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Abstract
We use terahertz time-domain spectroscopy to study gallium arsenide two-dimensional electron
gas samples in external magnetic field. We measure cyclotron decay as a function of
temperature from 0.4 to 10K and a quantum confinement dependence of the cyclotron decay
time below T0 = 1.2K. In the wider quantum well, we observe a dramatic enhancement in the
decay time due to the reduction in dephasing and the concomitant enhancement of superradiant
decay in these systems. We show that the dephasing time in 2DEG’s depends on both the
scattering rate and also on the distribution of scattering angles.

Keywords: quantum well, cyclotron resonance spectroscopy, many-body effects,
two-dimensional electron gas, dicke superradiant emission

(Some figures may appear in colour only in the online journal)

1. Introduction

Collective excitations dominate both the electronic and optical
properties in many condensed matter systems and have been
studied extensively in both bulk and nanoscale geometries [1–
6]. Excitons [2, 7], trions [8], biexcitons [3], and other higher
order quasiparticles [5] are expected to be significant in nano-
scale systems (e.g. quantum wells, quantum dots) and two-
dimensionalmaterials like transitionmetal dichalcogenides [8,
9], silcene [10], germanene [11], stanene [12], and phosphorus

∗
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[13, 14]. They have been shown to dominate the electronic
properties at room temperature in the monolayer transition
metal dichalcogenides, where the reduced electronic screening
in a monolayer results in larger quasiparticle binding energies
[4, 6].

Superradiant emission is a cooperative emission from an
ensemble of noninteracting dipoles [15]. Ensemble coher-
ence is established by an external electromagnetic field
with a wavelength that is much larger than the distance
between dipoles. The key requirement for the observation
of superradiant emission is that this coherence be main-
tained for longer than the emission lifetime. This phenom-
ena has been observed in many different physical situations at

1361-648X/23/305302+9$33.00 Printed in the UK 1 © 2023 IOP Publishing Ltd

https://doi.org/10.1088/1361-648X/acce8c
https://orcid.org/0000-0003-4228-6046
https://orcid.org/0000-0001-6365-7155
https://orcid.org/0000-0003-0762-0002
https://orcid.org/0000-0003-2058-9062
mailto:David_Hilton@baylor.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/acce8c&domain=pdf&date_stamp=2023-4-28


J. Phys.: Condens. Matter 35 (2023) 305302 B Barman et al

vastly different scales (i.e. from the nanoscale to astrophysical
scale). In condensed matter systems, this includes electron–
hole plasmas in semiconductors [16], excitons [17], and bulk
semiconductors [18]. Superradiant emission has also been
observed in optically-pumped gasses [19] and in radio fre-
quency astrophysics [20, 21]. Nanoscale systems like quantum
dots [22] and two-dimensional quantum wells [23, 24] also
exhibit superradiant emission, where the degree of quantum
confinement is an additional method for controlling this col-
lective emission.

In this manuscript, we study superradiant emission in
Landau-quantized two-dimensional electron gas (2DEG)
samples to determine the role of quantum confinement on
light emission. We use terahertz time-domain magnetospec-
troscopy to measure the cyclotron decay time, τCR, in a pair
of 2DEG quantum well samples as a function of temperat-
ure and quantum well width. Our experimental data shows
close agreement in measured values of τCR in both samples
above T0 = 1.2K. Below this temperature, however, the wide
quantumwell shows a∼3.0× increase in the decay time while
the narrow quantum well decreases by 1.5×. A theoretical
description of our data shows that our result is consistent with
the enhancement of the density of states near EF in the strongly
confined well. In addition, in the wider quantum well, the nar-
rowing of the angular dependence of scattering distribution
dominates dephasing and is responsible for an increase in the
dephasing time at the lowest temperatures in our experiments.

