes to
anterior characteristics, such as the expression of FOXG1 and Nkx2.1 [56,57], as examined
in our study. However, applying 3D brain organoids in vitro culture systems to assess the
therapeutic potential of the secreted EVs has not been well investigated [18,19].

Having derived iNPCo, the secreted EVs were isolated from the conditioned medium
of the replated culture using the inexpensive ExtraPEG method [47]. Following that, the
EVs were labeled with different sizes of iron oxides, including 15–20 nm, 8–10 nm, and
5 nm USPIO by sonication. Though the labeled EVs showed a smaller mode size, the size
distribution did not change significantly, which demonstrates that the sonication method
does not influence the particle size at a significant level. This result is similar to that of
Nizamudeen et al.’s study [58], though they did not carry out EV labeling, but proved that
low-power sonication resulted in an insignificant reduction in EV sizes when measured
with NTA. However, it was significant when using other detection techniques such as
dynamic light scattering and stochastic optical reconstruction microscopy. In our study, the
EV concentration decreased by half, which may be due to the extra processing step following
sonication. This step loss could be an issue that needs to be addressed in future studies.

The EV morphology and the internal USPIO were examined by TEM. The particles
were found to be still double layered, with black dots inside, revealing the successful in-
volvement of USPIO in EVs. The specific miRNA cargo after USPIO labeling was examined
by RT-PCR. Four out of six tested miRNAs had decreased abundance after the labeling.
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Further optimizations of the labeling process to minimize the cargo loss during USPIO
labeling are necessary. In many studies, USPIO were loaded into EVs through incubation
with cells [35,59–61], which is less efficient due to the increasing number of cells thus would
dilute the USPIO. Another method is electroporation [38,62], which causes a temporary
breakage of the membrane, but is more effective than the incubation method. In our study,
the sonication approach was employed, and was believed to have a high efficiency in
incorporating USPIO due to the reorganization of the lipid membranes [63], but few studies
reported USPIO labeling through sonication. The more popular applications for sonication
include disease treatment and drug delivery, such as delivering RNAs [64], proteins [65],
and chemicals [42]. However, the effects of labeling USPIO by sonication on EV cargos
have not been extensively studied. Most USPIO studies focused on EV tracking through
MRI without discussing the EV components; and most sonication studies (using EV as a
carrier) focused on the molecules being delivered and the disease being treated while the
EV native cargo was ignored. In our study, the EVs were labeled with USPIO by sonication,
followed by one hour incubation at 37 ◦C for recovery [63]. The one−hour incubation
restored the membrane microviscosity. According to the TEM images, labeled EVs showed
elongated shape instead of the round shape which they usually be. This supported the
idea of reorganization of the lipid membranes upon sonication. Besides, the TEM images
demonstrated the integrity of the EVs, possibly due to flexibility of the lipid membranes.
There are chances that the membrane integrity was damaged. The extent of the damage was
unknown in this study, but the harm was minimized through incubation for recovery and
stabilization. Though not quantitatively, it was reported that the exosome markers were
maintained [63]. However, the loss of some miRNAs was observed in our study, leading to
the application being selective. For example, miR−19a promotes cell proliferation [66] and
angiogenesis [67], so when the intended application is to monitor USPIO loaded EVs for
ischemic disease treatment, this labeling method might reduce the efficacy. When the aim
is to recover neurite outgrowth via miR−133b [68], this sonication labeling approach could
potentially fulfill the requirement.

Visualization and tracking of EVs would be beneficial to understand their bio distribu-
tion potential and MRI is particularly suitable to this goal as it has already been employed
successfully to track stem cells labeled with larger iron oxide particles in various disease
models including ischemic stroke [69,70]. USPIOs have a predominant T2 effect, ultimately
reducing signal and giving rise to the dark regions seen in the MR images provided in
Figures 4–6 and Supplementary Figure S1 [71]. Most commonly, T2

*−weighted MRI is
used to optimally visualize this contrast. Here, the effects of iron oxide size and EV prepa-
ration were investigated using MRI of the USPIO−labeled organoid−EVs embedded in
tissue−mimicking gels. In the first preparation method, which consisted of 15–20 nm
USPIO labeled EVs, partial volume effects contributed to low contrast within the labeled
EV gel layers. This was corrected for in subsequent samples by decreasing the volume of
gel within the EV layers. As a result, a more uniform layer of labeled EVs with higher MR
contrast was generated, albeit in a punctate distribution suggesting potential aggregation of
the EVs. In order to quantify the contrast generated by the USPIO, T2 and T2

* values were
extracted from their respective exponential signal decays. Although more easily visualized
compared to the previous preparation method, T2 and T2

* effects remained limited. Further
optimization was pursued by reducing the USPIO size to 5 nm and incorporating the previ-
ously defined ExtraPEG method to remove free USPIO prior to embedding in the gel. This
shortened the T2 and T2

* values resulting in significantly increased MRI contrast. Although
the varying concentrations of labeled EVs require discretion in comparing between the first
and second agarose gel preparations, the enhanced MRI contrast observed with the smaller
USPIO size demonstrates the feasibility of labeling forebrain organoid−EVs using USPIO
for non−invasive MRI toward potential animal study, such as ischemic stroke rat models.
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5. Conclusions

In this study, we generated forebrain organoid iNPCo from iPSC, and isolated EVs
from the conditioned medium of the culture. The EVs were labeled with USPIO by the
sonication method. Their size distribution did not change significantly, but their recovery
and some of the miRNA cargo decreased after sonication. Though feasible, this labeling
approach should be modified to reduce the loss of EV particles and EV cargo. MRI
confirmed contrast visualization only for the USPIO labeled EVs embedded in agarose gel
phantoms. USPIO labeled EVs exhibited shorter T2 and T2

* values compared to unlabeled
EVs and gel only. Our study demonstrated that USPIO labeling was a practical strategy for
in vitro tracking of EVs, which paves the way for further in vivo examination.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10123060/s1, Figure S1: In vitro MRI for labeled brain
organoid-EVs (8-10 nm); Table S1: A list of antibodies; Table S2: Primer sequences for microRNAs by
RT-PCR analysis; Table S3: Nanoparticle tracking analysis (NTA) for the EVs used for in vitro MRI.
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