2. Experiments

2.1. Terahertz time-domain spectroscopy (TTDS)

We use TTDS to measure cyclotron resonance in these two
samples [25, 26]. These samples were placed in a 10 T super-
conducting optical magnet cryostat (Oxford Instruments Spec-
troMagwith a 3He insert) having a base temperature of 0.4K in
the Faraday geometry (i.e. k⃗ ∥ B⃗). Coherent single cycle THz
pulses were generated and detected by focusing the 800 nm
beam of a Ti:Sapphire oscillator, operating at 80MHz andwith
approximately 0.120ps pulse duration onto a pair of biased
photoconductive antennae. The resulting THz radiation has a
bandwidth range from 0.2 to 1.9 THz. We used off-axis para-
bolic mirrors to direct the THz beam and collect the transmit-
ted light through the Spectrosil B windows of the magnet. An
LT-GaAs photoconductive receiver is used as our detector to
recover the full amplitude and phase of the transmitted tera-
hertz electric field as a function of B⃗ and temperature in all
samples [27].

Figure 1(b) shows a diagram of our terahertz time-domain
spectrometer, which generates and detects linearly-polarized
sub-picosecond terahertz pulses, E⃗i

(
τ
)
= x̂E0

(
τ
)
, with a pho-

toconductive emitter and detector [28]. We use an Oxford
Instruments SpectroMag split-coil magnet that has a base tem-
perature of T= 0.4K to generate an external magnetic field,
B⃗. These experiments are performed in the Faraday geometry
(B⃗ ∥ k⃗), where B⃗= B0ẑ is the magnetic field, k⃗=+κ0ẑ is the
THz pulse propagation vector, and the 2DEG samples are
defined to be in the x̂-ŷ plane. Our apparatus has a bandwidth

Figure 1. The terahertz time-domain spectrometer geometry used
in these experiments is shown here. An 80.MHz repetition
rate mode-locked titanium:sapphire laser photoexcites a
photoconductive emitter [28], which generates a linearly polarized
(x̂) near-single cycle terahertz pulse with a bandwidth from 0.2 to
1.9 THz. The terahertz pulse, E

(
τ
)
, is transmitted through the

superconducting magnet using a pair of off-axis parabolic mirrors
(OAP) in Faraday geometry (B⃗ ∥ k⃗). The copolarized (x̂) component
of the transmitted field is detected by a time-gated photoconductive
receiver to resolve the transmitted electric field.

that extends from 0.2THz to 1.9THz and is operated in a dry
nitrogen atmosphere to minimize the effects of water vapor
absorption on our experimental data [29].

2.2. Samples studied

The two samples studied here are modulation doped GaAs
single quantum wells with AlGaAs barriers. Both samples
are grown via Molecular Beam Epitaxy [30]: Sample
VA0607 (µDC = 1.5× 105 cm2V−1 s−1 and ns = 1.7± 0.1×
1011 cm−2) has a well width of 12 nm and that of Sample
EA0745 (µDC = 3.6× 106 cm2V−1 s−1 and ns = 1.5± 0.1×
1011 cm−2) is 30 nm [24]. The carrier concentration in both
samples result from δ-doping separated from the quantum
well by Al0.24 Ga 0.76 As barrier layers with thicknesses of
d1 = 75 nm and d2 = 95 nm in both samples. This δ-
doping is a geometry that is known to prevent a sharp
decrease in the carrier concentration at low temperatures (i.e.
‘freeze out’) [31], so these are expected to remain conduct-
ing throughout the entire temperature range of our experiments
(0.4K⩽ T⩽ 10K).

Doped quantum wells as a prototype 2DEG model system
have been previously studied using many techniques, includ-
ing cyclotron resonance. Figure 2 plots the carrier concentra-
tion (ns) and mobility (µDC) of GaAs quantum well samples
that have been previously studied using cyclotron resonance
[23–26, 32–42] Prior investigation of sample EA0745 was
described in [23], with the difference for our manuscript being
the comparison between this sample and a narrower QW
(VA0607). Molecular beam epitaxy produces GaAs 2DEG’s
with mobilities that range from µDC = 4× 103 cm2V−1 s−1

[30, 37] to µDC = 4.4× 107 cm2V−1 s−1 [43] and has demon-
strated mobilities that approach the intrinsic limits of gal-
lium arsenide [44]. The samples previously studied are plotted
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Figure 2. (b) The cyclotron resonance has been previously
performed on GaAs 2DEG’s, which are identified using the carrier
concentration, ns, and the mobility, µDC. The dotted line plots the
curve where τm = τSR in these samples and represents an
approximate dividing in between the two pathways.

using their values of ns and µDC using× [32],◀ [33], ▲ [34],
♦ [35], ⋆ [36], ■ [37], ▶ [38], ⊕ [23], and □ [23–26].

Figure 2 plots the line where the superradiant decay time,
τSR, is equal to the transport lifetime, τm = µDCm∗e−1 (dotted
line) as an approximate boundary to divide the parameter space
between the two contributions to τCR [23]. Below this line, dis-
sipation returns the sample to its ground state; this includes a
majority of prior experiments [33–37, 39, 40]. Above, super-
radiant emission is the main contribution [24, 25], but many
prior studies did not recognize this collective contribution in
their data (× [32],♦ [35],▶ [38]). The highmobility-high car-
rier concentration region, thus, represents a significant current
gap in our understanding of 2D cyclotron resonance.

2.3. Experimental data and numerical fitting

Figures 3(a) and (b) shows the change to the transmitted THz
waveform through VA0607 (a) and EA0745 (b) in a mag-
netic field of Bz = 0.8T at T= 0.4K. We isolate the mag-
netic field-induced change, ∆E

(
Bz, τ

)
= E

(
Bz, τ

)
−E
(
0, τ
)
,

by subtracting the waveform acquired at 0T [25]. We repeat
this experiment from T= 0.4K to 10K to determine the tem-
perature dependence of the cyclotron frequency, νCR, the
cyclotron decay time, τCR, and the arrival time, τ 0. The satel-
lite pulse at approximately τ = 15ps after the initial terahertz
pulse is generated by the substrate multiple reflection (Fabry–
Perot etalon).

We use the procedure outlined in [45] to determine the
cyclotron decay time from our experimental data shown in
figure 3. Figure 4(a) plots the cyclotron decay times as a func-
tion of temperature in both samples and shows similar decay
dynamics for T0 ≥ 1.2K at

∣∣B⃗∣∣= 0.8T. Below this temperat-
ure, τCR in VA0607 monotonically decreases as the temperat-
ure is lowered by a factor of 1.5× at 0.4K. In EA0745, in con-
trast, over the same temperature range τCR increases by 3.0×.
The increase in quantum confinement reduces the cyclotron
decay time at low temperatures. The focus of our discussion

Figure 3. (a) VA0607 data (b) EA0745 data at Bz =+0.8T are
plotted here at T= 0.4K. A time-delayed echo is present at
τ ≈ 15ps due to a Fabry–Perot etalon in the GaAs substrate, which
we account for in our modeling of these data [45].

will be to elucidate the observed temperature-dependence in
τCR in these two different samples.

2.4. Isolation of dephasing and superradiant emission
lifetimes

The cyclotron decay rate (τ−1
CR ) is the oscillation decay time

in our terahertz time-domain experiments. This is a combin-
ation of the superradiant emission rate (τ−1

SR ) and the dephas-
ing rate (τ 2−1)8 and is schematically depicted in figure 4(b).
Superradiant decay is the transfer of energy from the Landau
spectrum back into the terahertz field, which preserves sys-
tem coherence, and can be only observed when the dephasing
rate (thermodynamic bath) is slower. Experimental investiga-
tion of superradiant decay, thus, requires the use of a sample
with dephasing times of several picoseconds (ps) or longer
(i.e. µDC ≥ 104 cm2V−1 s−1) for typical carrier concentrations
in 2DEG’s (i.e. ns = 1010 to 1012 cm−2). This restriction cur-
rently limits investigations of superradiant decay to the tradi-
tional semiconductor 2D systems (e.g. GaAs and Si) due to the
limited availability of large samples of highmobility transition
metal dichalcogenides9.

Superradiant emission preserves system (i.e. light and mat-
ter) coherence. We isolate this contribution to τCR first and the

8 With our experimental configuration, it is not possible to distinguish τ 2

(homogeneous) and τ∗2 (inhomogeneous).
9 See, for example, [9], which recently demonstrated field effect transistors
from wafer scale MoS2 with a mobility of only µDC = 82cm2V−1 s−1.
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Figure 4. (a) Superradiant emission couples the Landau spectrum
back into the terahertz field (τSR) while dissipation (τ 2) couples to a
thermodynamic bath. (b) The cyclotron decay time, τCR, for each
sample obtained using the fitting procedure described in [45].
(c) Calculating τSR, we determine the temperature-dependent
dephasing time, τ 2, in both samples. The range of values is related
to the uncertainty in ns, which is discussed in the text and included
only for EA0745 in this plot as the fan of curves around EA0745
(□). Because the values for VA0607 are due to dissipative processes
alone, the uncertainty in ns does not significantly contribute to the
value of τ 2.

residual contributionwill be τ2
(
T
)
. This superradiant emission

time, τSR, is given by equation (1).

1
τSR

=
e2

ϵ0c
ns

m∗
(
nGaAs + 1

) . (1)

This depends on the electron charge (e), the speed of
light in vacuum (c), and the free space permittivity (ϵ0),
as well as materials-specific properties: the terahertz-
frequency refractive index (nGaAs), effective mass (m∗),
and the cyclotron sheet carrier concentration (ns). Each
material parameter has been previously shown to vary

in GaAs 2DEG’s under different experimental condi-
tions (e.g. quantum confinement, Bz, and T) [34, 35, 39].
First, we use νCR = eBz

m∗ in sample VA0607 to find m∗ =
0.0696± 0.0014. Sample EA0745 was previously charac-
terized using this experimental technique and also did not
show a temperature-dependent m∗ [26]. Second, we use the
pulse arrival time, τ 0, to determine the temperature-dependent
refractive index, nGaAs. This pulse is detected using a time-
gated electro-optic detection after transmission through the
2DEG sample, so a change in arrival time would be the res-
ult of a change in nGaAs. We observe no variation in τ 0 as
a function of temperature in either sample for all temperat-
ures measured; any changes to nGaAs are below our system
resolution; if we assume a minimum resolvable time step of
50fs in these data, the relative change in refractive index is
∆nGaAs/nGaAs ⩽ 0.07%. Finally, modulation-doped 2DEG’s
rely on spatially separated δ-doped silicon layers near the
undoped well. This results in a fixed carrier concentration, ns,
that is spatially separated from the dopant and that does not
freeze out at low temperatures [31].

Uncertainty in ns limits the accuracy of τSR via (1). This
is the largest source of uncertainty in our determination of
τ2
(
T
)
. If we assume that ∆ns = 0.1× 1011 cm−2 at 0.4K, we

can estimate the resulting uncertainty in τSR to determine if
the observed temperature-dependence is significant. We find
τSR in VA0607 is 12.3± 1.4ps while τSR is 17.3± 1.0ps in
EA0745. The τ2

(
T
)
determined from this and our τCR data

is shown in figure 4(b) for both samples [46]. In EA0745
where τSR is dominant, we plot τ 2 for a range of ns within
our uncertainty, where the curves of constant color correspond
to specified values of ns. We find 80.9ps⩽ τ2

(
T
)
⩽ 179.3ps

in EA0745 and 10.7ps⩽ τ2
(
T
)
⩽ 11.5ps in VA0607 at T=

0.4K. As the carrier concentration is a single parameter in all
of the τSR calculations, the uncertainty in ns results in a sys-
tematic shift in the entire τ2

(
T
)
curve within the uncertainty

range. We find that the trend toward longer dephasing times
in EA0745 when compared to the VA0607 below T0 is clearly
preserved.

3. Theoretical methods

The dephasing time, τ 2, depending on two main contribu-
tions. First, the scattering rate, Γ, that results in the change in
momentum of the electron, which is discussed in section 3.1.
The second key contribution is the phase error accumulated
with each scattering event, which depends on the distribution
of scattering angles, S

(
ϑ
)
and is discussed in section 3.2.

3.1. Derivation of electron–electron scattering time

We determine the electron–electron scattering time, τ ee, start-
ing with the appropriate Boltzmann equation:

eE⃗
∂f

∂k⃗1
=

(
∂f
∂t

)
e−e

+

(
∂f
∂t

)
p,i

(2)

where the first term on the right hand side is the electron–
electron scattering contribution and the second term are those

4
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contributions that result from phonon and impurity scattering.
In our calculation, we focus on the dimensionality-dependence
of the electron–electron scattering rate. The solution to (2) is
given by (3)

f
(
k⃗1
)
= f0

(
k⃗1
)
+ f0

(
k⃗1
)[
1− f0

(
k⃗1
)]
Ψ
(
k⃗1
)
. (3)

Here, f 0 is the non-interacting distribution function given by:

f0
(
k⃗1
)
=

[
exp

(
E
(
k⃗1
)
−EF

kBT

)
+ 1

]−1

(4)

where E
(
k⃗1
)
is the energy at k⃗1, kB is the Boltzmann con-

stant, T is the system temperature, and EF = ℏ2kF
2m∗ is the Fermi

Energy. Ψ
(
k⃗1
)
is determined by the angle, ϑk⃗1 between the

electric field, E⃗, and the electron quasimomentum, k⃗1

Ψ
(
k⃗1
)
=

∞∑
n=1

ψn
(
k⃗1
)
cos
(
ϑk⃗1

)
. (5)

From this term, we determine the linearized electron–electron
scattering operator, Îee

[
Ψ
]
, which is given by:

Îee
[
ψ1 cos

(
ϑk⃗1

)]
=−2

ˆ
dnk2(
2π
)n ˆ dnq(

2π
)n w̄

×
(
k⃗1 + q⃗, k⃗2 − q⃗; k⃗1, k⃗2

)
f0
(
k⃗1
)
f0
(
k⃗2
)

×
[
1− f0

(
k⃗1 + q⃗

)][
1− f0

(
k⃗2 − q⃗

)]
× δ
(
E
(⃗
k1
)
+ E
(
k⃗2
)
−E
(
k⃗1 + q⃗

)
−E
(
k⃗2 − q⃗

)){
ψ1
(
k⃗1
)
cos
(
ϑk⃗1

)
+ψ1

(
k⃗2
)
cos
(
ϑk⃗2

)
−ψ1

(∣∣k⃗1 + q⃗
∣∣)

×cos
(
ϑk⃗1+⃗q

)
−ψ1

(∣∣k⃗2−q⃗
∣∣)cos(ϑk⃗2−q⃗

)}
(6)

where the integrals are either in 2D (n= 2) or 3D (n= 3),
depending on the system dimensionality. The scattering prob-
ability for spin-conserving interactions, w1, and non-spin-
conserving, w2, interactions is given by:

w1

(
k⃗1 + q⃗ ↑, k⃗2 − q⃗ ↑; k⃗1 ↑, k⃗2 ↑

)
=

1
2
2π
ℏ

∣∣∣V(q⃗,E(k⃗1 + q⃗
)
−E

(
k⃗1
))

−V
(
k⃗2 − q⃗+ k⃗1,E

(
k⃗2 − q⃗

)
−E

(
k⃗1
))∣∣∣2

×w2

(
k⃗1 + q⃗ ↑, k⃗2 − q⃗ ↓; k⃗1 ↑, k⃗2 ↓

)
=

1
2
2π
ℏ

∣∣∣V(q⃗,E(k⃗1 + q⃗
)
−E

(
k⃗1
))∣∣∣2 (7)

where q⃗ is the phonon momentum. The screened Coulomb
potential, V

(
q⃗,E
)
, is given by:

V
(
q⃗,E
)
=

1

ϵ
(
q⃗,E
) 2πe2
L2

1
q

(8)

with the relative dielectric function in the RPA approximation
given by (9) [47].

ϵ
(
q⃗,E
)
= 1−U

(
q⃗
)∑

k⃗1

f0
(
k⃗1 − q⃗

)
− f0

(
k⃗1
)

E + E
(
k⃗1 − q⃗

)
−E
(
k⃗1
)
+ iℏδ

(9)

The spin-averaged scattering probability (w̄) is:

w̄
(
k⃗1 + q⃗, k⃗2 − q⃗; k⃗1, k⃗2

)
=

2π
ℏ

{∣∣∣V(q⃗,E(k⃗1 + q⃗
))∣∣∣2

−
1
2
Re

[
V
(
q⃗,E

(
k⃗1 + q⃗

)
−E

(
k⃗1
))

×V∗
(
k⃗2 − q⃗− k⃗1,E

(
k⃗2 − q⃗

)
−E

(
k⃗1
))]}
(10)

The scattering time, τ ee, can be obtained from (6) assuming:

Îee
[
ψ1 cos

(
ϑk⃗1

)]
=
ψ1 cos

(
ϑk⃗1

)
τee

. (11)

With this result and thewave functions determined in our dens-
ity functional theory (DFT) calculations, we can determine the
scattering time, τ ee, in both the n= 2 (2D) and n= 3 (3D) lim-
its using:

1

τee
(
k⃗1
) ≈ 2f0

(
k⃗1
)ˆ dnq(

2π
)n [1− f0

(
k⃗1 + q⃗

)]
×
ˆ

dnk2(
2π
)n f0(k⃗2)[1− f0

(
k⃗2 − q⃗

)]
× w̄

(
k⃗1 + q⃗, k⃗2; k⃗1, k⃗2 + q⃗

)
f0
(
k⃗1
)

× δ
(
E
(
k⃗2 + q⃗

)
−E
(
k⃗2
)
−E
(
k⃗1 + q⃗

)
+ E
(
k⃗1
))
(12)

Since the integrals in (12) are performed over momenta k⃗2
and q⃗, they are defined by the corresponding density of states
(DOS). These results are therefore sensitive to van Hove sin-
gularities, Landau levels, and any other sharp peaks in the
DOS. The scattering times in the 2D and 3D cases can be
different, particularly at low temperature when the thermal
broadening of the peaks is suppressed. Figure 5(a) shows the
calculated density of states, ρ

(
E
)
, in 2D and 3D at Bz = 0T

taken from Quantum Espresso code, which shows the expec-
ted enhancement of the ρ

(
E
)
at EF in the 2D limit. We use this

density of states to determine the scattering rate, Γs, and scat-
tering angle, ϑ, in both limits. The more discrete-like DOS
leads to an enhancement in the integral in (12) and, thus, an
enhanced scattering rate in the 2D for this contribution to the
overall scattering rate. We note again that this is only the
leading contribution to (2), while the other contributions to
this include additional scattering mechanisms (e.g. electron–
phonon, electron–impurity, etc), which would not conserve
momentum and transfer some to the lattice degrees of free-
dom.

3.2. Scattering distribution, S
(
ϑ
)
, in 2D and 3D

To gain insight on the different contributions, we determine an
approximate theoretical form for the distribution of scattering

5
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angles, S
(
ϑ
)
. An electron with a momentum k⃗1 scatters to the

new momentum k⃗1
′
= k⃗1 + q⃗, while a second electron scat-

ters from k⃗2 = k⃗2
′
− q⃗ to a new momentum k⃗2. The angle-

dependence of the scattering will determined by the integrand
of (12):

S
(
ϑ
)
=
[
1− f0

(
k⃗1 + q⃗

)]ˆ
dγ

{
f0
(
k⃗2
)[
1− f0

(
k⃗2 − q⃗

)]
× w̄

(
k⃗1 + q⃗, k⃗2; k⃗1, k⃗2 + q⃗

)
δ
(
E
(
k⃗2 + q⃗

)
−E
(
k⃗2
)
−
[
E
(
k⃗1 + q⃗

)
−E
(
k⃗1
)])}

(13)

Assuming that the change to the momenta is small, we can

approximate
∣∣k⃗1∣∣≈ ∣∣k⃗2∣∣≈ ∣∣k⃗1 ′∣∣, which are all approximately

equal to the magnitude of the Fermi vector,
∣∣⃗kF∣∣. Within

the effective mass approximation, the distribution, S2D
(
ϑ
)
, of

scattering angles in the 2D case is:

S2D
(
ϑ
)
≈ π

2ℏ

(
2π e2

ϵ0L

)2(
κ

k3F

) 1(
ϑ+ κ

kF

)2(
ϑ+ 2 κ

kF

)


× 1{
exp
(

ℏ2k2F
2m∗kBT

ϑ2
)
+ 1
} (14)

where kF is the magnitude of the Fermi vector, T is the tem-
perature, L is the quantum well width, and κ= 2π e2

ϵ0
∂n
∂µ is the

inverse screening length in 2D. In contrast, we see that S3D
(
ϑ
)

in a 3D system is:

S3D (ϑ)≈
π

2ℏ

(
4πe2

ϵ0L3

)2(
1
k4F

) 1(
ϑ+ κ2

k2F

)2

 6κ2

k2F

ϑ2 + 4κ2

k2F

− 1




× 1{
exp

(
ℏ2k2F

2m∗kBT
ϑ2

)
+ 1

} (15)

where κ=
√

4π e2
ϵ0

∂n
∂µ is the inverse screening length in 3D (the

appropriate unit for the factor 4π e2

ϵ0
is [energy times distance],

thus both 2D and 3D inverse screening lengths have units
of [1/distance]). From these in both 2D and 3D, we can see

that scattering is suppressedwhen
{
exp
( ℏ2k2F
2m∗kBT

ϑ2
)
+ 1
}
≫ 1,

which occurs when ℏ2k2F
2m∗kBT

ϑ2 ≫ 1. The narrowing of the dis-
tribution leads to an enhancement in the dephasing time at
low temperatures in both the 2D and the 3D samples, which is
only observable in EA0745 in our data given its much longer
τm [48].

4. Numerical calculations

We demonstrate the important role that the distribution of scat-
tering angles, S

(
ϑ
)
, has on the dephasing time in figure 6.

The samples that we study have important contributions to (2)

Figure 5. (a) This is the calculated density of states, ρ
(
E
)
, in both

the 2D and 3D limits in GaAs at B = 0T, showing the enhancement
of the ρ

(
E
)
in 2D when compared to 3D. (b) S2D with a screening

length of κ−1 = 10nm, showing the narrowing of the scattering
distribution as temperature is lowered.

from carrier-carrier, carrier-phonon, and carrier-impurity
scattering [49] and our DFT-based modeling has demon-
strated the leading term in the electron–scattering time in (12).
Electron–electron scattering conserves momentum [50], so in
this section we demonstrate through a numerical simulation
how this can nonetheless dominate the dephasing time, τ 2,
absent process that would transfer momentum to the lattice or
impurities.

Figure 6(a) shows a schematic of a momentum-conserving
scattering process in a cyclotron [48]. An analogy here is
the phenomena of momentum relaxation in no external mag-
netic field after femtosecond subband-to-subband excitation
[51], which rapidly relaxes the initial momentum distribu-
tion in each of the subbands towards a Boltzmann distribution
with a lifetime on the order of τm ∼ 150fs [52]. In cyclotron
decay, the electron begins the classical circular orbit at point
A and scatters through an angle, ϑ, at point B in the diagram
(from ℏ⃗ki to ℏ⃗kf). The change in momentum, ℏk⃗1δ , is trans-
ferred to a second cyclotron (from ℏ⃗k ′i to ℏ⃗k ′f ), preserving the
total momentum of the interacting cyclotrons and transferring
ℏ⃗kδ between the interacting cyclotrons. These scattering inter-
actions occur in the ensemble of electrons, with a probabil-
ity distribution of angles governed by S

(
ϑ
)
in equations (14)

and (15), depending on the dimensionality of 2DEG.
We model the scattering of an ensemble of cyclotrons

assuming a constant uniform scattering rate, Γq, and vary the
width of the scattering distribution (see figure 5(b)) to isol-
ate the component of τ 2 resulting from the distribution of
scattering angles, S

(
ϑ
)
. This is a simplification, of course, as

both the scattering distribution width and rate would vary with

6
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Figure 6. (a) A schematic of momentum transfer, ℏ⃗kδ , from one
cyclotron (on the right) to a second cyclotron (on the left). (b) The
results of the numerical model demonstrating the role of the
scattering angle, S

(
ϑ
)
, in dephasing. The top panel shows the initial

distribution, ℏ⃗k, of cyclotrons at t= 0 in the center of mass reference
frame. For a constant scattering rate of Γ = (1.1ps)−1, the second
level of figures shows the ensemble at t= 5.5ps for two different
scattering angle limits, θ0, as described in the text. The bottom panel
plots the magnitude of the Bloch vector,

∣∣ℏ⃗k∣∣, for the ensemble as a
function of time for a range of θ0.

temperature. Figure 6(b) shows a subset of these N cyclotrons,
which begin in phase at t= 0 and scatter with a constant rate of
Γq = (1.1ps)−1 with a cutoff scattering angle, ϑ0 of 2◦ (left)
or 10◦ (right). The difference in the ensemble order is clear
at τ = 5.5ps, with little variation in the direction of ℏ⃗k when
ϑ0 = 2◦ but a significantly larger loss of order when ϑ0 = 10◦.
Dephasing results in a reduction in the ensemble Bloch vector,
as shown figure 6(c), for a range of cutoff scattering angles
[53], which shows a five-fold increase in the simulated deph-
asing time when the cut off angle is reduced from 10◦ to 2◦.
Thus, both the scattering rate from the DFT calculations as

Figure 7. DFT predicted scattering time in the 2D and 3D limits.
The difference in τ 2 in the two samples below T⩽ T0 results from
the much faster scattering rate, Γs, and narrower angular distribution
in the 2D limit.

well as the temperature-dependent scattering distribution con-
tribute to τ 2.

5. Final results

Figure 7 shows the final model of the electron–scattering con-
tribution to the dephasing rate, combining the scattering sim-
ulation from the DFT modeling with S

(
ϑ
)
. The quantitative

agreement between our calculation and the simulation is, of
course, not exact and predicts a faster τ 2 than we observe in
figure 4(c). Significant, however, is the prediction of a cros-
sover temperature above which both samples would be lim-
ited by the scattering time/angle. This shorter dephasing time
that we find in our simulation, in part, may be a limitation of
the Quantum Espresso/DFT codes that we use, which under-
estimates the band structure parameters in GaAs. Also, as
shown in figure 4(b) the determination of the dephasing time
is sensitive to the uncertainty in ns. It is likely that a modified
DFT code that could more accurately reproduce our electronic
band structure would also better predict the scattering rate and
angle.

6. Conclusions

We have studied cyclotron dephasing and superradiant emis-
sion as a function of temperature at Bz = 0.8T in both a nar-
row and wide quantumwell to elucidate the effects of quantum
confinement in 2DEG’s. Both sets of experimental data show
good agreement in dephasing rates above T0 = 1.2K, but
show significant deviations below. The dephasing time, τ 2,
decreases in the narrow QW (VA0607) primarily due to the
enhancement of the density of states at the Fermi edge as well
as the importance of interface scattering in this sample. In
the wide quantum well (EA0745), the substantial reduction in
the scattering angle distribution at low temperatures enhances
the dephasing time beyond what can be explained by the
reduced scattering rate within the quasi-3D limit. This result
will be a significant detrimental component of future quantum
device designs [54], where reduced dimensionality will be
accompanied by an decrease in dephasing time. Mitigation of

7
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this effect may be possible in monolayer materials like the
transition metal dichalcogenides, where the strong enhance-
ment due to quantum confinement may be partly offset by the
reduced screening [4].
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